

IMproving Preparedness and RIsk maNagemenT for flash floods and debriS flow events (2009-2012) IMPRINTS

FP 7 Cooperation Work Programme: Environment Collaborative Project FP7-ENV-2008-1-226555

Caroline Wittwer (SCHAPI) representing D. Sempere and the project team

FLASH FLOODS AND PLUVIAL FLOODING

The Challenges

- Increasing anticipation in time
- Improve rainfall forecasts in space and time
- Increasing anticipation in effects
- Improve forecasting and warning tools
- Introduce probabilistic forecasting
- Improve decision support
- Increasing Preparedness
- Developing appropriate management tools

FLASH FLOODS AND PLUVIAL FLOODING

Objective

Improve preparedness and the operational risk management of FF / DF

Produce methods and tools to be used by practitioners of the emergency agencies and utility companies

Produce a prototype of the operational platform designed to be used around the EU

FLASH FLOODS AND PLUVIAL FLOODING

Research: Previous & Ongoing

Algorithms (Tools

-imprints \S Practitioner's expertise

[Expertise]

Operational Needs

Interaction & Integration

Forecasting and Warning Systems

FLASH FLOODS AND PLUVIAL FLOODING

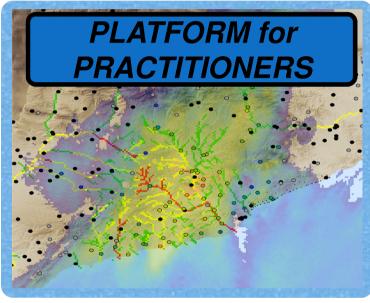
Main Research Topics

Advanced Rainfall Forecasting

Lead times: 30 min -> 72 h

FF/DF Guidance for Risk Management

- Based on Radar and blending Forecast < 6 hours</p>
- Based on EFAS Forecast hydrographs > 6 hours
- Adapted to 1 km2 scale in FF prone basins


Probabilistic Hydrologic Forecasting

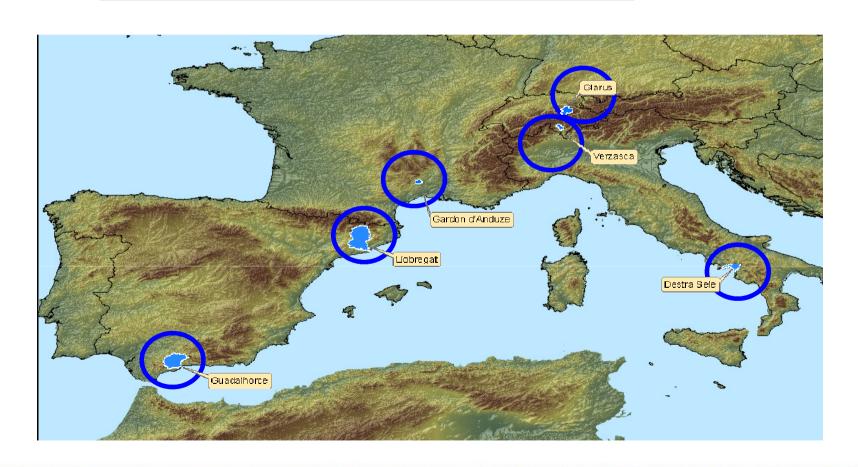
Uncertainty in the hydrological models and outputs

FF/DF Early Warning using a Rule-Based system for complex processes

Assessment of Impacts induced by Future Changes

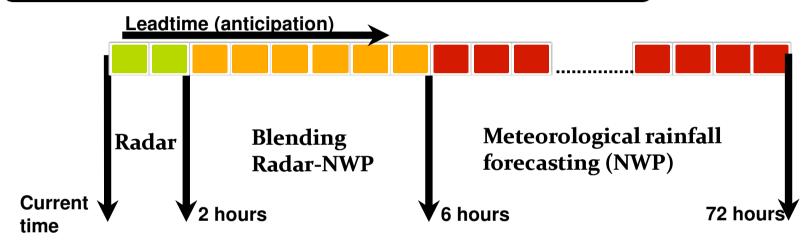
Future rainfall, urban areas, land use, forest fires.

VERIFICATION in 6 Test-beds



FLASH FLOODS AND PLUVIAL FLOODING

VERIFICATION in 6 Test-beds



FLASH FLOODS AND PLUVIAL FLOODING

Increasing anticipation time in rainfall forecasting

- Improve high resolution radar nowcasting probabilistic outputs (ensembles) for FF & DF forecasting (up to 2 h)
- Combining (blending) radar rainfall nowcasting with probabilistic NWP products for mid term forecasts (between 2h and 6h)
- Adapting high-resolution meteorological weather forecasts to their use for FF & DF early warnings (from 6h to 72 h)

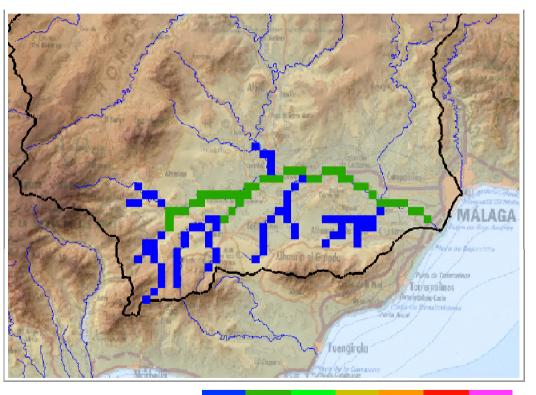
FLASH FLOODS AND PLUVIAL FLOODING

FF & DF early warning systems

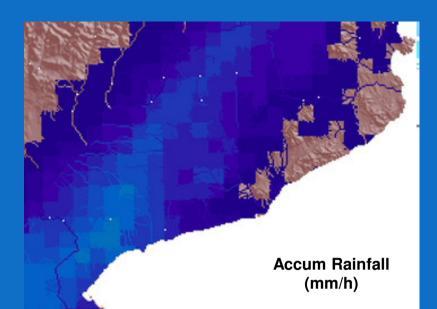
High resolution probabilistic Early Warning System at 1km resolution up to 6h lead time

- Rainfall nowcasting, based on radar+COSMOLEPS data (leadtime < 6 hours). Aggregated rainfall in river cells.</p>
- Reference thresholds based on available rainfall statistics, representing hazard
- Issuing Hazard-based flood Warning: Exceeding thresholds in river cells

Low computational time
FF Guidance system
...not a classic hydrological model



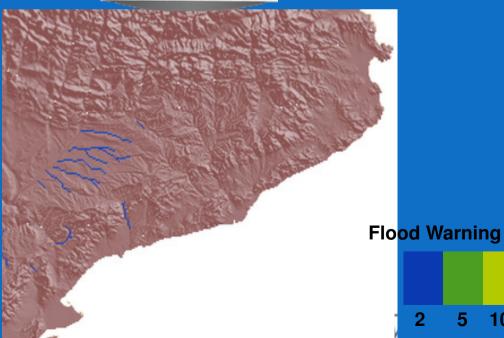
FF & DF early warning systems


High resolution probabilistic Early Warning System at 1km resolution up to 6h lead time

Guadalhorce basin (Malaga) 16/02/2010

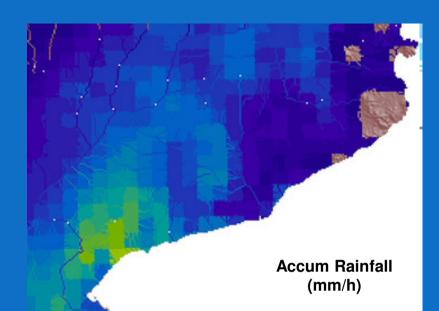
Example of PFFGS 1 km Source: CRAHI

Flood Warning Exceeded Return Period T(years) 2 5 10 25 50 100 200



Adaptation of COSMOLEPS 7 km to the probabilistic Early Warning System

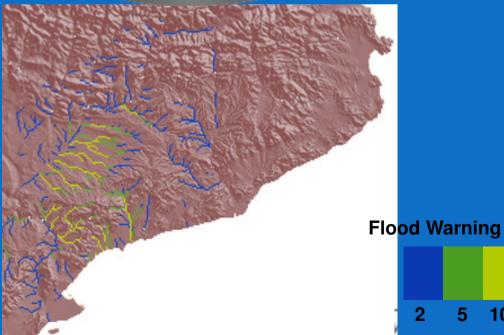
Catalonia domain


COSMOLEPS

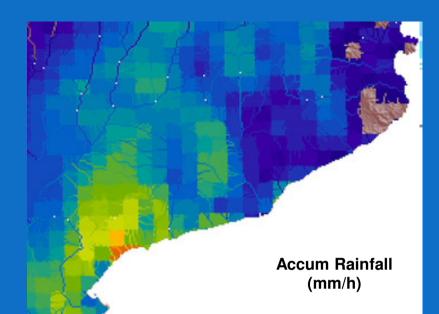
Member 1

Example of PFFGS 1 km Source: CRAHI

2 5 10 25 50 100 200 500 Exceeded Return Period T(years)



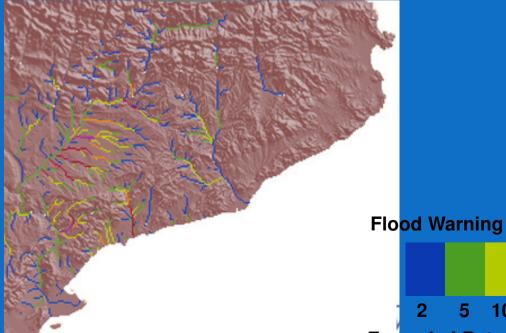
Adaptation of COSMOLEPS 7 km to the probabilistic Early Warning System


Catalonia domain

COSMOLEPS
Member 1

Example of PFFGS 1 km Source: CRAHI

2 5 10 25 50 100 200 500 Exceeded Return Period T(years)



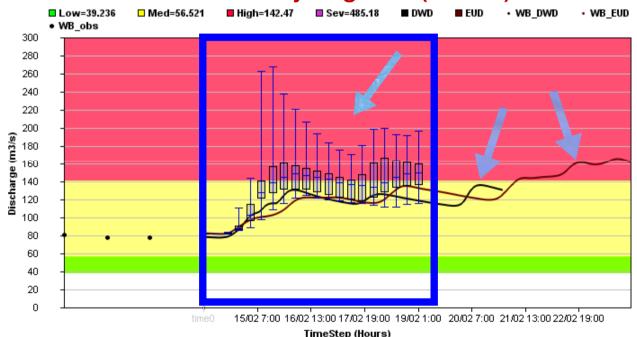
Adaptation of COSMOLEPS 7 km to the probabilistic Early Warning System

Catalonia domain

COSMOLEPS Member 1

Example of PFFGS 1 km Source: CRAHI

2 5 10 25 50 100 200 500 Exceeded Return Period T(years)

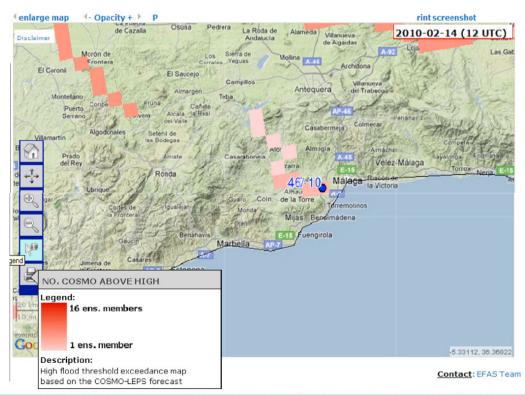


FLASH FLOODS AND PLUVIAL FLOODING

FF & DF early warning systems

Adaptation of EFAS (European Flood Alert System) to FF & DF prone areas at 1 km resolution using COSMO-LEPS up to 72 h lead time Deterministic Forecasted Hydrograms > 72h leadtime Probabilistic COSMO-LEPS Hydrograms (in blue) < 72h leadtime

Hydrograph Guadalhorce basin (Malaga) 16/02/2010. Source: Joint Research Center


FLASH FLOODS AND PLUVIAL FLOODING

FF & DF early warning systems

Adaptation of EFAS (European Floods Alert System) at 1 km resolution using COSMO-LEPS up to 72 h lead time

EFAS forecasts available from 2010-02-10 to 2010-03-08

Probabilistic flood forecast:

number of discharge ensembles above a flood threshold

Example of Current EFAS 5 km Source: Joint Research Center

FLASH FLOODS AND PLUVIAL FLOODING

- Adapt a methodology to prepare scenarios of rainfall at high spacetime resolution consistent with climate change scenarios
- Develop a methodology to estimate scenarios of potential future socioeconomic and land use changes on FF & DF prone areas
- Develop a methodology to include FF & DF impact of forest fires risk

Rainfall projections

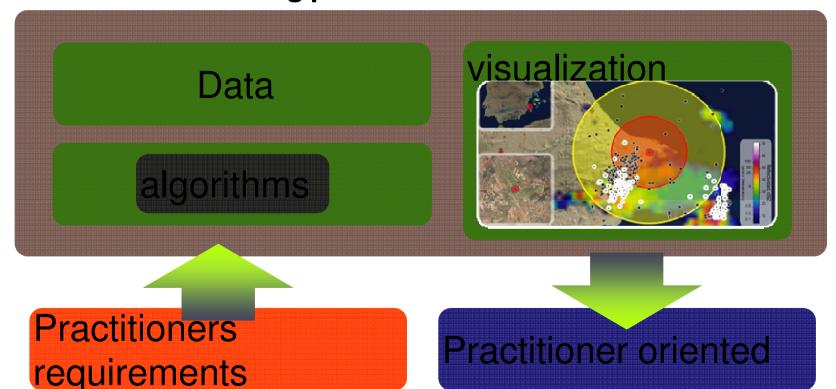
Annual variation of Precipitation (%)

Period: 2040-2060

Scenario: A2

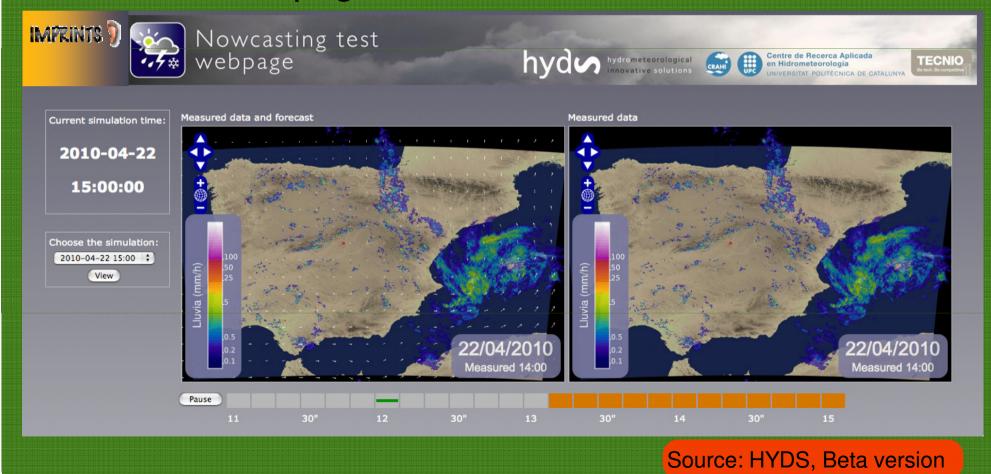
#2.5%
#2.5%
#2.5%
#2.6%
#2.5%
#2.6%
#2.5%
#2.6%
#2.5%
#2.6%
#2.5%
#2.6%
#2.5%
#2.6%
#2.5%
#2.6%
#2.5%
#2.6%
#2.5%
#2.5%
#2.6%
#2.5%
#2.6%
#2.5%
#2.6%
#2.5%
#2.6%
#2.5%
#2.6%
#2.5%
#2.6%
#2.5%
#2.6%
#2.5%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%
#2.6%

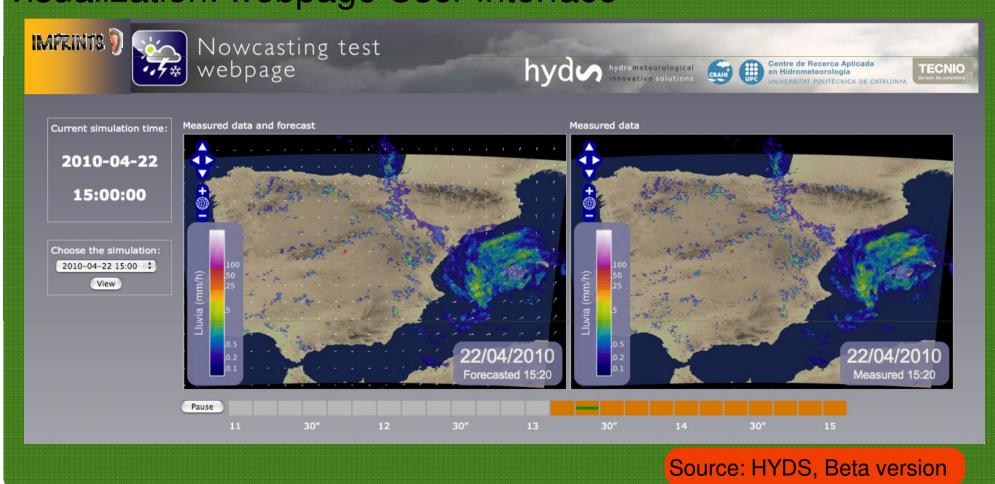
Catalonia domain, Source:SMC

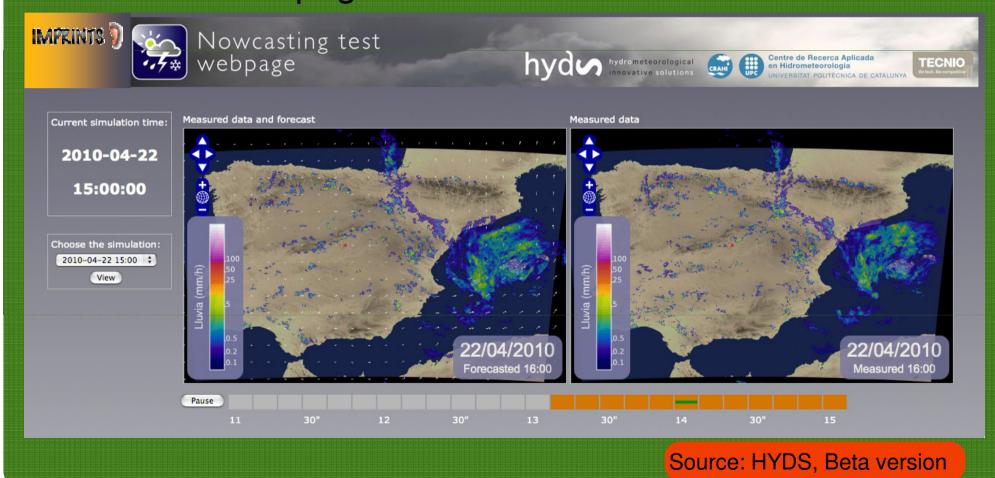


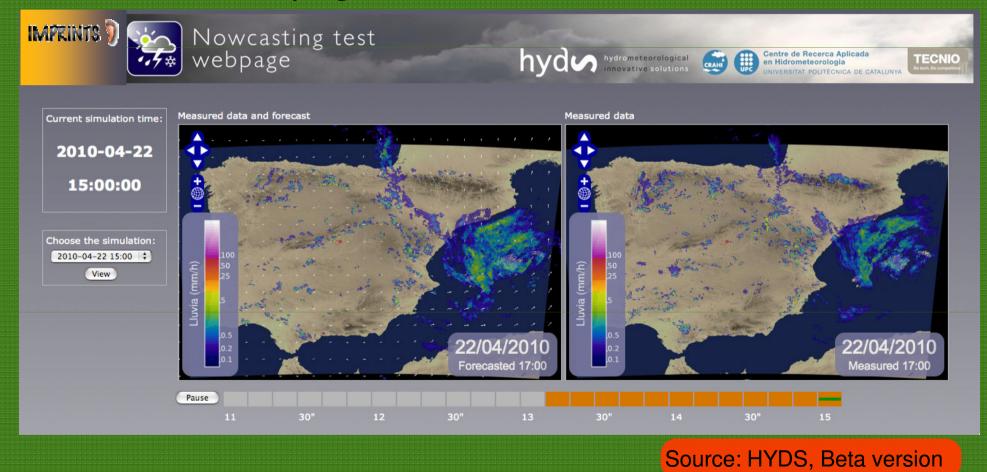
FLASH FLOODS AND PLUVIAL FLOODING

Practitioner's Tool


 Development of a prototype of the operational FF & DF forecasting platform







FLASH FLOODS AND PLUVIAL FLOODING

Practitioner's Tool

Expected Tools:

Radar ensemble nowcasting

Merging (radar + NWP) ensemble forecasting

Areas of high FF & DF potential risk

Probabilistic FF & DF early warning system

Hydrological probabilistic FF forecasting system

Rule-based probabilistic FF & DF forecasting system

FLASH FLOODS AND PLUVIAL FLOODING

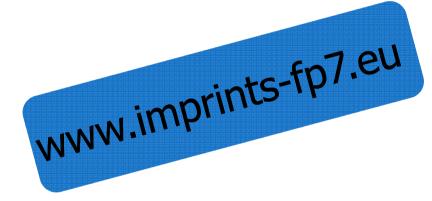
Planned Workshops regarding the Implementation of the European Flood Directive

1st IMPRINTS Workshop

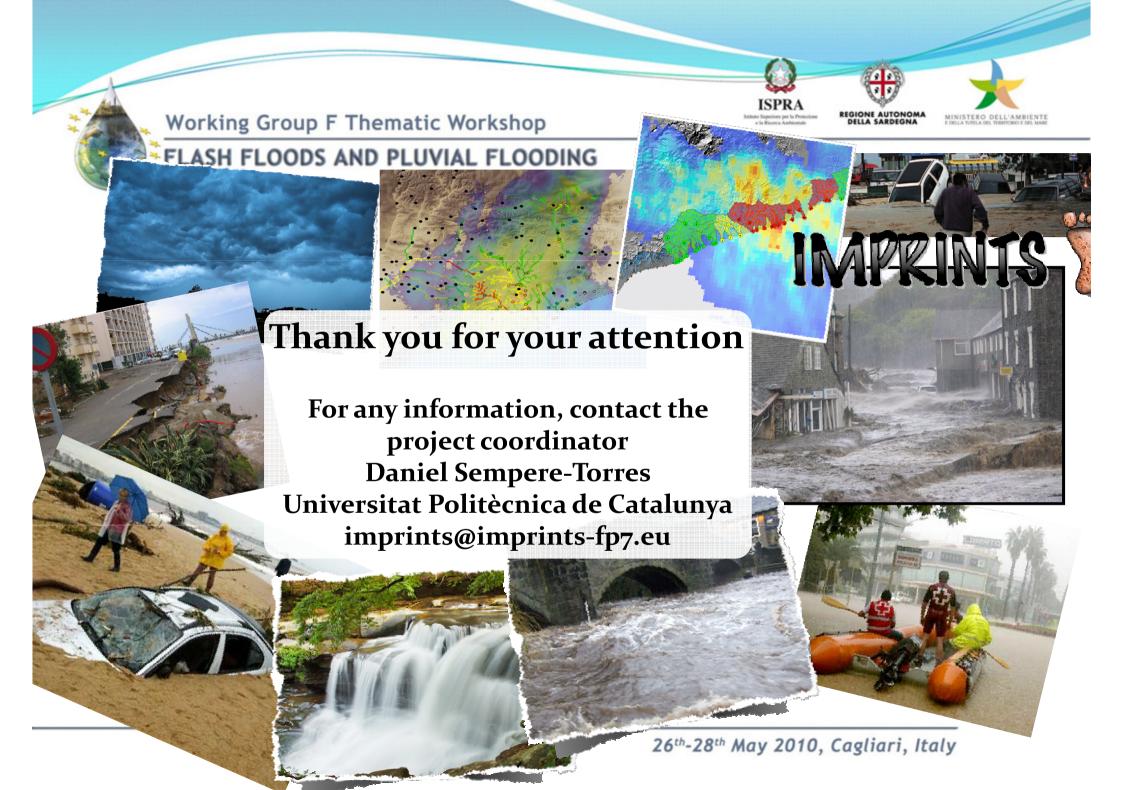
Barcelona (Spain) 17th June 2010

Civil Engineering School of Barcelona

2nd Salerno (Italy) Debris flow oriented
3rd Glarus (Switzerland) Alpine area oriented
4th Nimes (France) Mediterranean area oriented



FLASH FLOODS AND PLUVIAL FLOODING



Development Partners

Operational Partners

- Universitat Politècnica de Catalunya (UPC, ES)
- MeteoSchweiz (CH)
- Joint Research Center (JRC, EC)
- Lancaster University (ULANC, UK)
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL, CH)
- Wagenigen University (WU, NL)
- Technological Centre of Water (CETAQUA, ES)
- University of Salerno (CUGRI, IT)
- University of Kuazulu-Natal (UKZN, South Africa)
- Meteorological Service of Catalunya (SMC, ES)
- Hydrometeorological Innovative Solutions (HYDS, ES)
- Water Agency of Catalunya (ACA, ES)
- SCHAPI (FR)
- Glarus Kanton Emergency Department (GLARUS, CH)
- Autorità di Bacino in Destra Sele (AdBDxSele, IT)
- VERZASCA S. A. (CH)
- AET (CH)
- Emergencies Agency of Andalucia (EGMASA, ES)

