

PROJECT Hydrometeorological data resources and technologies for effective flash flood forecasting

Radar-driven High-resolution Hydrometeorological Forecasts of the 26 September 2007 Venice flash flood

Andrea Rossa, Franco Laudanna Del Guerra, Tommaso Settin, ARPA Veneto Marco Borga, Francesco Zanon, University of Padua Daniel Leuenberger, MeteoSwiss

COST 731 Action: Propagation of Uncertainty in Advanced Meteo-Hydrological Forecast Systems

Working Group F: Flash Floods and Pluvial Floods 26-28 May 2010, Cagliari, Italya

The challenge: extend flash flood warning lead time

synoptic scale: convection seems 'random noise'

mesoscale: convection can be a significant structure

flash flood scale: convection can be the major driver

➔ Monitoring and forecasting convection

Monitoring

- Rain gauge network: often too sparse to capture rainfall peaks, or to portray sharp gradients
- Radar: good spatial coverage, challenging QPE (e.g. attenuation in heavy precipitation → convection)

Forecasting

- Radar extrapolation techniques: limited by linearity, often not adequate for strongly non-linear convective dynamics
- Numerical weather prediction (NWP): issue of scale

For a convective-scale NWP to be successful need:

- Model capable of simulating convective dynamics

 Convection-permitting NWP model; dx = O(1km)
- Suitable initial conditions to catch a specific storm

 Radar reflectivity and radial wind

Realistic convective environment in which storm evolves
 → Mesoscale data assimilation (esp. humidity)

Outline

- Motivation
- Short case description
- Radar QPE analysis
- NWP experimental setup
 - Data assimilation experiments
 - Forecast experiments
 - Sensitivity experiments
- Hydrological simulations
- Summary and conclusions

Case description: 26 Sep 2007 03-09 UTC

Case description: 26 Sep 2007 03-09 UTC

Study area: North-eastern Italy

Atmospheric, hydrological and hydraulic models

NWP: COSMO-2

Convection-permitting (dx=2.2km) Radar rainfall assimilation: LHN

Hydro: geomorphological model

Rinaldo et al.

Radar QPE analysis: 24h accumulation

Radar vs. Rain gauge network (82)

Radar QPE accumulation

Radar rainfall assimilation exps: storm total precip

Without radar data assimilation

Radar rainfall assimilation exps: storm total precip

Radar QPE accumulation

With radar data assimilation

Hourly area-averaged precipitation: Mestre-Analysis

Oav

Hourly area-averaged precipitation: Treviso-Analysis

av

Hourly area-averaged precipitation: Mestre-Forecast

Sav

Hourly area-averaged precipitation: Treviso-Forecast

Hydrological simulation: Dese basin-Analysis

Hydrological simulation: Dese basin-Forecast

Sensitivity experiments to radar QPE amplitude

Mestre Treviso 250% normalized areal averaged hourly 300% normalized areal averaged hourly 200% 250% precipitation (%) precipitation (%) 200% 150% 150% 100% 100% 50% 50% 0% 0% 0.50 1.00 1.50 2.00 0.00 0.00 0.50 1.00 2.00 1.50 radar QPE factor radar QPE factor 03 UTC (6) 05 UTC (12) •06 UTC (13) 03 UTC (1) -06 UTC (5) -07 UTC (13) 11 UTC (1) perfect proportionality •07 UTC (6) -11 UTC (8) perfect proportionality

moderate-to-intense precipitation

Apparent limitations of the model in producing extreme rainfall intensities?!

very intense precipitation

Summary and conclusions - 1

- Radar rainfall assimilation with convection-permitting NWP model COSMO-2 of the Venice-Mestre flash flood 2007
- Clear benefit of radar information in analysis mode
- In forecast mode this benefit is on the order of the lifetime of the convective systems, i.e. 2-3 hours, and more

Summary and conclusions - 2

- Hydrological simulations confirm benefit of radar:
 - Direct assimilation of radar QPE yields similar results as rain gauges
 - Radar-driven NWP QPF clearly show increased leadtime, in this case of some 3 hours
- Limits of the NWP model in producing very high rainfall rates emerged in this case, yet area-averaged values are ok

Radar rainfall assimilation is promising!

Radar QPE accumulation

DI PADOVA

With radar data assimilation

MAP D-PHASE: Relative value – Alert level "yellow" (10/a)

е...

not significantly smaller than forecast errors!

high-resolution models tend to give better results. In particular, better statistical representation at coarser scales.

Felix Ament, Uni Hamburg/MeteoSwiss