Nitrate source identification in various water bodies via isotopic fingerprinting

Pascal Boeckx
Isotope Bioscience Laboratory
Faculty of Bioscience Engineering - Ghent University

www.ISOFYS.be
15 years NO$_3^-$ management in Flanders: 1999-2014

"If you are uncertain about a status you will search for additional information before taking action"
NO$_3^-$ source apportionment

Xue et al. 2009
Economic value of including isotopes increases with potential damage costs

Classical monitoring

Water body status?

Isotope monitoring

Additional information via isotopes?

Improved decision via better information

Economic value from better decision making:

- Cost to get information

Cost-benefit analysis

![Graph showing the economic value of including isotopes increases with potential damage costs.](image-url)
Objectives

To quantify NO₃⁻ sources in surface water

To classify surface waters in NO₃⁻ pollution classes via stable isotopes in NO₃⁻

To assess if physicochemical data sets can be used to retrieve NO₃⁻ pollution classification
Methodology

• Select representative sampling points (30) for 5 different NO$_3^-$ pollution classes (= based on expert judgment)

• Estimate proportional NO$_3^-$ source contribution per NO$_3^-$ pollution class using a Bayesian isotopic mixing model (SIAR) (monthly sampling during 2 years)

• Re-classify the 30 sampling points in NO$_3^-$ pollution classes via a k-means clustering approach using the SIAR fingerprint as input data

• Build a decision tree model including physicochemical data (10 parameters, monthly sampling during 2 years) to retrieve the classification via expert and k-means clustering
Expert classification of 30 sampling points

Agriculture (Class A)

A: Agriculture
AGC: Agr. with ground water compensation
AH: Agriculture + Horticulture
G: Greenhouses
H: Households
Seasonal NO_3^- source identification (2 year data)

$\delta^{15}\text{N}$ (‰)

$\delta^{18}\text{O}$ (‰)

NP

NF

NFR

Soil

M&S

AW AS

AGCW AGCS

AHW AHS

GW GS

HW HS

NP

NF

NFR

Soil

M&S
One year 11B data

- class A
- class AGC
- class AH
- class G
- class H

Manure

Mineral fertilizer

Sewage

δ^{11}B (‰) vs. $1/B$ (L μg$^{-1}$)
Classification of Nitrate Polluting Activities through Clustering of Isotope Mixing Model Outputs

Dongmei Xue,* Bernard De Baets, Oswald Van Cleemput, Carmel Hennessy, Michael Berglund, and Pascal Boeckx
K-means clustering results for winter (SIAR)

<table>
<thead>
<tr>
<th>Expert classification†</th>
<th>Sampling location</th>
<th>Three clusters via k-means</th>
<th>Four clusters via k-means</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A1</td>
<td>cluster 3+</td>
<td>cluster 2</td>
</tr>
<tr>
<td></td>
<td>A2</td>
<td>cluster 2</td>
<td>cluster 4</td>
</tr>
<tr>
<td></td>
<td>A3</td>
<td>cluster 2</td>
<td>cluster 2</td>
</tr>
<tr>
<td></td>
<td>A4</td>
<td>cluster 2</td>
<td>cluster 2</td>
</tr>
<tr>
<td></td>
<td>A5</td>
<td>cluster 2</td>
<td>cluster 4</td>
</tr>
<tr>
<td></td>
<td>A6</td>
<td>cluster 1</td>
<td>cluster 1</td>
</tr>
<tr>
<td>AGC</td>
<td>AGC1</td>
<td>cluster 3</td>
<td>cluster 2</td>
</tr>
<tr>
<td></td>
<td>AGC2</td>
<td>cluster 3</td>
<td>cluster 3</td>
</tr>
<tr>
<td></td>
<td>AGC3</td>
<td>cluster 2</td>
<td>cluster 4</td>
</tr>
<tr>
<td></td>
<td>AGC4</td>
<td>cluster 3</td>
<td>cluster 2</td>
</tr>
<tr>
<td></td>
<td>AGC5</td>
<td>cluster 3</td>
<td>cluster 3</td>
</tr>
<tr>
<td></td>
<td>AGC6</td>
<td>cluster 3</td>
<td>cluster 3</td>
</tr>
<tr>
<td>AH</td>
<td>AH1</td>
<td>cluster 3</td>
<td>cluster 2</td>
</tr>
<tr>
<td></td>
<td>AH2</td>
<td>cluster 2</td>
<td>cluster 4</td>
</tr>
<tr>
<td></td>
<td>AH3</td>
<td>cluster 2</td>
<td>cluster 4</td>
</tr>
<tr>
<td></td>
<td>AH4</td>
<td>cluster 3</td>
<td>cluster 2</td>
</tr>
<tr>
<td></td>
<td>AH5</td>
<td>cluster 2</td>
<td>cluster 4</td>
</tr>
<tr>
<td>G</td>
<td>G1</td>
<td>cluster 1</td>
<td>cluster 1</td>
</tr>
<tr>
<td></td>
<td>G2</td>
<td>cluster 1</td>
<td>cluster 1</td>
</tr>
<tr>
<td></td>
<td>G3</td>
<td>cluster 2</td>
<td>cluster 4</td>
</tr>
<tr>
<td></td>
<td>G4</td>
<td>cluster 3</td>
<td>cluster 2</td>
</tr>
<tr>
<td></td>
<td>G5</td>
<td>cluster 1</td>
<td>cluster 1</td>
</tr>
<tr>
<td></td>
<td>G6</td>
<td>cluster 1</td>
<td>cluster 1</td>
</tr>
</tbody>
</table>

Silhouette: 0.6

4 classes: A, AGC, G and H based on 11B + 3-means clustering
Comparison of expert classification and k-means clustering

<table>
<thead>
<tr>
<th>Season</th>
<th>Cluster comparison</th>
<th>Rand index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winter</td>
<td>expert classification vs. 3 clusters</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td>expert classification vs. 4 clusters</td>
<td>0.7</td>
</tr>
<tr>
<td>Summer</td>
<td>expert classification vs. 3 clusters</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td>expert classification vs. 4 clusters</td>
<td>0.7</td>
</tr>
</tbody>
</table>

K-means clustering using SIAR output retrieves 70% of expert classification!
Retrieve expert (a) and 3-means clustering (b) classification via decision tree models.
Conclusions and future application

- Coupled “SIAR” – “k-means clustering” approach is a promising tool to determine the number of NO$_3^-$ pollution classes when expert knowledge for a basin is absent.

- Decision trees using physicochemical data can be applied to classify a larger number of monitoring points of that basin into the established NO$_3^-$ pollution classes.

- Away from Europe,…
Kinshasa, DR Congo
Nitrate concentration in groundwater boreholes
Range: 0.1 - 339.7 mg L⁻¹
Average: 39.2 ± 56.5 mg L⁻¹
Nyungwe - tropical mountain forest
Atmospheric N deposition

NH$_4^+$: 2.5 kg N ha$^{-1}$ yr$^{-1}$
NO$_3^-$: 5.2 kg N ha$^{-1}$ yr$^{-1}$

Compare with:
- Temperate forest (Belgium)
 ≈ 20 - 35 kg N ha$^{-1}$ yr$^{-1}$
- Temperate forest (south Chile)
 ≈ 8 kg N ha$^{-1}$ yr$^{-1}$
Nitrate leaching and source

- Loss of NO_3^- = 19.7 kg N ha$^{-1}$ yr$^{-1}$
- NO_3^- loss 4-fold higher than deposition

Plants use NH_4^+ and not NO_3^-
Bayesian mixing models (mixSIAR) account for uncertainty and isotope fractionation, hence a detailed temporal and spatial isotopic characterization of NO$_3^-$, and correct assessment of enrichment factor for soil and river denitrification is paramount.