32nd INTERNATIONAL GEOLOGICAL CONGRESS

THE OCEANIC LITHOSPHERE OF THE JURASSIC LIGURIAN TETHYS: FORMATION AND SUBDUCTION

Leader: G.B. Piccardo

Post-Congress P12
The scientific content of this guide is under the total responsibility of the Authors

Published by:
APAT – Italian Agency for the Environmental Protection and Technical Services - Via Vitaliano Brancati, 48 - 00144 Roma - Italy

Series Editors:
Luca Guerrieri, Irene Rischia and Leonello Serva (APAT, Roma)

English Desk-copy Editors:
Paul Mazza (Università di Firenze), Jessica Ann Thunn (Università di Firenze), Nathalie Marlène Adams (Università di Firenze), Miriam Friedman (Università di Firenze), Kate Eadie (Freelance independent professional)

Field Trip Committee:
Leonello Serva (APAT, Roma), Alessandro Michetti (Università dell’Insubria, Como), Giulio Pavia (Università di Torino), Raffaele Pignone (Servizio Geologico Regione Emilia-Romagna, Bologna) and Riccardo Polino (CNR, Torino)

Acknowledgments:
The 32nd IGC Organizing Committee is grateful to Roberto Pompili and Elisa Brustia (APAT, Roma) for their collaboration in editing.

Graphic project:
Full snc - Firenze

Layout and press:
Lito Terrazzi srl - Firenze
THE OCEANIC LITHOSPHERE OF THE JURASSIC LIGURIAN TETHYS: FORMATION AND SUBDUCTION

AUTHORS: G.B. Piccardo¹, E. Rampone¹, A. Romairone¹, M. Scambelluri², P. Elter², N. Malaspina³, G. Molfi³, R. Tribuzio³, R.L.M. Vissers⁴

¹ Dipartimento per lo Studio del Territorio e delle sue Risorse, University of Genova - Italy
² Dipartimento di Scienze della Terra, University of Pisa - Italy
³ Dipartimento di Scienze della Terra, University of Pavia - Italy
⁴ Department of Earth Sciences, Utrecht University - The Netherlands

Florence - Italy
August 20-28, 2004

Post-Congress
P12
Front Cover:
Monte Maggiore peridotite (Northern Corsica).
Introduction
The field trip aims to show the main petrological and structural features related to the formation and consumption of the oceanic lithosphere in the Ligurian sector of the Mesozoic Tethys. This oceanic lithosphere consisted of a peridotite basement locally intruded by gabbroic rocks and discontinuously covered by basaltic volcanites and radiolarian cherts. Present knowledge indicates that the Ligurian Tethys oceanic basin: 1) was originated by passive extension of the Adria-Europe lithosphere causing tectonic denudation and sea-floor exposure of large sectors of the subcontinental mantle, 2) was consumed by subduction during convergence between the European and Adria plates, leading to formation of the Alpine orogenic belt.

The field trip will visit two classic sections of the Ligurian ophiolites: 1) the obducted ophiolites from the Internal and External Liguride Units of the Northern Apennines (Eastern Liguria – NW Italy), and 2) the subducted high-pressure ophiolites from the Erro-Tobbio and Beigua Units of the Voltri Massif (Ligurian Alps, Western Liguria – NW Italy).

The excursion to the Northern Apennine ophiolites will focus on the up-to-date structural, petrologic and geochronologic knowledge about mantle peridotites and their associated crustal rocks (gabbros and basalts), aiming to highlight the petrologic/geodynamic processes which governed the formation of this peculiar oceanic lithosphere.

The excursion to the Voltri Massif will be devoted to the tectonic and metamorphic evolution of mafic and ultramafic rocks representing sections of subducted oceanic lithosphere which diffusely preserve remnants of the pre-Alpine protoliths, of their exhumation evolution during lithosphere extension and their low-grade alteration during sea-floor exposure. Major emphasis will be given to the structural and petrologic evidence of the tectonic-metamorphic subsolidus evolution of mantle lithosphere, HP recrystallization at eclogite-facies conditions of both ultramafic and mafic oceanic rocks, fluid production in hydrated oceanic mantle during subduction, and high pressure metamorphism.

Regional geologic setting
Introduction
Ophiolites exposed along the Western Alpine - Northern Apennine (and Corsica) (WA-NA) orogenic system are thought to represent the oceanic lithosphere of the Ligurian Tethys (or Ligurian-Piemontese basin), which separated, during Late Jurassic - Cretaceous times, the European and Adria continental blocks. In recent decades, numerous contributions concerning the WA-NA ophiolites have shown that: i) rather fertile, cpx-rich herzolites are dominant (Bezzi and Piccardo, 1971; Nicolas and Jackson, 1972), while depleted, cpx-poor peridotites are subordinated; ii) both gabbroic intrusives and basaltic volcanites have MORB affinity (Serri, 1980; Beccaluva et al., 1980).

WA-NA ophiolites show peculiar structural-petrographic features, which indicate that: I) mantle rocks underwent a composite subsolidus evolution after depletion by partial melting and accretion to the subcontinental lithosphere; II) gabbroic rocks were intruded into mantle peridotites; III) peridotites and gabbroic intrusions were exposed at the sea-floor prior to extrusion of pillow basalts and deposition of radiolarian cherts.

Moreover, sheeted dike complexes are lacking and comagmatic relations did not exist between the gabbro bodies and the basaltic dikes and flows. Accordingly, a general consensus exists on the idea that the Jurassic Ligurian Tethys was floored by an older peridotite-gabbro basement (Decandia and Elter, 1969; Piccardo, 1983; Lemoine et al., 1987), and then subsequently covered by extrusion of a discontinuous layer of younger pillowed basaltic flows and by radiolarian cherts. The radiolarian cherts, which are coeval to the basaltic extrusions, are not older than Late Jurassic (160-150 Ma) (De Wever and Caby, 1981; Marcucci and Passerini, 1991) throughout the whole Ligurian Tethys; accordingly, the inception of the oceanic stage, following the continental breakup, is considered not older than Late Jurassic.

Palaeogeography of the Ligurian ophiolites
The Ligurian Tethys is believed to have developed due to the progressive divergence of the European and Adria blocks, in connection with the pre-Jurassic rifting and Late Jurassic opening of the Northern Atlantic (Lemoine et al., 1987; Dewey et al., 1973). Palinspastic reconstructions suggest that this basin was limited in size, and that it never reached the...
dimensions of present-day oceans. In addition, age data indicate a narrow time span between the end of divergence and the onset of convergence and subduction. Oceanic accretion in the Ligurian Tethys started during Late Jurassic and continued for approximately 25 Ma (cf. Winterer and Bosellini, 1981). Plate convergence leading to subduction of the oceanic crust started during the Early Cretaceous, about 25 Ma after cessation of the oceanic spreading (Hunziker, 1974). The subduction zone had a south-west trending, with the Europe plate underthrusting the Adria plate, and it was most probably intra-continental in the northern sector of the Western Alps, and progressively intra-oceanic towards the Ligurian sector.

The Ligurian Tethys was completely closed in the Early Tertiary, when fragments of its oceanic lithosphere were emplaced as west-vergent thrust units in the Alps and east-vergent thrust units in the Apennines. Depending on their stratigraphic, structural and metamorphic characteristics, the different ophiolitic sequences of the Ligurian sector have been ascribed to different palaeogeographic settings in the Jurassic-Cretaceous Ligurian Tethys. The Voltri Massif ophiolites, which underwent deep evolution in the subduction zone and recrystallized at eclogite-facies conditions, were located west of the subduction zone, close to the European margin; the Northern Apennine ophiolites, which underwent solely low-grade oceanic and orogenic metamorphism, were located east of the subduction zone, closer to the Adria margin (Fig. 2).

The Voltri Massif

Introduction to the geology of the Voltri Massif

The Voltri Massif (Fig. 3) occupies the southeastern end of the Western Alps and is structurally ascribed to the Internal Pennidic Units of the Alps. Its tectonic units record a widespread recrystallization at eclogite-facies conditions as the result of subduction zone metamorphism. The Voltri Massif is mainly composed of ophiolitic materials, associated with slices of continental crystalline rocks from the European margin (Chiesa et al., 1975; Messiga et al., 1992). To the east it is separated from the Ligurian Apennines by the Sestri-Voltaggio zone, a composite terrain consisting of Triassic-Liassic carbonates and of dismembered...
Mesozoic ophiolites, showing peak blueschist metamorphic assemblages related to the alpine subduction. Klippen of analogous blueschist terrains (Cravasco-Voltaggio-Montenotte units) also overlie the eclogitic terrains of the Voltri Massif. To the west the Voltri Massif overlies the Savona continental basement, made up of Hercynian gneisses (granitoids with associated amphibolites), which show greenschist-to-blueschist-facies Alpine metamorphism. Towards the north the Voltri Massif is bounded by Tertiary sediments of the Piemontese Basin, whose basal breccias include clasts of high-pressure metaophiolites (metagabbros and metaperidotites), and give a 35-38 Ma age for the exhumation and erosion of the high-pressure terrains of the Voltri Massif.

Several studies (Chiesa et al., 1975; Messiga and Piccardo, 1974; Piccardo, 1977) have shown that in the Voltri Massif slices from different lithospheric levels (subcontinental mantle, Mesozoic oceanic lithosphere and sediments, continental margin units) are tectonically coupled. The present-day geometric relationships among the different tectonic units of the Voltri Massif are the result of the collisional tectonic under greenschist-facies conditions, which caused late-stage folding of the high-pressure nappes (post-nappe folding) and enhanced formation of shallow thrusts that masked the original nappe setting.

The Voltri Massif includes the following lithologic and tectonic units (Fig. 3): (1) the Beigua Unit, consisting of antigorite-serpentinites and eclogitic metagabbros, which derived from previous ophiolitic mantle peridotites and MORB gabbroic intrusions (dominant Fe-Ti-rich gabbros); (2) the Voltri-Rossiglione, Ortiglieto and Alpicella Units, consisting of metavolcanics and calcschists, which derived from the oceanic MORB basalts and their oceanic sedimentary cover: they locally preserve primary stratigraphic relationships with the ultramafic and mafic rocks of this unit; (3) the Erro-Tobbio Unit, consisting of partly recrystallized antigorite-bearing metaperidotites, preserving km-scale volumes of their mantle protoliths, and associated rodolitic and eclogitic mafic rocks (mostly deriving from MORB Mg-Al-rich gabbros and subordinate basaltic dikes with MORB affinity).

Eclogitic metagabbros and HP serpentinites and metaperidotites of the Beigua Unit

The Beigua unit mostly consists of serpentinites enclosing lenses of eclogites and minor bodies of metarodolite and Ti-chlorinumite dikes. Intrusive relations between eclogitized mafic rocks and host ultramafites are locally preserved. Petrological studies have shown that the eclogites formed by recrystallization (at 1.3 GPa and 450-500°C) of original gabbros, represented by dominant Fe-Ti-rich varieties, subordinated Mg-Al-rich gabbros and basalts, and rare diorites and plagiodranites (Mottana and Bocchio, 1975; Ernst et al., 1982; Piccardo et al., 1979; Piccardo, 1984; Messiga and Scambelluri, 1991).

On the basis of major and trace element data, metavolcanites have been interpreted as tholeiitic basalts with N-MORB affinity (Ernst et al., 1982; Piccardo, 1984). Mafic intrusives correspond to crystal cumulates at different fractionation steps from a common primary tholeitic N-MORB magma. The different intrusive types have flat REE patterns with a negative LREE fractionation. REE concentrations are 2-3xC1 in Mg-Al rich rocks, and rise up to > 100xC1 in the most differentiated Fe-Ti-rich types (Ernst et al., 1982; Piccardo, 1984; Messiga and Scambelluri, 1991).
1982; Piccardo, 1984).

The intrusion of gabroic rocks was followed by the emplacement of shallow, level basaltic dikes. This stage was likely coeval with effusion of MORB basaltic lava flows that are presently associated with metasediments in the Voltri-Rossiglione, Ortigliedo and Alpicella Units. Exposure of the Beigua gabro-peridotite association at the ocean floor was accompanied by local metasomatic exchanges between ultramafic and mafic rocks. These metasomatic rocks consist of: (1) metamorphic gabbro porphyroclasts, (2) brownish dikelets containing Ti-clinohumite + diopside + magnetite + apatite. These rocks have been interpreted as the result of supracrustal processes which have led to the formation of fine-grained garnet + diopside symplectite assemblages which predate glaucophane formation. Development of the amphibole + plagioclase + diopside symplectite was accompanied by reequilibration and internal cycling of eclogitic fluid inclusions that catalized mineral reactions and kinematics (Vallis and Scambelluri, 1996).

Serpentinites forming a great part of the Beigua Unit: they display an antigorite + chlorite + magnetite assemblage overgrown by olivine + antigorite, which derive from incomplete deserpentinization of the previous assemblages (Cimmino et al., 1979).

The Erro-Tobbio mantle peridotites

The Erro-Tobbio mantle peridotite were involved in the Alpine orogenesis, but the extreme localization of alpine deformation along mylonite shear zones preserves km-scale volumes of coherent unaltered peridotites which retain mantle textures and assemblages. This has allowed detailed structural and petrological investigations of their composite (magmatic, tectonic and metamorphic) upper mantle evolution, which pre-dated their sea-floor emplacement during the opening of the Ligurian Tethys (Bezzi and Piccardo, 1971; Ernst and Piccardo, 1976; Messiga and Scambelluri, 1988; 1991; Messiga et al., 1995a) mostly derive from original Fe-Ti-oxide-bearing gabbros which underwent pre-subduction, oceanic Ca- and Mg-metasomatism (Piccardo et al., 1980; Cimmino et al., 1981; Scambelluri and Rampone, 1999).

The classical garnet + Na-pyroxene + rutile eclogites of the Beigua Unit (Ernst, 1976; Messiga, 1987; Messiga and Scambelluri, 1988; 1991; Messiga et al., 1995a) mostly derive from original Fe-Ti-oxide-bearing gabbros (the “superiferrian eclogites” of Mottona and Bocchio, 1975): the Beigua eclogites show both coronitic and mylonitic structures. Relics of igneous minerals (mostly clinopyroxene) are locally preserved in coronitic eclogites: igneous augite is topotactically replaced by omphacite + fine-grained garnet and rutile. Plagioclase is pseudomorphed by fine-grained clinopyroxene + garnet + paragonite + epidote; igneous ilmenite is replaced by rutile. Mylonitic and tectonitic eclogites consist of omphacite porphyroclasts (after magmatic clinopyroxene) in a fine-grained matrix of omphacite, garnet and rutile. Garnet cores locally contain inclusions of sodic clinopyroxene (Tribuzio, 1992), crossite, paragonite, which represent relics of a prograde blueschists facies assemblage.

The trace element compositions of the eclogite minerals (Messiga et al., 1995a; Tribuzio et al., 1996) show that omphacite has a negligible contribution to the whole-rock REE inventory: almost all the LREE and HREE in the rock are incorporated in the coexisting garnet and accessory allanite. The gabbro/eclogite transformation was not accompanied by significant REE mobilization, and REE were redistributed among the new eclogite-facies minerals (Tribuzio et al., 1996).

The mantle protolith

The Erro-Tobbio mantle peridotites consist of partly-serpentinitized, cpx-poor lherzolites and harzburgites, which commonly show spinel-bearing assemblage. Texturally, they vary from granular types to highly deformed peridotite mylonites. Detailed field mapping (Hoogerdijijn Strating et al., 1991) has documented that the oldest features preserved are represented by the granular texture and the spinel-facies assemblage. These latter ones became overprinted by spinel-, to plagioclase-, to hornblende-bearing peridotite.
tes and mylonites forming composite km-scale shear zones (Vissers et al., 1991).

Bulk rock and mineral chemistry data on the Erro-Tobbio peridotites point to an overall depleted signature. The most important features are: i) the depletion in fusible components (i.e. low Ca, Al, Ti, LREE contents in both bulk rocks and constituent clinopyroxene) (Figs. 4 and 5), ii) the Nd-isotopic compositions of clinopyroxenes (Fig. 6). In principle, these features could be simply interpreted as resulting from partial melting processes. However, the comparison between bulk-rock and mineral compositions indicates that the Erro-Tobbio spinel peridotite protoliths most likely record a composite history of partial melting and melt migration by reactive porous flow (Rampone et al., 2003a). Major (and trace) element compositions of minerals in all the spinel peridotites (both granular and tectonite types) are remarkably similar. In spite of this, the bulk-rock compositions define striking correlations, i.e. increasing FeO, Ni, Co, and decreasing Al₂O₃, SiO₂, CaO, Sc, Cr, Yb, with increasing MgO, similar to those recently recognized in the abyssal peridotites (Niu et al., 1997; Asimow, 1999) (see Fig. 4). The bulk-rock chemical variations are coupled to systematic modal changes, namely a progressive cpx, opx decrease and olivine increase, at increasing bulk MgO. These bulk-rock/mineral compositional contrasts suggest that the Erro-Tobbio spinel peridotites cannot be simply interpreted as mantle residues after variable partial melting degrees. Instead, they may be explained as resulting from combined histories of partial melting and subsequent melt migration, involving pyroxene dissolution and olivine precipitation reactions (Rampone et al., 2003a). In contrast with the situation at Ronda, where the observed geochemical variability is correlated with the structural facies (Van der Wal & Bodinier, 1996), the melt extraction and interaction processes in the Erro-Tobbio region were fully annealed, and clearly preceded the subsequent tectono-metamorphic evolution, including the recrystallization in the plagioclase stability field.

The isotopic composition of the Erro-Tobbio mantle protolith is similar to other peridotites such as Lanzo, and it is indistinguishable from modern-depleted to slightly-enriched MORB-source reservoirs (Fig. 6). Such compositions are also common in the sub-continental lithosphere, and they cannot be used to distinguish between particular environments such as oceanic versus subcontinental mantle or plume sources (Bodinier et al., 1991).

In terms of bulk rock compositions, the plagioclase peridotites plot at the “more fertile” end of all trends discussed above (higher Ca, Al, Sc, V, HREE, modal cpx contents) (see Figs. 4 and 5). Thus, it could be argued that these peridotites were refertilized by impregnating melts which caused plagioclase crystallization. However, field and microtextural evidence (Hoogerduijn Strating et al., 1993, Rampone et al., 2003b) indicates that plagioclase in the studied peridotites resulted from a subsolidus reaction rather than from melt crystallization. According to Rampone et al. (2003b), the evidence that plagioclase-facies recrystallization is mostly recorded by more fertile peridotites is mostly likely due to the fact that Ca- and Al-richer bulk compositions enhanced crystallization of the plagioclase-bearing assemblage.

The early spinel-facies equilibration Thermobarometry of the spinel-facies recrystallization yields a rough pressure estimate of about 20 Kb, with corresponding maximum temperatures below 1100 °C (Hoo-
The decompressional evolution

The spinel-facies granular textures are overprinted by tectonite and mylonite fabrics that mostly develop within km-scale shear zones and are related to a complex tectonic-metamorphic history. The shear horizons were active during a polyphase metamorphic evolution marked by recrystallization of the peridotite to spinel-, plagioclase-, hornblende- and chlorite-bearing parageneses. Detailed structural studies (Drury et al., 1990; Vissers et al., 1991) reveal several generations of shear-zone structures, and the intensity of the deformation associated with these structures varies considerably. Progressive deformation and concomitant recrystallization led to the development of tectonite-to-mylonite fabrics and spinel- to plagioclase- to amphibole-bearing assemblages.

Mineral chemistry data (Hoogerduijn Strating et al., 1993; Romaine, 1999; 2000; Rampone et al., 2003), performed on peridotite samples with similar bulk rock chemistry, point to systematic variations of the clinopyroxene compositions, from the oldest (spinel-facies) to the youngest (amphibole-facies) assemblages. The highest Al₂O₃ and Na₂O contents (average 7.1 and 0.6 wt%, respectively) pertain to...
clinopyroxenes from the granular spinel peridotites or from spinel-facies porphyroclasts within tectonite-mylonite peridotites. These elements strongly decrease in clinopyroxenes coexisting with plagioclase, and reach the lowest clinopyroxene values in the hornblende-bearing assemblages. Spinel in granular and tectonite-mylonite peridotites has the highest Al and Mg contents (Al$_2$O$_3$ up to 59 wt%, MgO up to 20 wt%). The most Cr-Fe-rich spinel relics occur in the plagioclase- and hornblende-bearing mylonites. Plagioclase has 80-90% anorthite end-member. Amphibole has edenitic-pargasitic hornblende composition (Hoogerduijn Strating et al., 1993). Thermometric estimates (Hoogerduijn Strating et al., 1993) indicate that the Erro-Tobbio peridotites underwent a progressive temperature decrease from spinel-facies (T ranging 1000-1100°C) to plagioclase-facies (T ranging 900-1000°C), to hornblende-facies (T lower than 900°C) conditions. The composite tectonic-metamorphic history indicates a subsolidus, non-adiabatic evolution during exhumation from lithospheric mantle depths (Hoogerduijn Strating et al., 1993), (Fig. 7).

The sequence of tectonic and metamorphic events, and the variation in the mineral compositions, indicate that the Erro-Tobbio peridotites, after equilibration within the conductive subcontinental lithosphere, underwent a decompressional evolution towards shallow crustal levels. Sm-Nd isotope data, performed on two samples of plagioclase-bearing tectonites, have yielded two essentially parallel isochrons, giving ages of 273 and 313 Ma (+16 Ma) for the plagioclase-bearing recrystallization (Fig. 8): these data indicate that the lithospheric extension and the mantle decompressional evolution were already active in late Carboniferous-Permian times (Romairone, 1999; Rampone et al., 2003).

The decompressional path of the Erro-Tobbio subcontinental lithospheric peridotites has been related to the early pre-oceanic rifting stage in the Ligurian Tethys. It is, moreover, consistent with mechanisms of tectonic unroofing of subcontinental mantle during passive lithosphere extension (Hoogerduijn Strating et al., 1990,1993; Vissers et al., 1991; Piccardo et al., 1992; Rampone et al., 2003).

The melt impregnation
Ongoing field and petrologic-geochemical studies (Piccardo et al., in preparation) evidence the presence in the Erro-Tobbio Massif of large areas showing plagioclase enrichment and anastomosing networks of channels and dm-scale bodies of spinel dunites. Field and petrologic-geochemical studies evidenced that the plagioclase enrichment in some ophiolitic Alpine-Apennine peridotites (Lanzo, Internal Ligurides, Corsica) is due to impregnation (reactive porous flow migration and interstitial crystallization) of a percolating exotic melt (Rampone et al., 1997; Piccardo et al., 2002; Piccardo, 2003; Müntener and Piccardo, 2003), whereas the spinel dunitic dikes have been interpreted as replacive dunites, formed by a melt migrating via reactive, focused porous flow through the spinel-plagioclase peridotites along preferential conduits, where mantle pyroxenes were completely dissolved by melt/peridotite reaction (Boudier and Nicolas, 1972, Boudier, 1978; Piccardo, 2003; Müntener and Piccardo, 2003).

Melt impregnation in the Erro-Tobbio spinel peridotites is evidenced by peculiar microstructures, i.e. presence of: i) plagioclase blebs or veins along grain boundaries or crosscutting mantle minerals; ii) partial dissolution of exsolved mantle clinopyroxene and replacement by unstrained orthopyroxene rims and orthopyroxene + plagioclase symplectites; iii) corrosion of deformed mantle olivine and partial replacement by undeformed orthopyroxene crystals; iv) undeformed, granular plagioclase-orthopyroxene microdomains along the contacts and frequently cros-
scutting deformed mantle minerals. Early crystallization and abundance of magmatic orthopyroxene, together with plagioclase, in the interstitial magmatic aggregates and replacing mantle olivine and clinopyroxene, indicates that the impregnating melts were orthopyroxene-silica-saturated. The silica saturation of the impregnating melts supports the idea that their primary liquids migrated upwards in the mantle column from deeper levels by reactive porous flow (Rampone et al., 1997; Piccardo et al., 2002) and reacted with the country peridotite, dissolving pyroxenes and crystallizing olivine (Kelemen et al., 1995).

The intrusion of gabbroic bodies and dikes

The Erro-Tobbio peridotites are intruded by discrete bodies (up to 1 km wide) and dikes of gabbroic rocks, which are locally recrystallized to rodingitic and eclogitic assemblages, but frequently preserve magmatic textures and assemblages. The gabbroic bodies mostly consist of ultramafic cumulates and olivine gabbros; the dikes are constituted by troctolites, and olivine gabbros. Basaltic dikes are also found. The REE composition of magmatic clinopyroxene and whole rocks in all the above intrusives indicate a clear MORB affinity for the parental magmas.

Field evidence indicates that the subsolidus spinel- to plagioclase-facies transition, the melt percolation and entrapment, and the intrusions of MORB-type gabbroic bodies, occurred at deeper conditions, where mantle rheology still allowed plastic deformation and melt migration via porous flow. The subsequent dike intrusion of aggregated MORB magmas, parental to the gabbroic dikes, occurred at shallower levels, where the upwelling lithospheric mantle reached more rigid and fragile conditions because of the conductive heat loss.

The oceanic evolution

The sea-floor hydration led to widespread serpentinization of peridotites and to rodingitization of the mafic dikes (Cimmino et al., 1979; Piccardo et al., 1988). Hydrous assemblages, including several generations of serpentinite minerals (mostly chrysotile and lizardite), chlorite, brucite and mixed-layer phyllosilicates, statically replace the mantle assemblages and are, in turn, overgrown by subduction-related antigorite-bearing assemblages (Scambelluri et al., 1991; 1995). Several generations of serpentine are present: chrysotile, lizardite and antigorite, which show variable Al2O3 content (max 0.7 wt% in chrysotile; 2.5 to 7 wt% in lizardite; 0.5 to 3.2 wt% in antigorite).

Oceanic chrysotile and lizardite can contain slight amounts of Cl, which is absent in the high-pressure antigorite. This stage is also marked by development of mixed-layer phyllosilicates at the expense of mantle spinel, which can contain up to 5 wt% K2O and 0.35 wt% Cl; they are overgrown by high-pressure chlorite lacking chlorine and alkalis. The above features point to an early stage of peridotite interaction with sea-water-derived Cl-alkali-bearing solutions (Scambelluri et al., 1997).

The alpine evolution

The Erro-Tobbio peridotites and mafic dikes underwent subduction and eclogite-facies recrystallization (Piccardo et al., 1988; Hoogerdijin Strating et al., 1990; Scambelluri et al., 1991). Peak HP metamorphic assemblages consist of omphacite + garnet + Mg-chloritoid + zoisite + talc + chlorite in the metababbros (Messiga et al., 1995b), and olivine + titanian...
clinohumite + antigorite + diopside in the peridotite. P-T estimates suggest that the eclogitization of metagabbros formed at 18-25 Kbar and 500-650 °C (Messiga et al., 1995b).

Structural studies (Scambelluri et al., 1991; 1995) have shown that eclogitization of metagabbros is coeval with formation of metamorphic olivine in the associated ultramafic rocks. Oceanic serpentinite is cut by prograde antigorite veins and foliations, which are in turn cut by olivine structures. Formation of peak metamorphic olivine is caused by the reaction antigorite + brucite = olivine + fluid, which leads to stability of olivine + antigorite + diopside + Ti-clinohumite + chlorite and metamorphic fluid release. The most obvious evidence of fluid release is the development of widespread vein systems containing olivine, titanian clinohumite, diopside and chlorite (Scambelluri et al., 1991; 1995). During subduction and eclogitization, deformation was channelled within intensely serpentinitized domains (serpentinite mylonites), whereas large volumes of ultramafic rocks did not undergo significant plastic deformation and developed a static olivine + antigorite +-bearing assemblage.

A major implication of antigorite stability in HP ultramafic rocks is that they represent the most effective carriers of water into deep levels of subduction zones and that they maintain extremely low densities at mantle depths (Scambelluri et al., 1995; Hermann et al., 2001).

Geochemical inference on fluid and element cycling during subduction of the Erro-Tobbio peridotite

The shallow hydration of the Erro-Tobbio peridotite had relevant consequences on deep transport of water during subsequent subduction, and on element cycling into the mantle via production of deep eclogitic deserpentinization fluids. Stable isotope studies of the Erro-Tobbio ultramafic rocks have revealed the fluid-rock interactions during shallow hydration and subsequent subduction dewatering of these rocks, and the scales of fluid migration at depth (Vallis, 1997; Früh-Green et al., 2001).

As a whole, the ultramafic rocks have heterogeneous 18O values, ranging from 18O-enriched to 18O-depleted compositions compared to unaltered reference mantle values (Fig. 10). Serpentinitized mantle peridotites are generally enriched in bulk 18O (5.7 to 8.1‰), high pressure metaperidotites and serpentinite mylonites cover the same range of bulk-rock 18O values (4.4 to 7.6‰) and show a slight 18O depletion compared with the serpentinitized mantle (Fig. 10A). The lowest bulk rock 18O values pertain to high pressure veins (3.5 to 5.7‰) and to eclogitized metagabbros (3.1 to 5.3‰). The 18O variability of clinopyroxene and serpentinite reflects the same general variations as the bulk-rock compositions. The 18O compositions of mantle clinopyroxene (5 to 7‰) and of serpentinite (chrysoilite and lizardite, 5.8 to 7.6‰) preserved in the serpentinitized mantle peridotites, are closely comparable with those of the metamorphic diopside (4.1 to 6.5‰) and antigorite (5.0 to 7.1‰) of the high pressure ultramafic rocks (Fig. 10B, C). In general the oxygen isotope composition of high pressure phases are slightly depleted in 18O (less than 1‰) in respect to the pre-eclogitic ones. These variations are comparable to the ones measured in mafic and ultramafic rocks from modern oceanic environments and ophiolites, which record both low temperature and high temperature alterations and varying fluid fluxes (e.g. Wenner and Taylor 1973; Gregory and Taylor 1981; Agrinier et al., 1988; Früh-Green et al., 1996; Agrinier et al., 1995). In particular, a large number of oxygen isotope ratios of clinopyroxene in serpentinitized mantle peridotites, high pressure metaperidotites, serpentinite mylonites, high pressure veins and omphacite of metagabbros, have 18O depleted compositions (< 5‰), thereby suggesting exchange with seawater at T >300°C. In contrast, most of the serpentine oxygen isotope compositions are greater than 5‰; these values are similar to the serpentine compositions of the Iberian passive margin (5 to 13‰, Agrinier et al., 1988; Agrinier et al., 1995; Plas, 1997) and the Tyrrhenian Sea (3 to 8‰, Plas, 1997), reflecting lower temperature fluid/rock interaction at crustal levels. The recognition that pre-subduction water, chlorine, alkalis and strontium were carried by the vein fluid, indicate closed system behaviour during eclogitization, and internal cycling of exogenic components at a depth of 80 km. Similarities in the oxygen isotope signatures of oceanic and eclogite-facies rocks have been pointed out in a number of stable isotope studies, and have been interpreted as an indication of the preservation of oceanic signatures and, thus, a lack of isotopic overprinting during eclogitization (e.g. Matthews and Schliesedt, 1984; Nadeau et al., 1993; Barnticoat and Cartwright, 1997; Philippot et al., 1998; Putlitz et al., 2000). Preservation of pre-eclogitic 18O signatures of the Erro-Tobbio ultramafic rocks and metagabbros implies local-scale fluid flow at low water/rock ratios, closed system behaviour during high-pressure metamorphism, local-scale exchange with compositionally hete-
rogeneous eclogitic fluids, absence of large-scale fluid flushing causing resetting of pre-subduction isotopic signatures.

The trace element compositions of ET-serpentinitized mantle peridotites and high-pressure ultramafites are shown in Fig. 11. Main features of the shallow serpentinization are the immobility of REE, considerable water increase, a local CaO decrease and uptake of trace amounts of Sr (Scambelluri et al., 2001). Comparable REE behaviour and Sr-enrichment were observed by Menzies et al. (1993) in peridotite-seawater interaction experiments at 300 °C, and were reported for abyssal serpentinites by Bonatti et al. (1970). The alkalies and Cl earlier stored in oceanic hydrous phases are no longer present in the HP parageneses, as they likely partitioned in the synmetamorphic fluid drained in the veins.

Fluid inclusions studies (Scambelluri et al., 1997) have pointed to the presence of hypersaline fluids containing NaCl, KCl and MgCl₂ in the vein filling minerals. Trace element analyses of mantle clinopyroxenes and high-pressure diopside (in country ultramafites and veins), highlight the close similarity of the various clinopyroxenes in the REE compositions (Fig. 12), again indicating rock control on the vein fluids and lack of exotic components.

Presence of appreciable Sr contents in vein-forming diopside indicate cycling of oceanic Sr in the high-pressure fluid. The aqueous fluid equilibrated with this clinopyroxene lacks HFSE, has Sr contents of about 1.5 x chondrite (i.e. in the range of normal mantle values) and is Cl- and alkalis-rich.

The Northern Apennines

Introduction to the geology of the Northern Apennines

The Northern Apennine region is formed by the Late Oligocene-Miocene stacking of tectonic units belon-
The oceanic lithosphere of the Jurassic Ligurian Tethys: Formation and subduction.

The Tuscan units, derived from continental domains and formed by sedimentary and metasedimentary sequences originally deposited on a Paleozoic basement, and the uppermost Liguride units, derived from oceanic and ocean-continent transitional domains. The Liguride units occupy the highest position in the nappe pile.

The stratigraphic and structural features of the Tuscan Domain allowed the reconstruction of the evolution of the Adriatic continental margin from its Hercynian orogen to the Late Paleozoic trans-extensional setting. During the Middle Triassic, evidence of further crustal attenuation was provided by the Anisian-Ladinian extensional basins (Punta Bianca sequence), in which marine platform sediments are associated with alkaline basaltic flows and breccias. Early-to-Middle Jurassic block faulting and progressive subsidence of the continental margin led to the dismembering of the carbonate platforms and the formation of the ocean basin of the Ligurian Tethys (Malm).

The Liguride Units have been subdivided into two main groups of units on the basis of stratigraphic and structural features, i.e. the Internal (IL) and the External (EL) Liguride Units. The IL Units consist of serpentinitized mantle peridotites, generally covered by ophiolitic sedimentary breccias (ophicarbonate and gabbronoritic bodies. Ultramafic and gabbroic rocks are locally covered by ophiolitic sedimentary breccias interlayered with MORB-type basaltic flows. Their sedimentary cover consists of Radiolarian Cherts (Callovian-Oxfordian), Calpionella Limestone.

Figure 10 - Bulk trace-element compositions of samples in profiles from serpentinized mantle peridotite to serpentinite mylonite.

Figure 11 - Trace element compositions of clinopyroxenes from the Erro-Tobbio peridotite. Grey dots: high-pressure diopside from host rocks and veins. Shaded field: reference mantle clinopyroxenes.
The EL Units are characterized by the presence of “basal complexes” (pre-flysch formations) overlain by the typical Helminthoid Flysch (Cretaceous-Paleocene calcareous-dominant sequences). According to their internal stratigraphy, two main groups of units have been recognized and referred to different domains (Marroni et al., 1998 and references therein):

1) the Western External Liguride Domain, characterized by units containing ophiolites (MORB-type basalts and mantle peridotites occurring as olistoliths, slide blocks and tectonic slices in the basal complex) and ophiolite-derived debris, which are associated with continental mafic and felsic granulites, and granitoids.

2) the Eastern External Liguride Domain, characterized by units containing fragments of mesozoic sedimentary sequences and conglomerates with Austro-Sudalpine or Insubrian affinity, without ophiolites. This evidence indicates the presence of a thinned continental crust representing the westernmost domain of the Adria continental margin (Sturani, 1973; Zanzucchi, 1988; Elter and Marroni, 1991; Molli, 1996).

The differences between the basal complexes in the two EL Domains and the ubiquitous presence of the Late Cretaceous-Paleocene Helminthoid Flysch, suggest the transition between a thinned continental crust (Eastern EL Domain) and an ocean-continent transition area (Western External Liguride Domain). The Liguride Units bear evidence of Eoalpine (Cretaceous) and Mesoalpine (Eocene) deformation, predating their involvement in the overthrusting (Late Oligocene-Miocene) onto the easternmost continental margin (i.e. the Tuscan Domain). The Cretaceous evolution produced the formation of the basal complexes, resulting in the slicing and inversion of the EL Domain. The Mesoalpine deformation in the Liguride Units involved early west-verging, large scale folding and thrusting. The Mesoalpine deformation was followed by large-scale backthrusting, gravitational spreading and extensional tectonics associated with east-directed tectonic transport. The subsequent large scale deformational history of the Apennines involved northeastward nappe transport and progressive deformation of the westernmost sector of the Adriatic continental margin, when the Liguride Units became parts of the Apenninic accretionary wedge due to the underthrusting of the External Tuscan Domain.
The Northern Apennine Ophiolites
A representative sampling of the diversity of the oceanic lithosphere which floorated the Jurassic Ligurian Tethys is shown by the Northern Apennine ophiolites (Fig.13). In the IL Units, ophiolites consist of a peridotite-gabbro basement stratigraphically covered by ophiolitic breccias, pillow basaltic lava flows, and oceanic sediments (Abbate et al., 1994, and quoted references).

Field and structural evidence indicate that mantle peridotites were intruded by gabbroic bodies at depth. Subsequently, the peridotite-gabbro association experienced a tectonic-metamorphic decompressional evolution, as testified by deformation and recrystallization along shear zones: this indicates progressive uplift and final exposure at the sea-floor, where the peridotites were extensively serpentinized.

The uppermost part of the serpentinites suffered intensive fracturing with development of tectonic breccias (ophicalcites), which were partially covered by sedimentary ophiolitic breccias. Ophicalcites and sedimentary breccias were discontinuously covered by MORB-type pillow basaltic lava flows and Oxfordian-Callovian radiolarian cherts, i.e. the oldest pelagic sediments (Marcucci and Passerini, 1991). Discrete basaltic dikes, related to the basaltic extrusions, commonly cut serpentinized peridotites and foliated gabbros, as well as the overlying tectonic and sedimentary breccias.

In the EL Units, ophiolites consist of mantle peridotites and MORB-type pillow basalts, and are associated with continental crust material (Marroni et al., 1998, and quoted references). Thus, the source area for the EL lherzolites and basalts has been located close to the Adria continental margin (Piccardo et al., 1990, and quoted references). Accordingly, the EL units have been regarded as a fossil example of the ocean-to-continent transition (Marroni et al., 1998).

Peridotites record a composite tectonic-metamorphic evolution, developed prior to widespread serpentinization, which indicates progressive upwelling toward the sea-floor (Piccardo et al., 1990; Rampone et al., 1995).

Mantle peridotites
The mantle protoliths
The EL peridotites crop out as km-scale bodies which largely preserve mantle textures and assemblages, despite widespread serpentinization. They are dominantly fertile spinel lherzolites with granular to tectonite-mylonite textures. Pyroxenite bands, mainly
Sr and Zr contents in clinopyroxenes and whole rocks (Ernst and Piccardo, 1979; Beccaluva et al., 1984; Ottonello et al., 1984; Rampone et al., 1993; 1995).

The EL lherzolites display a complete static equilibrium recrystallization under spinel-facies conditions. Disseminated kaersutite/Ti-pargasite amphiboles occur in equilibrium with the spinel-bearing assemblage; they show LREE-depleted REE spectra (Fig. 15A) and very low Sr, Zr and Ba contents. The stability of pargasitic amphibole constrains the spinel-facies equilibration to temperatures lower than 1100 °C (e.g. Jenkins, 1983), in fair agreement with thermometric estimates (T in the range of 1000-1100 °C). The presence of LREE-depleted, Ti-rich amphibole is an ubiquitous feature of many subcontinental lithospheric peridotites (Piccardo et al., 1991b; Vannucci et al., 1995; Ionov et al., 1997; and quoted references).

The spinel-facies recrystallization in a rather “cold” (T<1100°C) thermal regime represent the annealing recrystallization after accretion of the EL mantle to the conductive lithosphere (Piccardo et al., 1994; Rampone et al., 1995). Information about the timing of lithospheric accretion has been derived from Rb-Sr and Sm-Nd isotope studies (Rampone et al., 1995). Present-day Sr- and Nd-isotope ratios for the EL peridotites are shown in Fig. 16. As a whole, they plot within the depleted end of the MORB field, similar to many subcontinental orogenic spinel-lherzolites from the western Mediterranean area (e.g. the Pyrenees and Lanzo North peridotites). One sample, in particular, displays an extremely depleted isotopic composition (87Sr/86Sr = 0.701736; 143Nd/144Nd = 0.513534). Similar, exceptionally low, Sr ratios have been also measured in the Lanzo North and Pyrenean peridotite massifs (see Fig. 16), and have been considered to reflect a very long time of isolation from the convective mantle and incorporation into the subcontinental lithosphere. This is supported by model age calculations (Fig. 17). Most EL peridotites display Nd model ages (assuming a CHUR mantle source) in the range of 1.9-1.7 Ga (Fig. 17), and consistent results are obtained with Rb-Sr systematics (Rampone et al., 1995). Moreover, the single sample with extremely depleted isotopic composition yields Sr and Nd model ages of 2.1 and 2.4 Ga (assuming a DM and a CHUR mantle source respectively) (Fig. 17A); these can be considered as minimum ages of differentiation form the asthenospheric mantle. The coupling of high 143Nd/144Nd (>0.51310) and rather low 147Sm/144Nd (0.22-0.30) ratios is a peculiar feature of many subcontinental peridotites (see the data for Lanzo N, Ronda, and Pyrenees in Fig. 17A), and it bears witness of ancient (usually Proterozoic) depletion events. Proterozoic ages of lithospheric accretion of the EL mantle have been also indicated by Re/Os isotopic investigations (Snow et al., 1999). The IL peridotites consist of clinopyroxene-poor (5-10 vol%) spinel-lherzolites. IL peridotites display depleted compositions: their bulk rock MgO, CaO and Al₂O₃ contents are comparable to those of abyssal
peridotites (see Fig. 14). The REE spectra are strongly fractionated and display extremely low LREE absolute concentrations. Geochemical modeling indicates that their compositions are consistent with mantle residua after low-degree (<10%) fractional melting (Rampone et al., 1996).

The present-day Sr and Nd isotope ratios of the IL peridotites are shown in Fig. 16. Their 87Sr/86Sr ratios (0.702203-0.702285) are consistent with a MORB-type mantle, but the 143Nd/144Nd ratios (0.513619-0.513775) are very high and plot significantly above the MORB field. Their high Nd ratios are coupled to very high 150Sm/144Nd ratios (0.54-0.56); this is shown in the 147Sm/144Nd versus 143Nd/144Nd diagram of Fig. 18A, where the IL ultramafics are compared with other depleted peridotites of the Western Alpine belt (e.g. the Lanzo South, Bodinier et al., 1991, and Balmuccia, Ivrea Zone, Voshage et al., 1988). It is noteworthy that the IL samples display the most “extreme” Nd isotope compositions.

As discussed in Rampone et al., (1996) (1998), such compositions are not consistent with a Jurassic partial melting event of a MORB-type asthenosphere: Nd model ages calculated for an average IL peridotite composition and assuming a depleted mantle (DM) source yield a Permian time of depletion ($t=275$ Ma). A Permian age (about 270 Ma) of partial melting has also been inferred for the Balmuccia peridotites (Voshage et al., 1988) (see Fig. 18A).

Asthenospheric mantle upwelling and melting during the Permain is well documented by the widespread occurrence, in the Alpine belt, of Permian gabbroic bodies intruded beneath or within the Adria thinned continental crust (Piccardo et al., 1994; Rampone et al., 1996, 1998; and quoted references). Thus, the Permain age of depletion recorded by the IL ultramafics is surprising as they represent the upper mantle of the Jurassic oceanic lithosphere, but it is reasonable in the framework of the Permian extension-related mantle partial melting and magma production in the Alpine realm (Dal Piaz, 1993; and quoted bibliography).

The IL peridotites, after the melting event, were completely recrystallized under spinel-facies conditions; the spinel-facies assemblages record equilibration temperatures in the range of 1150-1250 °C (Becaluva et al., 1984; Rampone et al., 1996).

Figure 16 - Present-day 143Nd/144Nd versus 87Sr/86Sr diagram for the Northern Apennine (IL and EL) peridotites and basalts, and for the IL gabbroic rocks (data from Rampone et al., 1995, 1996, 1998. Fields refer to clinopyroxene data for peridotites from: (1) Lanzo (Western Alps, Bodinier et al., 1991), (2) Pyrenees (Downes et al., 1991). Also shown are the fields for MORBs (5) and OIBs (4) (from Hofmann, 1997).

Figure 17 - (A) 143Nd/144Nd versus 150Sm/144Nd diagram for the External Liguride (Ext. Lig.) peridotites (data from Rampone et al., 1995), compared with data from other subcontinental orogenic peridotites (Ronda, Reisberg et al., 1988; Pyrenees, Downes et al., 1991, Mukasa et al., 1991; Lanzo North, Bodinier et al., 1991). All data are from clinopyroxene separates. The Depleted Mantle (DM) and CHUR source ratios are, respectively, 143Nd/144Nd = 0.513114, 150Sm/144Nd = 0.222 and 143Nd/144Nd = 0.512638, 150Sm/144Nd = 0.1967 (see text and Rampone et al., 1995 for more explanation). (B) 187Os/188Os versus Al$_2$O$_3$ diagram for the Ext. Lig. peridotites (whole rock data; from Snow et al., 1999). We have also reported the fields relative to the compositions of the Ronda (Reisberg and Lorand, 1995) and Pyrenees (Reisberg and Lorand, 1995; Burnham et al., 1998) peridotites, as they both define strong positive correlations which yield ages of 1.9 ± 0.3 Ga (Pyrenees) and 1.3 Ga (Ronda) for the isolation of these peridotites from the convective mantle and incorporation into the subcontinental lithosphere.
The early decompressional evolution

The EL peridotites show the effects of subsequent tectonic and metamorphic evolution, i.e. widespread partial recrystallization from spinel- to plagioclase-bearing assemblages, and progressive deformation leading to the development of porphyroclastic textures and tectonite to mylonite fabrics, in kilometer-wide shear zones (Beccaluva et al., 1984; Piccardo et al., 1990; Rampone et al., 1993, 1995). The spinel- to plagioclase-facies transition is reflected by peculiar microstructures: i) large exsolution lamellae of orthopyroxene and plagioclase within spinel-facies clinopyroxene, ii) plagioclase rims around spinel and plagioclase + olivine coronas between spinel and pyroxenes, and, iii) granoblastic domains consisting of olivine + plagioclase + neoblastic pyroxenes. This recrystallization is accompanied by significant mineral compositional variations, i.e. a decrease in Al, Na, Sr, Eu/Eu* and an increase in V, Y, Sc, Cr, Zr and Ti in clinopyroxene, a decrease in Al and an increase in Cr, Ti in spinel, a decrease in Eu/Eu*, Sr and Ba and an increase in Zr and V in amphibole. According to mass-balance calculations, within-mineral major and trace element redistribution occurred in a closed system, due to the spinel- to plagioclase- subsolidus transition (Rampone et al., 1993). This is consistent with relatively low temperatures (T=900-950°C) obtained for the plagioclase-facies metamorphic recrystallization (Beccaluva et al., 1984; Rampone et al., 1995). Sm/Nd data on plagioclase-clinopyroxene pairs from the plagioclase-facies assemblage yield ages of about 165 Ma for this metamorphic recrystallization (Rampone et al., 1995).

The melt impregnation

Recent field studies evidence the presence in the EL peridotite bodies of large areas showing plagioclase enrichment and anastomosing networks of channels and dm-scale bodies of spinel dunites. Ongoing petrologic-structural and geochemical investigations (Piccardo et al., 2004) evidence that the plagioclase enrichment is due to impregnation (reactive porous flow migration and interstitial crystallization) of a percolating exotic melt, showing MORB affinity and pyroxene saturation, whereas the spinel dunite channels are replacive in origin, and were formed by melt/peridotite interaction (pyroxenes dissolution and olivine crystallisation) along preferential conduits through the peridotites.

Melt impregnation in the EL peridotites is evidenced by (Piccardo et al., 2004):

1) peculiar microtextures, i.e. presence of: i) unstrained olivine rims surrounding exsolved mantle pyroxenes; ii) plagioclase, clin- and orthopyroxene blebs or veins along grain boundaries or crosscutting strained mantle minerals; iii) corrosion of deformed mantle olivine and partial replacement by undeformed orthopyroxene crystals; iv) undeformed, granular gabbroic microdomains and veinlets, mainly made of plagioclase+orthopyroxene+clinopyroxene;

2) significant enrichment of mantle and magmatic pyroxenes in many trace elements (i.e M-HREE, Ti,Sc,V,Zr,Y), with respect to porphyroclastic pyroxenes in the spinel lherzolites and to clinopyroxenes in equilibrium with MORB melts. Enriched clinopyroxenes show convex-upward REE patterns with a significant REE enrichment (MREE up to 30xC1),
and both ortho- and clinopyroxenes frequently show a negative Eu anomaly. Mantle and magmatic orthopyroxenes show similar trace element enrichment as clinopyroxenes. The IL peridotites too show clear microtextural and chemical records which indicate melt impregnation and interaction of the peridotite matrix with percolating melts (Rampone et al., 1997; Piccardo et al., 2004): 1) peculiar microtextures, i.e. i) unstrained plagioclase and orthopyroxene blebs along grain boundaries or crosscutting deformed mantle minerals; ii) orthopyroxene+plagioclase intergrowths which partially replace deformed and exsolved mantle clinopyroxenes; 2) chemical modification in mantle clinopyroxenes (i.e. Ti, M-HREE, Zr, Y, Sc enrichment, coupled to Al depletion) when reacting with the impregnating melts. Microtextural and chemical features suggest a deeper melt/peridotite interaction, leading to pyroxene dissolution and olivine precipitation [peridotite depletion and melt orthopyroxene-(silica)-saturation], followed by a shallower interstitial crystallization of the upward migrating melts, leading to peridotite impregnation [peridotite refertilization] (Piccardo, 2003; Piccardo and Münntener, 2003; Piccardo et al., 2004). Rampone et al. (1997) inferred that melts entrapped in the IL and Corsica peridotites most likely consisted of depleted single melt fractions produced by fractional melting on an asthenospheric mantle source. Melt impregnation can be related, as in the case of the Corsica and Lanzo ophiolitic peridotites (Rampone et al., 1997; Piccardo, 2003; Münntener and Piccardo, 2003; Piccardo et al., 2004) to the partial melting of the rising asthenosphere, which occurred during the lithosphere extension (i.e. exhumation of the mantle lithosphere), and to the upward migration through the lithospheric mantle column of the asthenospheric melts.

The late decompressional evolution and sea-floor exposure

The subsequent retrograde evolution of the EL peridotites, which ended with the sea-floor emplacement, is documented by the development of amphibole-bearing assemblages and later widespread serpentinization, and by the intrusion of chilled basaltic dikes crosscutting the mantle tectonite and mylonite fabrics (Piccardo et al., 1990). The IL peridotites, after the early Permian partial melting and subsequent spinel-facies annealing recrystallization during accretion to the lithosphere, underwent progressive exhumation and melt impregnation, and were later intruded by gabbroic bodies. Peridotites and gabbros experienced tectonic-metamorphic retrograde evolution, from upper amphibolite to greenschist-facies conditions (Beccaluva et al., 1984; Rampone et al., 1996), and sea-floor exposure, which is documented by the widespread serpentinization and standingitization.

The gabbroic rocks

Gabbroic rocks mostly occur as intrusive bodies and dikes in the peridotites, and are more frequently found in the Internal Liguride sequences (Serri, 1980; Hebert et al., 1989; Piccardo, 1995; Tiepolo et al., 1997; Tribuzio et al., 2000a). The gabbroic rocks are volumetrically dominated by olivine-bearing (5-15 %) gabbros, which are commonly coarse-grained, nearly isotropic with a subophitic texture. The olivine-bearing gabbros contain lenticular bodies (tens of meters in size) of troctolites to spinel-bearing melatrotroctolites (Bezzi and Piccardo, 1971; Cortesogno et al., 1987; Molli, 1995). Fe-Ti-rich rocks are also present and mostly represented by Fe-Ti-oxide-bearing (up to 15 %) gabbros and diorites. Intermediate gabbroic rocks (gabbronorrites) and highly evolved hornblende-bearing diorites to albitites occur locally.

Northern Apennine ophiolitic intrusives represent the cumulative products at different stages of low-pressure fractionation of tholeiitic MORB parental magmas (Beccaluva and Piccardo, 1978; Serri, 1980; Hebert et al., 1989; Piccardo, 1995; Tiepolo et al., 1997; Tribuzio et al., 1999; 2000a) (Fig. 19A). “Sr-Sr and 26Nd/28Nd ratios of whole rocks and mineral separates from IL ophiolitic gabbros (Rampone et al., 1998) are consistent with typical MORB compositions; Sm/Nd data on an olivine gabbro define an internal isochron, giving an age of 164 ± 14 Ma and an initial 143Nd/144Nd = 8.6 (see Fig. 18B). As a whole, the lithostratigraphic and petrological features of the gabbroic rocks from the Northern Apennine ophiolites are closely similar to those of the gabbroic rocks recovered from modern slow-spreading ridges, such as the Southwest Indian Ridge (ODP Hole 735B; Ozawa et al., 1991, and Hebert et al., 1991), the Mid Atlantic Ridge (MARK area; Ross and Elthon, 1997), and the Mid- Cayman Rise (Elthon, 1987). In particular, clinopyroxenes from the gabbroic rocks of the Northern Apennine ophiolites show marked trace element zonings that are most likely related to the entrapment of interstitial liquid, similarly to what was observed for the gabbroic rocks from ODP Leg 153 in the MARK area (Ross and Elthon, 1997). However, as clearly documented in Figure 18B, the Internal Liguride gabbroic
rocks and peridotites do not fall on the same linear array, thus indicating that peridotites and associated gabbroic rocks are not linked by a simple residua-melt relationship, as is expected in a mature oceanic lithosphere (Rampone et al., 1998). As already outlined for the peridotites, the gabbroic rocks record a low-pressure tectono-metamorphic evolution, characterized by a progressive temperature decrease (Cortesogno et al., 1975). The early high-temperature (T about 900°C) metamorphic recrystallization is localized along ductile shear zones (Molli, 1994; 1995) and develops an assemblage of clinopyroxene, plagioclase, titanian pargasite and ilmenite. Trace element mineral compositions indicate that such a metamorphic event occurred in the absence of seawater-derived fluids (Tribuzio et al., 1995). The high temperature ductile shear zones are commonly postdated by a retrograde metamorphic event, from amphibolite- to subgreen-schist-facies conditions (Messiga and Tribuzio, 1991; Tribuzio et al., 1997). This event was most likely related to interaction with seawater-derived fluids and was frequently accompanied by the development of brittle deformations. In the IL ophiolites, in particular, parallel swarms of hornblende-bearing veins are locally widespread, thus indicating the development of an active, high-temperature hydrothermal system (Cortesogno et al., 1975; Tribuzio et al., 1995; 1997). Similar metamorphic histories are documented for many Alpine ophiolitic gabbros, and have been related to the exhumation of these rocks, in response to the Triassic-Jurassic rifting of the Ligurian Tethys (Lemoine et al., 1987, and quoted references).

The basaltic rocks
Basaltic rocks are abundant in both the EL and IL ophiolites; they mostly occur as pillow or massive lava flows, and as discrete dikes intruding deformed gabbros and mantle peridotites. Petrologic and geochemical studies devoted to the Alpine-Apennine ophiolitic basalts have provided clear evidence of their overall tholeiite composition and MORB affinity (Ferrara et al., 1976; Venturelli et al., 1981; Beccaluva et al., 1984; Ottonello et al., 1984; Tribuzio et al., 1995; Marroni et al., 1998). As a whole, the IL and EL basaltic rocks display a large degree of differentiation; this is demonstrated by their REE compositions, which range from about 10xCl to more than 40xCl absolute values (see the field in Fig. 19B; data from Beccaluva et al., 1984). The most primitive EL and IL basalts show moderate LREE fractionation and HREE abundances at about 10xCl, whereas the least differentiated EL basalts display almost flat or slightly LREE-enriched REE spectra (Fig. 19B). Whole-rock and clinopyroxene-trace-element chemistry indicate that the compositions of the most primitive EL and IL basaltic rocks are consistent with melts generated by varying degrees of fractional melting.
(totalling no more than 10%) of a MORB-type oceanic basin.

Recent petrologic and isotope investigations on the mantle ultramafics have shown that none of the Ligurian peridotites can be considered as typical oceanic mantle, and that a simple mantle residua-basaltic melt genetic relationship does not exist in the IL ophiolites (Rampone et al., 1998). It has been definitively demonstrated that the EL peridotites consist of fertile subcontinental lithospheric mantle (presumably Proterozoic), whereas the IL mantle ultramafics are depleted peridotites which experienced MORB-type partial melting during the Permian, i.e. well before production of the associated Jurassic basaltic crust. Both the EL and IL peridotites display a composite subsolidus retrograde evolution, which reflect their uplift from lithospheric mantle depths, and emplacement on the ocean floor.

The Northern Apennine ophiolites therefore represent the spatial association of older (Proterozoic and Permian) subcontinental mantle peridotites, which are partly still linked to continental crust material, and younger (mostly Jurassic) unrelated MORB-type mantle.

Original tectonic setting of the northern apennine ophiolites
In the past, different interpretations of the main structural and/or petrological features of the Alpine-Apennine Jurassic ophiolites have led to the development of different models for their original tectonic setting. Besides the common interpretation as sections of a MORB-type oceanic lithosphere, mainly based on the MORB affinity of the mafic rocks, the peculiar stratigraphy of the Alpine-Apennine ophiolites led researchers to propose various genetic models: 1) the transform fault model (Gianelli and Principi 1977, Lemoine, 1980; Weissert and Bernoulli 1985), 2) the slow-spreading ridge model (Barrett and Spooner, 1977; Lagabrielle and Cannat, 1990, Lagabrielle and Lemoine, 1997), and 3) the low-angle detachment fault model (Lemoine et al. 1987, Froitzheim & Ebetru 1990, Piccardo et al. 1990,1994, Froitzheim & Manatschal 1996). The subcontinental origin of the mantle peridotites from the Ligurian ophiolites, stressed by some authors (Decandia and Elter, 1969, 1972; Piccardo, 1976), outlined the diversity of the Alpine-Apennine ophiolites compared with mature oceanic lithosphere formed at mid-ocean ridges of modern oceans. Based on the atypical association of MORB magmatism and fertile subcontinental mantle, it was suggested (Piccardo, 1977; Beccaluva and Piccardo, 1978) that the Ligurian ophiolites were formed during early stages of the opening of the oceanic basin, following rifting, thinning, and break-up of the continental crust, and were therefore located in a marginal, peri-continental position of the Jurassic oceanic basin.

Formation and evolution of the ligurian oceanic lithosphere
Ophiolites exposed along the Western Alpine - Northern Apennine orogenic belt represent the oceanic lithosphere of the Ligurian Tethys ocean which separated, during Late Jurassic - Cretaceous times, the European and Adria continental blocks. These ophiolites are characterized by: i) dominant fertile, cpx-rich, mantle lherzolites, while more depleted peridotites are subordinate; ii) gabbroic intrusives and basaltic volcanites with MORB affinity. Stratigraphic-structural evidence points to the Ligurian Tethys being floored by a peridotite-gabbro basement, subsequently covered by a discontinuous layer of pillowed basaltic flows and radiolarian cherts. Palaeontological ages of the radiolarian cherts and isotopic
(U/Pb) zircon ages of acidic differentiates, linked to the basaltic volcanites, concordantly indicate a Late Jurassic (160-150 Ma) age for the inception of the oceanic stage. The EL fertile mantle peridotites show Sn/Nd model ages indicating a minimum Proterozoic ages of differentiation and accretion to the Europe-Adria subcontinental lithosphere, where the ultramafics underwent complete equilibration at a temperature below 1100°C, under spinel-facies conditions.

The IL residual mantle peridotites are interpreted as refractory residua formed by partial melting of an asthenospheric MORB-type mantle source sand show Permian (290 Ma) Sr/Nd model ages for this melting event. The intrusives rocks (ultramafic cumulates, Mg-Al-gabbros, Fe-Ti-gabbroids and plagiodragnites) show clear MORB affinity: available geochronological data indicate variable intrusion ages, ranging from about 185 Ma (some EL gabbros) to about 160 Ma (some IL gabbros). The composite decompression evolution of the peridotites and the associated continental gabbro-derived granulites and granitoids, deriving from the continental lithosphere (crust and upper mantle) of the Europe-Adria system, is related to the pre-oceanic rifting processes which were active within the Europe-Adria lithosphere prior to the ocean opening. The Permian age of partial melting of the IL peridotites and the Late Palaeozoic to Jurassic exhumation of the ET and EL peridotites indicate that lithospheric extension of the Europe-Adria continental lithosphere and asthenospheric upwelling were already active in late Palaeozoic times.

The peculiar oceanic lithosphere of the Jurassic Ligurian Tethys (i.e. the association of Proterozoic and Permian subcontinental mantle peridotites, Triassic to Jurassic gabbroic intrusives and Late Jurassic MORB volcanites) developed after the Jurassic breakup of the continental crust in response to passive extension of the Europe-Adria continental lithosphere. This is the most suitable geodynamic process to account for the tectonic demudation of large sectors of subcontinental mantle. One main effect of mantle exposure at superficial oceanic (and suboceanic) settings is the widespread hydration of peridotites, leading to a significant ductility change. Oceanic serpentization was heterogeneous, and led to the spatial association of extremely serpentized ultramafites close to mantle peridotites less affected by serpentization. Such a heterogeneity in water distribution in the oceanic lithosphere played a major part in controlling its behaviour during later Alpine convergence and subduction. Serpentization did not produce significant changes in the major and REE compositions of the primary ultramafic rocks, but was accompanied by an uptake of trace amounts of marine Sr, Cl and alkalis. Serpentization enacted a relevant control on the composition of fluid phases evolved during subduction burial of ultramafic rocks. Subduction of the Ligurian ultramafic rocks was accompanied by prograde reactions, culminating in the HP event (i.e. formation of olivine-antigorite+ diopside+Ti-clinohumite assemblages), accompanied by partial dewatering, which led to fluid production.

Mafic rocks at this stage developed different peak assemblages depending on their bulk rock compositions and on their pre-subduction evolutions:
- garnet+rutile+omphacite (Fe-Ti-rich metagabbros);
- garnet+chloritoid+omphacite+zoisite+talc (Mg-rich metagabbros);
- grossular+zoisite+chlorite+diopside (rodingites);
- Ti-clinohumite+ diopside+chlorite+magnetite (Mg-enriched metagabbros).

The pressures and temperatures of eclogitic recrystallization range from P=13 Kbar and T in the range of 450-500°C in the Beigua Unit, to P 20-25 Kbar and T 550-650°C in the Erro-Tobbio Unit.

Antigorite survived HP metamorphism as a stable mineral phase in the new high-pressure olivine assemblage. Persistence of large volumes of low-density buoyant serpentinites in the deep roots of the Alpine orogeny provides a mechanism for the exhumation of eclogites and other high to ultrahigh pressure rocks from mantle depths.

The eclogitized ultramafic rocks still preserve oxygen isotope signatures acquired at oceanic settings, indicating that the fluid recycled at this stage was the one incorporated during exposure close to the oceanic floor. Presence of appreciable amounts of Sr in the high-pressure vein minerals, and finding hypersaline fluid inclusions inside these minerals, indicate that besides water, the eclogitic fluid contained oceanic Sr, chlorine and alkalis. This has significant implications on the global cycling of exogenic fluid and elements via serpentinites at mantle depths.

Field Trip Itinerary

DAY 1

Itinerary: Florence – Borghetto Brugnato – Rocchetta di Vara (STOP 1.1) – Suvero – La Gruzza (STOP 1.2) – Zignago – Scogna (STOP 1.3) – Sestri Levante.

Stop 1.1

- Rocchetta di Vara.
“Reduced” Internal Liguride sequence: radiolarian cherts and gabbroic breccia.

This site shows an overturned sequence formed by serpentinized mantle peridotites, ophiolites, ophiolitic breccias (called M. Zenone Breccia), cherts, Calpionella limestones and Palombini shales.

The road cuts across an almost vertical section of redish radiolarian cherts, which represent the first oceanic sedimentation in the Ligurian Tethys. Along the small brook the radiolarian cherts are in sedimentary contact with originally underlying gabbroic breccias (Mt. Zenone breccia), made of pebbles and boulders of variable size (from centimeters to meters) of gabbro. Up on the hill the gabbro breccia stratigraphically overlie a serpentinite unit presenting, at its uppermost part, an ophicalcite level. The interposition of basaltic volcanites between serpentinized mantle peridotites and oceanic sediments is lacking. The cherts are currently quarried for Mn-ores deposits.

This stratigraphic sequence is one of the most typical for the Internal Liguride terrains, where serpentinized mantle peridotites are directly overlain by ophiolitic breccias and oceanic sediments, without the interposition of basaltic volcanites: this indicates the direct
exposure of upper mantle rocks at the sea-floor during the Jurassic ocean opening. The gabbroic rocks in the Mt. Zenone breccia are mainly composed of coarse-grained-to-peegmatoid olivine-bearing clinopyroxene gabbro, generally isotropic and rarely foliated. Primary minerals are generally replaced by low-grade minerals, but clinopyroxene is sometimes still preserved. The reddish patches correspond to pre-existing olivine, currently replaced by calcite + hematite. Some of the gabbro clasts show evidence of high temperature shearing. The sedimentary contact with the overlying cherts is attested to by the intercalation of arenitic ophiolitic debris within the ribbon cherts, which have revealed a palaeontological age of 150-160 Ma.

Stop 1.2:
La Gruzza (Suvero) (twenty-minute walk in a pine wood). A typical External Liguride lherzolite body.

The La Gruzza ultramafic body covers a surface of about 3 square Km and represents a huge olistolith within the basal section of the Mt. Caio flysch sequence. It mainly consists of banded tectonite spinel (sp) lherzolites with sp-bearing pyroxenite layers. These mantle lherzolites are characterized by abundant pyroxenes (opx about 25%, cpx about 15%) and preserve sp-bearing assemblages and equilibrium granular textures. A Ti-pargasitic amphibole is widespread, particularly close to the pyroxenite bands, showing equilibrium texture within the sp-facies minerals. Thermometric data indicate about 1000°C for the sp-facies recrystallization. Based on their mineral assemblage and chemistry (i.e. abundant Al-rich sp and cpx), pyroxenite layers (Al-Di type) can be interpreted as deep-seated crystallization of basaltic melts. The fertile character of the La Gruzza lherzolite is stressed by the major element composition of the bulk rock, (Al$_2$O$_3$ 3.55-3.58 wt%, CaO 3.17-3.22 wt%, Na$_2$O 0.20-0.25 wt%) and the constituent spinel-facies minerals: olivine (Fo 90), clinopyroxene (Al$_2$O$_3$ 7.50 wt%, Cr$_2$O$_3$ 0.78 wt%, Na$_2$O 0.94 wt%), orthopyroxene (Al$_2$O$_3$ 6.45 wt%, Cr$_2$O$_3$ 0.55 wt%) and spinel (Al$_2$O$_3$ 48.57 wt%, Cr$_2$O$_3$ 52.64 wt%).

Similar to the bulk rocks, the spinel-facies clinopyroxenes have nearly flat REE patterns at about 15xC1, only slightly fractionated for the LREE. The spinel-facies Ti-pargasitic amphibole is characterized by relatively high Ti (TiO$_2$ 3.20 wt%) and REE contents and spectra similar to those of the coexisting clinopyroxenes. As for the Sr and Nd isotopic composition of separated clinopyroxenes, La Gruzza lherzolite is peculiar among the External Liguride peridotites: they show extremely depleted isotopic compositions (87Sr/86Sr = 0.701736; 143Nd/144Nd = 0.513543), and plot, on an extension of the oceanic mantle array, towards residual mantle composition. Such low values are unusual for Phanerozoic mantle rocks, and bear some similarities to values of peridotite xenoliths from Proterozoic continental lithosphere: moreover, such extremely-depleted Sr-isotopic compositions have never been observed in oceanic basalts. Model ages have been calculated, assuming either a primitive (CHUR) or a depleted (DM) mantle source, and yield Sr and Nd Proterozoic model ages (2.1 and 2.4 Ga, respectively): these can be considered as minimum ages of differentiation from the asthenospheric mantle and of accretion to the lithospheric mantle. This peridotite body, in particular, provides the strongest evidence that the EL peridotites are actually subcontinental lithospheric mantle.

On the outcrop the peridotite shows a tectonite fabric due to strong plastic deformation effects and incipient recrystallization to plagioclase (pl)-bearing granoblastic assemblages. Plagioclase-facies clinopyroxenes show compositions lower in CaO (21.05 wt%) and Na$_2$O (0.70 wt%) than spinel-facies ones and plagioclases range in composition from An$_{99}$ to An$_{66}$.

Accordingly, the La Gruzza ultramafic body underwent:
- an early (Proterozoic) accretion to the subcontinental lithosphere and subsolidus recrystallization at lithospheric mantle conditions (spinol-facies and T=1000°C), consistent with the geotherm of a conductive continental lithosphere;
- a late a not adiabatic exhumation from lithospheric mantle depth to shallow levels, most probably during the lithospheric extension leading to the opening of the Jurassic Ligurian Tethys.

Stop 1.3:
Scogna.
Internal Liguride ophiolitic intrusives: ultramafic olivine cumulates.
The road cuts through a large outcrop of gabbroic rocks pertaining to the Internal Liguride Units. Mg-gabbroic rocks are the dominant lithotypes and are mainly represented by troctolites and olivine-bearing clinopyroxene-gabbros. Sporadically they show poorly developed layered textures and variable grain size. A small body of ultramafic cumulates crops out in a deserted quarry: the cumulate textures are made up by cumulus euhedral olivines and chromites, surrounded
by interstitial-to-podilitic plagioclase and subordinate clinopyroxene. Chromite+olivine cumulates represent the first crystallization products during the low-pressure crystal fractionation of MOR-type tholeiites, which are the parental magmas of the Liguride ophiolitic intrusives. Bulk rock compositions of the ultramafic cumulates are characterized by relatively high MgO (36.04-36.60 wt%) contents, and low silica (37.27 wt%), Al_2O_3 (4.84-5.35 wt%) and CaO (1.94-2.10 wt%) contents: they, moreover, show very low contents in incompatible elements and high concentrations of Ni (1276-1334 ppm) and Cr (1900-2942 ppm). They display very low REE concentrations (<1xC1), almost flat LREE patterns and strong positive Eu anomalies (Rampone et al., 1998). Early minerals in the ultramafic cumulates are highly magnesian: cumulus olivine has Fo contents in the range of 87-89, interstitial clinopyroxene ha Mg number in the range of 89-90, coupled with relatively high Al_2O_3 (3.7-4.4 wt%) and Cr_2O_3 (1.28-1.64 wt%).

Bulk rock and clinopyroxene separates give quite homogeneous 143Nd/144Nd ratios (0.513037-0.513171), which are consistent with typical MORB compositions. Moreover, the clinopyroxene from an ultramafic cumulate plot along the internal Sm-Nd isochron of 164 +/- 14 Ma defined by whole rock and mineral cumulate plot along the internal Sm-Nd isochron which are consistent with typical MORB compositions. Bulk rock and clinopyroxene separates give quite homogeneous 143Nd/144Nd (0.513037-0.513171), which are consistent with typical MORB compositions. The isotopic olivine-bearing gabbro is relatively flat, and is well-evident crystallization order, i.e. Cr-Mg spinel + olivine, plagioclase, clinopyroxene + orthopyroxene, Fe-Ti oxides. The rock sequence is: ultramafic olivine cumulates, Mg-gabbros (troctolites, olivine-bearing gabbros and minor orthopyroxene-bearing gabbros), Fe-Ti-gabbros (Fe-Ti-oxide-rich gabbros to diorites), and acidic differentiates (amphibole-bearing diorites to aplites).

The road cuts through a large outcrop of gabbric rocks: Mg-gabbros are the dominant lithotypes and are mainly represented by troctolites and olivine-bearing gabbros. Sporadically they show poorly developed layered textures (from plagioclase-poor to plagioclase-rich layers) and extremely variable grain size. At the Bracco Pass, along the roadcut, layered and isotropic gabbros are exposed. The outcrop is disturbed by some faults which put in contact a layered olivine-rich gabbro-troctolite sequence with an isotropic olivine-bearing gabbro. The isotropic olivine-bearing gabbros contain pegmatoid patches and are crosscut by basaltic dikes showing chilled margins. The isotropic olivine-bearing gabbro is relatively fresh and shows a well-evident crystallization order, i.e. euhedral plagioclase (55-60 % by volume) and olivine (about 10%), and subhedral, locally poikilitic, clinopyroxene (30-35 %). Olivine is commonly altered to low-temperature minerals, whereas clinopyroxene and, in places, plagioclase preserve their primary magmatic compositions. Plagioclase is moderately anorthitic (An% = 60.7-62.5), and clinopyroxene di-

Stop 2.1:

the Bracco Massif.

Internal Liguride Mg-gabbros and basaltic dikes.

Internal Liguride gabbric rocks crop out as km-scale bodies and discrete dikes intruded into mantle peridotites. The ophiolitic intrusives are products of low-pressure fractional crystallization of parental tholeiites with MORB affinity. The crystallization order is: Cr-Mg spinel + olivine, plagioclase, clinopyroxene + orthopyroxene, Fe-Ti oxides. The rock sequence is: ultramafic olivine cumulates, Mg-gabbros (troctolites, olivine-bearing gabbros and minor orthopyroxene-bearing gabbros), Fe-Ti-gabbros (Fe-Ti-oxide-rich gabbros to diorites), and acidic differentiates (amphibole-bearing diorites to aplites).

DAY 2

Itinerary: Sestri Levante - Bracco Pass (STOP 2.1) - Mattarana quarry (STOP 2.2) - Bonassola (STOP 2.3) - Reggimonti (STOP 2.4) - Framura (STOP 2.5). Move on to Ovada (the Voltri Massif).

The main aim of this day’s excursion is to visit outcrops of gabbric intrusives and basaltic volcanites with MORB affinity to the ophiolites from the Internal Liguride Units of the Northern Apennines. Attention will be also given to the primary relationships between Permain mantle peridotites, Middle Jurassic gabbros and Late Jurassic basalts, in order to distinguish some specific features of the Ligurian ophiolite sequence, i.e. the intrusive relationships of gabbric rocks into mantle peridotites and the primary stratigraphic relationships between underlying mantle peridotites, strongly brecciated in their uppermost part (ophicalcites), and MORB pillow lavas flows. The sea-floor exposure of pre-Triassic subcontinental mantle, and its primary association with younger and genetically-unrelated MORB magmatism, is a typical feature of the Internal Liguride ophiolites. It indicates that subcontinental mantle peridotites were progressively uplifted during the rift stages, preceding the Late Jurassic oceanic formation, were intruded by basaltic magmas with MORB affinity during the pre-oceanic rifting, and were tectonically denudated and exposed at the sea-floor before extrusion of MORB volcanites.

The presence of subcontinental mantle peridotites at the sea floor during ocean formation has been related to the passive extension of the lithosphere which was responsible for the pre-oceanic continental rifting and the opening of the Ligurian Tethys ocean.
splays relatively high Mg numbers (Mg* = 86-88) and moderate Al₂O₃ (3.06-3.88 wt%) and Cr₂O₃ (0.57-1.25 wt%) contents. The bulk rock gabbro composition is characterized by relatively high Ni (198 ppm) and Cr (994 ppm) contents, higher than common basaltic rocks. Its REE concentrations do not exceed 2×Chondrite values, and show slight LREE depletion and moderate positive Eu anomaly (Rampone et al., 1998). Bulk rock and separated clinopyroxene and plagioclase give rather homogeneous initial ⁴⁴Nd/⁴⁰Nd ratios (0.513099-0.51318), which are consistent with typical MORB compositions. Moreover, whole-rock and mineral separates yield an internal Sm-Nd isochron of 164 ± 14 Ma.

Interestingly, the Sm-Nd compositions of whole rocks and one clinopyroxene separate from some ultramafic cumulate samples (from the Mattarana quarry, next Stop) plot along this linear array. The above data thus indicate that the analyzed Internal Liguride ophiolitic intrusives were generated in Middle Jurassic times from MORB-type parental melts.

The basaltic dikes are almost aphyric, showing a few altered plagioclase phenocrysts. The groundmass is olivine-tholeiite composition, a relatively flat REE pattern, at absolute values of about 20×Chondrite, slightly fractionated for the LREE, ⁸⁷Sr/⁸⁶Sr = 0.703206 and ⁴⁴Nd/⁴⁰Nd = 0.513098. Isotope compositions confirm a clear MORB-affinity: in the ⁴⁴Nd/⁴⁰Nd versus ⁸⁷Sr/⁸⁶Sr diagram, it plots in the MORB field. The gabbroic rocks locally show an early, incipient reequilibration under high-temperature conditions: metamorphic clinopyroxene, brown hornblende and calcic plagioclase form granoblastic aggregates at the expenses of the igneous minerals. In many places of the Bracco Massif, the high-temperature assemblages are associated with strong plastic deformation generally restricted to narrow shear bands. This deformation-recrystallization event occurred before the intrusion of the basaltic dikes.

Gabbros and basalts later underwent a low-grade metamorphic recrystallization (subgreenschist-facies conditions), ascribed to sea-floor alteration. In particular, dikes and Mg-gabbros are crosscut by veins and fractures filled with prehnite ± chlorite ± albite ± calcite. Prehnite and albite also commonly develop in the gabbroic rocks at the expense of igneous plagioclase, whereas olivine is altered to chlorite and tremolite/actinolite (+ serpentine) and clinopyroxene is in places replaced by tremolite/actinolite (Messiga and Tribuzio, 1991).

Stop 2.2: Mattarana Quarry. Ultramafic olivine cumulates.

A small lens of ultramafic cumulates (clinopyroxene-bearing melanocratic pillows) within Mg-gabbros crops out in an unused quarry. The cumulate texture is made of cumulus euhedral olivines and chromites, surrounded by interstitial plagioclase and subordinate huge (cm-scale) poikilitic clinopyroxene.

A large block in the quarry preserves cumulus textures and shows igneous layering, made by grain-size variations of the cumulus olivine. Thin levels of chromite grains parallel the layering plane and huge poikilitic clinopyroxene crystals are commonly present. A large portion of the outcrop is characterized by a pegmatoid texture, in which olivine (5 to 30 cm in size) shows a peculiar skeletal (fish-bone or christmas-tree) habit. Skeletal olivine consists of sets of parallel lamellae derived from one general form that is made up of two series of parallel lamellae symmetric to a central lamella, with an angle of about 50° between the central lamella and the oblique set of lamellae (Bezzi & Piccardo, 1971). The origin of these skeletal olivines could be related to a decreasing diffusion rate and an increasing growth rate, as it is commonly found in rapidly cooling magmas.

Bulk rock compositions of the ultramafic cumulates are characterized by relatively high MgO (36.04-36.60 wt%) contents, and low silica (37.27 wt%), Al₂O₃ (4.84-5.35 wt%) and CaO (1.94-2.10 wt%) contents. Moreover these rocks show very low contents in incompatible elements and high concentrations of Ni (1276-1334 ppm) and Cr (1900-2942 ppm). They display very low REE concentrations (<1×Chondrite concentration), almost flat LREE patterns and markedly positive Eu anomalies (Rampone et al., 1998).

Mafic minerals from the ultramafic cumulates are highly magnesium. Cumulus olivine has Fo contents in the range of 87-89, interstitial clinopyroxene has Mg number in the range of 89-90, coupled with relatively high Al₂O₃ (3.7-4.4 wt%) and Cr₂O₃ (1.28-1.64 wt%) contents. Bulk rock and clinopyroxene separates give quite homogeneous ⁴⁰Nd/⁴⁰Nd ratios (0.513037-0.513171) which are consistent with typical MORB compositions. Moreover, they plot along the internal Sm-Nd isochron of 164 ± 14 Ma defined by whole rock and mineral separates from the gabbro of the previous stop (Rampone et al., 1998). Low-temperature mineral transformations are wide-
spread. In particular, plagioclase is invariably replaced by fine-grained aggregates made of prehnite ± chlorite ± hydrogроссular, whereas olivine is partly substituted by serpentine ± Fe-oxides ± chlorite ± tremolite/actinolite.

Stop 2.3:
Bonassola village, near the seaside.

Gabbros with high-temperature shear zones crosscut by hornblende-bearing veins

Our visit winds along the eastern shoreline of Bonassola village. The Bonassola gabbros display intrusive contacts with serpentinitized mantle rocks, which crop out along the coast toward Levanto. Both gabbros and serpentinites are covered by ophiolitic mono- and polygenic breccias, or basalt flows. The outcrop consists of gabbros showing crosscutting relations between igneous textures, plastic and brittle deformations. The gabbroic rocks are volumetrically dominated by olivine bearing (5-15 vol%) gabbros, which are commonly nearly-isotropic and with subophitic texture. Plagioclase-rich (up to 80 vol%) pegmatoid patches and small bodies of microgabbro locally occur. Igneous layering, defined by modal and/or grain size variations, is recognizable in some places. A pervasive, high-temperature foliation at a lower angle than the igneous layering can be observed. The most widespread rock type in these high temperature shear zones is a porphyroclastic mylonite. Dragging of the foliation in high strain zones, asymmetric porphyroclasts and mylonitic folds can be locally recognized. At the microscopic scale, the foliation is defined by recrystallized pyroxene and plagioclase grains, locally associated with accessory titanian pargasite and ilmenite. Arrays of fractures filled with hornblende (± plagioclase) are widespread throughout the area. In addition, there are scattered elongated bodies of hornblende-bearing albitites. Both hornblende veins and albitite bodies locally crosscut at high angles the high-temperature shear zones. The hornblende-bearing veins strike quite uniformly NW/SE and dip steeply to NE and SW. Most veins are nearly planar and range in length from a few millimetres to several metres, whereas their width generally does not exceed a few millimetres. The hornblende veins are mainly of mode-2 (hybrid-type cracks) with no or small displacement. When crosscut by hornblende veins, the igneous clinopyroxene of the wall gabbro is partially replaced by hornblende, due to fluid diffusion away from the fracture (up to a couple of centimetres). This transformation is particularly evident when the hornblende veins crosscut gabbros with pegmatoid texture. The bodies of hornblende-bearing albitite are up to 0.5 m thick. The albitites are coarse-grained and consist of albitic plagioclase (An ca. 8 mol%) and minor hornblende (not exceeding 15% by volume), both showing euhedral to subhedral habitus, plus accessory Fe-Ti-oxide phases, apatite and zircon. The albitite bodies contain in places fractures filled with coarse-grained hornblende. Gabbros later underwent a low-grade metamorphic crystallization (greenschist to subgreenschist-facies conditions) ascribed to sea-floor alteration. Fine-grained aggregates of prehnite and albite commonly develop at the expense of igneous plagioclase. This transformation is most likely associated with i) the olivine alteration into chlorite ± tremolite/actinolite ± serpentine, and ii) the local replacement of clinopyroxene by tremolite/actinolite (Messiga and Tribuzio, 1991). Late brittle deformations are attested to by fractures filled with quartz (± Fe-sulphides), which locally reworks the hornblende veins, and by sporadic fractures filled with prehnite (± calcite) crosscutting both hornblende and quartz veins.

Stop 2.4:
Reggionmonti: the quarries of “Rosso di Levanto”.

Ophicalcites and pillow basalts in primary contact: the Ligurian Moho.

The unused quarry shows the primary stratigraphic contact between underlying serpentinitized peridotites (with an uppermost ophicalcite level) and pillow lavas. This sequence is one of the most typical of the Internal Liguride terrains, where serpentinitized mantle peridotites are directly overlain by basaltic volcanites: this indicates the direct exposure of upper mantle rocks at the sea-floor during the Jurassic ocean opening and extrusion of MORB basalts. The ophicalcites reach some tens of meters in thickness and represent an ubiquitous cover of the serpentine substratum. Owing to the clear sedimentary character of the upper part of the ophicalcites it is evident that the ultramafic rocks were brecciated and widely exposed at the sea-floor prior to basalt extrusion and chert deposition. Ophicalcites (locally known as Levanto breccias, but also by the commercial names of “Rosso” or “Verde Levanto”) generally consist of fractured serpentinites (up to a few tens of metres in thickness) disrupted by a polyphase network of calcite veins and breccia wedges. The serpentinite fragments show frequently textural relics of the pristine mantle peridotites. The massive serpentinite becomes progressively more fractured and faulted upwards, where...
an upper crustal level (Framura Breccia) made of serpentinite clasts within a micrite matrix commonly develop.

The opalificates show a complex polyphase evolution, which is characterized by deformations changing from plastic to brittle during progressively lower temperature and pressure conditions (Cortesogno et al., 1987; Molli, 1994b; Treves and Harper, 1994). The overall evolution of the opalificate suggests their genesis as fault rocks during the uprise of the mantle toward the ocean floor, and can be reconstructed as follows:

- Intrusion of gabbroic dikes in peridotite;
- Early shearing (T = 850-900°C): mylonitic foliation (Ol + Cpx + Pl ± Ti-Prg in peridotites, and Pl + Cpx ± Ti-Prg in gabbros);
- Onset of serpentinitization and second generation of shearing (T < 550°C): mylonitic serpentinite-structures (Serp + Ta ± Tr ± Chl ± Mag) in peridotites and rodolitic mineral assemblages in gabbros;
- Fractures systems: the older veins are filled with serpentine, whereas the most diffused ones contain calcite with less abundant hematite, talc, chlorite, andradite or tremolite.
- Development of sedimentary breccias, neptunian dikes. Hydrothermal phenomena were still active, together with sedimentary reworking.

Many generations of brittle deformation events, characterized by the precipitation of calcite, have been identified by Treves and Harper (1994) on the basis of crosscutting relations, type of filling and structural style. The development of the early calcite veins is associated with the oxidation of magnetite to hematite in the serpentinite, indicating pervasive flow of oxidizing fluids and giving the red colour to the rock. Oxygen and carbon isotope compositions indicate that the calcite precipitation within serpentinitized peridotites occurred at temperatures in the orders of 100°C and in the presence of normal seawater (Barrett and Friedrichsen, 1989). These calcite veins are postdated by in-situ breccias that are locally characterized by the occurrence of micrite sediments. The abandoned quarry front shows the direct superposition of pillow lavas over opalificates. In the opalificates, there are boudnaged gabbro dikes that are crosscut by different generations of fractures filled with calcite. These fractures are not present in the pillow lavas. Along the contact between opalificates and pillow lavas, a fault zone characterized by foliated cataclasites can be seen. Shear sense indicators point to a top-to-the-west shearing. Although a possible reworking during orogenic evolution cannot be excluded, the main features of the fault zone can be related to the ocean-floor environment.

Stop 2.5: Framura village, near the seaside.

MORB-type basalts in pillows and lava flows.

Along the coast near Framura, basaltic pillow lavas and massive flows crop out. Basalts are dominantly fine-grained and aphyric, with some plagioclase phenocrysts, while flows show a visible grain size and an ophitic texture, made by hydromorphic plagioclase laths and interstitial clinopyroxenes. Plagioclase is always replaced by low-grade minerals (albite, prehnite, hydrogrossular etc.), clinopyroxene is frequently preserved. The rock composition shows rather high MgO (8.30-11.38 wt%) contents relative to typical, fresh tholeiite basalts: these anomalous MgO abundances are coupled with unusually low CaO concentrations (5.12-6.50 wt%). Such major element chemistry (Ca depletion and Mg enrichment) does not reflect primary features and most likely resulted from interaction with seawater. The basalts have almost flat REE patterns and absolute contents up to 30xCl (Ramponi et al., 1998), and plot in the uppermost part of the compositional field defined by the literature data on IL basalts: these features indicate rather evolved compositions. These pillow basalts display quite heterogeneous Sr isotopic compositions: 87Sr/86Sr varies in the range of 0.703905-0.705821. The increase of 87Sr/86Sr values in rocks which have experienced significant interaction with sea-water is well established in rock from both ophiolites and present oceanic settings. In spite of the observed Sr isotope variability, the basalts have rather uniform Nd isotope ratios (+Nd/143Nd =0.513077-0.513098), which are consistent with typical MORB compositions.

DAY 3

Itinerary: Ovada – Voltaggio – Capanne di Marcarolo – Case Menta (STOP 3.1) – North Gorzente River (STOP 3.2) – South Gorzente River (STOP 3.3) - Ovada. STOP 3.1 - Case Menta (ten-minute walk down the riverbed south of Costa Lavezzara). Spinel- and plagioclase-bearing peridotite mylonites.

Detailed mapping of the area of Mt. Tobbio and Mt. Tugello has revealed the presence of km-scale bodies of peridotite preserving spinel-facies assemblages and granular texture, i.e. the oldest paragenetic and textural features of the ET peridotite massif.
lar spinel-facies peridotites pass to spinel peridotite tectonites, in which the deformed textures overprint the former granular ones.

The granular peridotites exhibit coarse homogeneous grain size (0.5-1 cm) and display an equilibrium spinel-facies assemblage made of olivine, orthopyroxene, clinopyroxene and spinel. Olivine is partly serpentinized, and the most abundant relics are represented by pyroxenes and spinel. Bulk rock chemistry data indicate that the Mt. Tobbio granular peridotites have an overall depleted signature and define large compositional ranges (see Figs. 4 and 5).

However, the comparison between bulk-rock and mineral compositions indicates that the Erro-Tobbio spinel peridotite protoliths (both granular and tectonite types) most likely record a composite history of partial melting and melt migration by reactive porous flow (Rampone et al., 2003a) which occurred prior to the tectonometamorphic lithospheric evolution. Major (and trace) element compositions of minerals in all the spinel peridotites (both the Mt. Tobbio granular and the Case Menta tectonite-mylonite peridotites) are remarkably similar. In spite of this, the bulk-rock compositions define striking correlations,
the mineral phases changed their compositions during recrystallization from granular and tectonite spinel peridotites to plagioclase peridotite tectonites and mylonites: the compositional changes are indicative of a progressive decrease of pressure and temperature during the tectonic and metamorphic evolution.

Stop 3.2:
North Gorzente River, east of the Guado (30-minute walk following the path along river).

The Alpine subduction evolution: high-pressure serpentinite mylonites.

The most important characteristics of these outcrops are represented by mylonitic antigorite-foliations, shear bands and olivine-veins. The serpentinite shear zones envelop undeformed and less serpentinized metre-to-kilometre-scale mantle peridotite bodies. The first outcrop is represented by a peridotite body preserving tectonic mantle structures and spinel-plagioclase paragenesis. Pyroxenite bands also occur, parallel to the tectonite mantle foliation. This latter is marked by the orientation of clinor- and orthopyroxene porphyroclasts and by small spinel crystals. The olivine forms the matrix of these rocks and it is diffusely overgrown by chrysotile and lizardite: the plagioclase grains are overgrown by chlorite micro-aggregates. Acicular antigorite aggregates, metamorphic olivine and Ti-clinoohumite occur within the boundaries of a mantle peridotite body, forming from the break-down of mantle minerals and chrysotile, during the Alpine static crystallization.

There is a gradual transition from partially-serpentinized peridotite tectonites to serpentinite mylonites with an antigorite + magnetite + chlorite + diopside foliation. This antigorite foliation is cut by olivine sheath bands. In thin section, relics of mantle olivine show the blastesis of antigorite+magnetite (related to the development of the serpentinite mylonite) at the expense of precursor mesh-texture chrysotile veins. This indicate that, prior to the development of the serpentinite mylonite, the peridotite underwent static low-temperature serpentinization. After the antigorite +magnetite formation, peridotites were extensively recrystallized to the static climax olivine + Ti-clinoohumite + antigorite assemblage, which marks the temperature increase during Alpine subduction. The serpentinite mylonite is characterized by a foliation defined by alternating antigorite +magnetite and chlorite+magnetite bands. All these phases have an intense shape preferred orientation, parallel to the foliation. Along the foliation relics of clinopyroxene porphyroclasts are replaced by Alpine diopside neo-

...
blasts, stable with the mylonitic foliation minerals. Progressive deformation is accompanied by preferential growth of a very fine-grained assemblage of olivine + Ti-clinohumite + magnetite + antigorite + chlorite along shear bands cutting the mylonitic fabric. The formation of this latter olivine paragenesis is indicative of the Alpine peak temperature in presence of deformation. The subductive peak temperatures occur at high-pressure conditions, as witnessed by the presence of eclogitic meta-gabbros bodies within the Erro Tobbio Unit.

Stop 3.3:
South Gorzente River, road West of Mt. Tobbio (20-minute walk along a foot path down the Gorzente river).

Static recrystallization zone of high-pressure Alpine paragenesis on peridotites and rodingitized gabbros.

In this outcrop, characterized by alpine metaperidotites, 100-metre-scale masses maintain granular textures and mineralogical relics of the mantle protoliths. Peridotites are intruded by mafic dikes. Alpine recrystallization of peridotites occurred in absence of deformation and is accompanied by brittle-deformation originating vein systems. On the other hand, the mafic dikes are rodingitized and display a pervasive metamorphic foliation. The geometric relationship between veins and foliations in the two rock types suggests that during subduction and HP recrystallization, plastic deformation of the mafic dikes was coeval with brittle deformation of the enclosing peridotite. In thin section, the peridotite mantle minerals appear partly overgrown by neoblastic Alpine assemblages. Spinel shows thin coronas of Mg-chlorite; clinopyroxene is replaced along its rims and cleavages by fine-grained diopside, olivine, Ti-clinohumite and subordinated antigorite; coarse mantle olivine is statically overgrown by radial antigorite in textural equilibrium with fine-grained olivine and Ti-clinohumite neoblasts. The coarse mantle olivine relics locally still record a sequence of overprinting serpentine-bearing assemblages: the oldest one is made of chrysotile+magnetite+brucite developing mesh-textures, the mesh serpentine is in turn cut by veins and microfractures with antigorite and, finally, these structures are cut by fractures containing olivine.

This sequence of assemblages indicates an increase in metamorphic grade and, therefore, a prograde evolution, from the sea-floor partial serpentization, that culminates in the HP blastesis of olivine + antigorite + Ti-clinohumite + diopside + chlorite. The same peak metamorphic assemblage develops in the vein systems that diffusely cut the peridotite. These veins represent the most evident feature of the Alpine peak metamorphism: they are arranged in en-enchelon systems oriented at high angles to the dikes and running from within the deformed margins of the dikes to the surrounding peridotite wall rock. The rodingitized mafic dikes likely derive from the pristine Mg-Al and Fe-Ti-gabbros. They show clinopyroxene porphyroclasts in a foliated matrix made of diopside + chlorite + clinozoisite + magnetite. The margins touching the peridotites are marked by foliated walls with Mg-chlorite and epidote. The above assemblage typically forms at HP conditions during recrystallization of mafic rocks which underwent a pre-subduction, most probably oceanic, rodingitization (Ca-enrichment) stage.

Comparable prograde evolution can be observed in a serpentinite mylonite shear zone within the peridotite on the eastern side of the river. In this case olivine + Ti-clinohumite + antigorite shear bands overprint a previous antigorite (olivine-free) shear foliation and point to extreme channelling of plastic deformation along this mylonite horizon during the prograde alpine subduction history. This mechanism of deformation partitioning allowed preservation of large domains where the mantle structures and assemblages have survived due to static and incomplete recrystallization to alpine metamorphic assemblages. Concerning the P-T conditions of the climax HP recrystallization of the Erro-Tobbio peridotite, information on the confining temperature can be deduced by the stability of antigorite in equilibrium with olivine and Ti-clinohumite, which indicates temperatures in the range of 600-650°C at a pressure higher than 10 kb. More reliable P and T estimates for the HP climax event have been obtained in mafic systems: ET eclogitic metagabbros, which escaped rodingitization and were recrystallized to omphacite + garnet + chloritoid + talc assemblages during the subductive evolution, give pressure-temperature estimates of 20-25 kb and 500-650°C (Messiga et al., 1995).

DAY 4

Itinerary: Ovada – Piampaludo (STOP 4.1) – San Pietro d’Olba – Vara (STOP 4.2) – Genova.

Stop 4.1:
Near Piampaludo village.
Rock talus with blocks of eclogitized Fe-Ti-gabbros and minor basalts.
Fe-Ti-gabbros and basalts develop a Na-clinopyroxene Fe-Ti-gabbros and basalts develop a Na-clinopyroxene
ene+garnet+rutile eclogitic assemblage under static conditions. Therefore, the blocks often preserve their primary igneous textures. Eclogitized Fe-Ti-gabbros clearly display the intrusive fabric, locally pegmatoid. The low-strain transformation of igneous augite+plagioclase+ Fe-Ti-oxides under eclogite facies conditions originates eclogitic eclogites. Reaction coronas, outlined by red brownish garnet, occur around coarse dark-green aegirinaugite after igneous augite, fine-grained aggregates of light green omphacite and garnet idiomorphs in pseudomorphs after primary plagioclase and purple rutile aggregates after primary Fe-Ti-oxides.

The transition between coronitic and foliated textures is locally detectable. In deformed eclogites, the fine-grained aggregates after primary plagioclase and the rutile aggregates after igneous ilmenite progressively elongate and recrystallize, whereas coarse aegirine, pseudomorphous after igneous diopside, is frequently preserved as porphyroclast. Due to strain gradients, deformed eclogites range from low-strain flaser eclogites to high-strain mylonitic eclogites. Both deformed and undeformed eclogites are locally cut by veins filled with garnet (omphacite + rutile + epidote + Fe-sulfides). These veins are, in place, conjugated at right angles and are presumably due to syn-eclogitic fracturing.

The eclogitic minerals are partially replaced by different types of retrograde amphiboles, which preferentially grow within the fine-grained domains. Their compositions vary from sodic to sodic-calcic and to calcic compositions. Retrogression is also shown by the development of amphibole-bearing or epidote-bearing veins crosscutting the eclogites. Gabbroic eclogites are in places crosscut by fine-grained dark green eclogites. These eclogitized metabasalts are fine grained and shown by glaucophanic amphibole, probably grown together with small atoll-like garnet.

Stop 4.2:
Near Vara village.
Eclogitized Fe-Ti-gabbroic bodies within relic-bearing serpentinite; metarodingite dikes and Ti-clinohumite-bearing dikelets.

This outcrop shows an ultramafic section enclosing dikes and huge intercalations of primary mafic intrusives. Eclogites display a amphibole, garnet, minor rutile, accessory quartz and apatite assemblage which defines a metamorphic layering. Some geochemical features (i.e. relatively high Fe, Ti and low Mg contents) and textural igneous relics indicate a Fe-gabbroic protolith. These rocks underwent a strong eclogitic ductile deformation which produced the main mylonitic fabric. A widespread, partial, post-eclogitic hydration firstly produced glaucophane- and barroisite-bearing assemblages. A later greenschist-facies equilibration is mainly developed along the boundaries of the larger masses. Along the sheared contacts, fibrous serpentine, chlorite, talc and tremolite recrystallized. Descending the road and leaving the eclogite bodies, a serpentine mass outcrops, which is cut by parallel mafic dikes: a Fe-gabbroic precursor can be inferred for these dikes on the basis of geochemical data such as relatively high Ti, Fe, Zr, Y and low Mg, Cr, Ni contents, and igneous relics of Ti-augite, Fe-Ti ores and, sometimes, apatite. These mafic intercalations are generally characterized by an early metamorphic assemblage with di-rich clinopyroxene+grs-alm-rich garnet, together with chlorite, vesuvianite, epidote and titanite veins.

Metamorphic mineral assemblages and some geochemical characters (i.e. Ca-enrichment and alkalies-Si-depletion compared to normal Fe-gabbroic compositions) indicate that the magmatic precursors were rodingitized (metasomatized and recrystallized under low grade conditions) before the Alpine orogenic evolution. Later, they were almost completely recrystallized to metarodingites (anhdyrous assemblage) under P-T conditions compatible with the Na-clinopyroxene+garnet eclogitic assemblages of analogous lithologies which escaped metasomatism. Sometimes, an incomplete Na-loss during the ocean floor rodingitization is attested to by the small fractions of jd and acm components in the neoblastic di-rich clinopyroxene and by the presence of barroisitic amphibole. A few thin, brown-coloured dikelets are also visible on the outcrop: they are characterized by abundant red-brownish Ti-clinohumite. In thin section, these intercalations still show relics of the primary Fe-gabbroic assemblages, i.e. Ti-augite, ilmenite and apatite. The dominant metamorphic assemblage is characterized by diopside (replacing primary augite)+Ti-clinohumite (rimming augite and ilmenite)+chlorite+antigorite. Antigorite, magnetite and chlorite partly replace Ti-clinohumite. As previously outlined, these thin Fe-gabbroic intercalations appear to have undergone a complete pre-eclogitic plagioclase chloritization, presumably during the low-grade ocean floor rodingitization. Serpentinite shows schistogenous polype phase deformations Textural and mineralogical relics of primary Al-Cr-diopside, probably related to the upper mantle assemblage, are locally preserved.
After an early event of partial hydration (ocean-floor serpentinization), these rocks suffered a penetrative antigorite shear foliation, cut by shear bands. These bands, which contain olivine + diopside + antigorite + Ti-clinohumite, develop presumably under HP conditions. The pervasive ductile deformation, which led to formation of the antigorite foliation and of the olivine-bearing shear bands, has determined the transposition and boudinage of eclogitic mafic dikes. The later development of antigorite + magnetite + tremolite + chlorite, at the expense of diopside and olivine, indicates a decompressional exhumation path.

Acknowledgments
The Italian MIUR and the University of Genova are acknowledged for their financial support. Thanks are due to R. De Ferrari, G. Borghini, E. Poggi and G. Spagnolo for field work, data production and elaboration.

References cited

Piccardo, G.B. Messiga, B. Mazzucotelli, A. (1979) - Chemical petrology and geodynamic evolution of the ophiolitic metavolcanites (prasinites) from the Voltri Massif, Piemontese Ophiolite Nappe (Western Liguria, Italy). Ophioliti, 43, 373-402.

Piccardo, G.B. Rampone, E. and Vannucci, R. (1992) - Ligurian peridotites and ophiolites: from rift to ocean formation in the Jurassic Ligure-Piemontese

Scambelluri, M. (1992) - Retrograde fluid inclusions in eclogitic metagabbros from the Ligurian Western
The oceanic lithosphere of the Jurassic Ligurian Tethys: formation and subduction
