APPENDIX

Mem. Descr. Carta Geol. d'It. LXII (2003), pp. 187-194 1 fig.

Plates enclosed with the CROP Atlas

Tavole allegate all'Atlante CROP

SCROCCA D. (1)

The entire seismic data-set acquired during the CROP Project (fig. 1) has been assembled, homogenised and enclosed with the CROP Atlas. A complete list of the attachments is given in Table 1.

For some of the CROP lines, the names used in the geological literature and in some contributions to this Atlas are different from the names given in Table 1; these different names are listed in Table 2 and 3.

The main acquisition and processing parameters, described in detail in Chapter 4, are briefly summarized in Table 2 and 3. The data-set enclosed with this Atlas covers about 10,000 km of seismic lines, over 8,740 km of which are off-shore and about 1,250 km on-shore.

The on-shore lines are presented on a 1:100,000 scale, while the off-shore sections are on a 1:200,000 scale (with the exception of the M-30 and W-Sardinia profiles that are displayed on a 1:100,000 scale); both data-sets have the same vertical scale of 2.5 cm = 1 s TWT. Generally, the seismic line shown is the stack version, but in a few cases the migrated version is also available (CROP-03, CROP-18 and TRANSALP).

It should be noted that state boundaries on the map in the Plates' legend are only sketched.

The Base Map of the CROP Project (Plate 1 and fig. 1) uses the Gauss-Boaga (East Zone) co-ordinate system. The Gauss-Boaga is a modified transverse Mercator projection based on the Rome 1940 reference datum. As a consequence, longitude is referred to the Monte Mario National Astronomical Observatory (just outside Rome) and the projection limits were chosen so as to cover Italy in two transverse Mercator zones (9 and 15 degrees East), whose false origins prevent any duplication of co-ordinate values throughout the country. The main parameters are as follows (a full description is given in Plate 1):

- Projection: Gauss-Boaga (transverse Mercator), East Zone
- Datum: Rome 1940
- Spheroid: Hayford 1909/International 1924

In the Rome 1940 system, the latitude (referred to the Equator) and longitude (referred to Greenwich) of the datum point at the Monte Mario Observatory are as follows:

- Latitude: 41 deg 55 min 25.51 sec North
- Longitude: 12 deg 27 min 08.40 sec East

⁽¹⁾ Istituto di Geologia Ambientale e Geoingegneria - CNR c/o Dipartimento di Scienze della Terra, Università La Sapienza, P.le A. Moro, 5 - 00185 Roma.

SCROCCA D.

Plate	Name	Plate	Name
1	Base Map	37	M-29B
2	M-2A/a	38	M-30
3	M-2A/b	39	M-31
4	M-2AA	40	M-32
5	<i>M-2B</i>	41	M-34
6	M-3	42	M-36
7	M-4	43	M-37
8	M-5	44	M-38
9	M-6A	45	M-39
10	<i>M-6B</i>	46	W-SARDINIA/a
11	<i>M-8</i>	47	W-SARDINIA/b
12	M 9	48	CROP W-ALPS/a
13	<i>M-10</i>	49	CROP W-ALPS/b
14	<i>M-11</i>	50	CROP C-ALPS/a
15	M-12A	51	CROP C-ALPS/b
16	<i>M-12B</i>	52	CROP C-ALPS/c
17	<i>M-13</i>	53	CROP C-ALPS/d
18	<i>M-14</i>	54	CROP 04
19	<i>M-15</i>	55	CROP 03/a
20	<i>M-16</i>	56	CROP 03/b
21	M-17A	57	CROP 03/c
22	M-17B	58	CROP 03/a Mig
23	<i>M-17C</i>	59	CROP 03/b Mig
24	<i>M-18</i>	60	CROP 03/c Mig
25	M-21	61	CROP 18/a
26	<i>M-22</i>	62	CROP 18/b
27	M-23A	63	CROP 18/a Mig
28	M-23AA	64	CROP 18/b Mig
29	M-23B	65	<i>C</i> ROP 11/ <i>a</i>
30	<i>M-24</i>	66	CROP 11/b
31	<i>M-25</i>	67	CROP 11/c
32	<i>M-26</i>	68	TRANSALP/a
33	<i>M-27</i>	69	TRANSALP/b
34	M-28A	70	TRANSALP/ a Mig
35	M-28B	71	TRANSALP/b Mig
36	M-29A		

Table 1 – Plates enclosed with the CROP Atlas– Tavole allegate all'Atlante CROP

SCROCCA D.

					acquisition				
	Atlas name	km	year	company	trace length sec	G.I. m	channel	fold %	sp. Int m
	M-2A/a	548.8	1991	OGS	20	25	180	4500	50,00
	M-2A/b	287.9	1991	OGS	20	25	180	4500	50,00
	M-2AA	144.3	1991	OGS	40	25	180	3600	50,00
	M-2B	310.2	1991	OGS	21	25	180	3600	62,50
- 	M-3	356.0	1991	OGS	20	25	180	3600	62,50
	M-4	266.0	1991	OGS	20	25	180	3600	62,50
z	M-5	243.0	1991	OGS	20	25	180	3600	62,50
5	M-6A	136.5	1991	OGS	20	25	180	4500	50,00
5	M-6B	133.8	1991	OGS	20	25	180	4500	50,00
	M-8	133.3	1995	OGS	20	25	180	4500	50,00
OFF-SH M	M-9	178.4	1991	OGS	20	25	180	4500	50,00
	M-10	230.7	1991	OGS	20	25	180	4500	50,00
MARE 2 CROP MARE 1	M-11	183.3	1991	OGS	20	25	180	4500	50,00
	M-12A	76.8	1991	OGS	20	25	180	4500	50,00
	M-12B	178.9	1991	OGS	20	25	180	4500	50,00
	M-13	168.8	1995	OGS	20	25	180	4500	50,00
	M-14	101.9	1995	OGS	20	25	180	4500	50,00
	M-15	84.8	1995	OGS	20	25	180	4500	50,00
	M-16	128.8	1995	OGS	20	25	180	4500	50,00
	M-17A	47.7	1995	OGS	20	25	180	4500	50,00
	M-17B	127.9	1995	OGS	20	25	180	4500	50,00
	M-17C	188.5	1994 / 1995	OGS	20	25	180	4500	50,00
	M-18	97.3	1995	OGS	20	25	180	4500	50,00
	M-21	106.3	1995	OGS	20	25	180	4500	50,00
	M-22	181.3	1995	OGS	20	25	180	4500	50,00
	M-23A	482.4	1995	OGS	20	25	180	4500	50,00
	M-23AA	166.8	1995	OGS	20	25	180	4500	50,00
V 1	M-23B	267.9	1995	OGS	20	25	180	4500	50,00
IKI	M-24	223.0	1993	OGS	20	25	120	3000	50,00
M	M-25	156.9	1995	OGS	20	25	180	4500	50,00
7	M-26	127.7	1994	OGS	30	25	90	2300	100,00
C.K.	M-27	143.0	1994	OGS	30	25	90	2300	100,00
-	M-28A	82.0	1994	OGS	20	25	180	4500	50,00
	M-28B	267.6	1994	OGS	20	25	180	4500	50,00
	M-29A	194.8	1994	OGS	20	25	180	4500	50,00
	M-29B	274.5	1994	OGS	20	25	180	4500	50,00
	M-30	174.9	1994	OGS	20	25	180	4500	50,00
	M-31	105.5	1994	OGS	20	25	180	4500	50,00
	M-32	122.7	1994	OGS	20	25	180	4500	50,00
	M-34	356.2	1995	OGS	20	25	180	4500	50,00
	M-36	333.3	1994	OGS	20	25	180	4500	50,00
	M-37	164.1	1994	OGS	20	25	180	4500	50,00
	M-38	113.8	1995	OGS	20	25	180	4500	50,00
	M-39	124.5	1995	OGS	20	25	180	4500	50,00
	WEST-SARDINIA/a	148.8	1988	OGS	20	25	180	4500	50,00
	WEST-SARDINIA/b	68.4	1988	OGS	20	25	180	4500	50.00

Table 2 - Off-shore seismic profiles: main acquisition and processing parameters. – Profili sismici in mare: principali parametri di acquisizione e di elaborazione dei dati.

	processing		shot		
year	company	trace length sec	first	last	Other Names
1993	ISMES	17	100	11030	
1991	OGS	17	10266	16022	
1991	OGS	17	100	2380	M-2AB
1991	OGS	17	100	5027	
1991	OGS	17	100	5760	
1993	ISMES	17	100	4325	
1993	ISMES	17	100	3956	
1991	OGS	17	101	2785	
1991	OGS	17	100	2730	
 1997	ENI AGIP Division	17	110	2721	M8E
1993	ISMES / OGS	17	100	3635	
1993	ISMES	17	100	4668	
1991	OGS	17	100	3720	
1991	ISMES	17	100	1600	
 1991	ISMES	17	100	3632	
1997	ENI AGIP Division	17	110	3431	
1997	ENI AGIP Division	17	110	2093	
1997	ENI AGIP Division	17	110	1751	
1997	Trieste University	17	100	1342	
1997	ENI AGIP Division	17	110	1009	
1997	ENI AGIP Division	17	110	2613	
1997	ENI AGIP Division	17	100	3825	MRGA96001, C9417C, C9517C
1997	ENI AGIP Division	17	110	2001	
1996	ENI AGIP Division	17	100	2195	
1996	ENI AGIP Division	17	100	3680	
1996	ENI AGIP Division	17	100	9703	
1996	ENI AGIP Division	17	100	3392	
1996	ENI AGIP Division	17	100	5417	
1997	ENI AGIP Division	17	100	4530	MRGC96006, CROP/24, CROP24/A
1996	ENI AGIP Division	17	100	2782	C9425, C9425A
1994	ISMES	17	100	1355	
1994	ISMES	17	100	1507	
1994	ISMES	17	100	1695	
1994	ISMES	17	100	5406	
1994	ISMES	17	100	3953	
 1994	ISMES	17	100	1360	C9429B. C9429B-A
1994	ENI AGIP Division	17	100	3599	
1994	ISMES	17	100	2165	
1994	ISMES	17	100	2507	
1996	ENI AGIP Division	17	100	7178	MRGC96004, C9434. C9434-A
1994	ISMES	17	100	6721	С9436. С9436-А
1994	ISMES	17	100	3335	
 1996	ENI AGIP Division	17	100	2331	
1996	ENI AGIP Division	17	100	2545	
1988	OGS	17	1	2890	M-1
1988	OGS	17	2891	4090	M-1
1,000	000	±'			

SCROCCA D.

LAND LINES										
	acquisition									
Atlas name	km	year	recording company	recording length sec	G.I. m	channel	fold %	source		
CROP W-ALPS/a	23.5	1986	OGS	40	80	120	6000	Vibroseis		
CROP W-ALPS/b	63.0	1986	OGS	40	80	120	6000	Vibroseis		
CROP C-ALPS/a	13.0	1988	OGS	45	80	120	100	Explosive		
CROP C-ALPS/b	38.8	1988	OGS	32	80	120	6000	Vibroseis		
CROP C-ALPS/c	36.0	1988	OGS	45	80	120	100	Explosive		
CROP C-ALPS/d	14.0	1988	OGS	45	80	120	100	Explosive		
CROP 04	158.0	1990	OGS	25	80	240	120000	Vibroseis		
CROP 03/a	80.7	1993/1994	OGS	25	60	192	3200	Vibroseis		
CROP 03/b	69.6	1993/1994	OGS	25	60	192	3200	Vibroseis		
CROP 03/c	68.2	1993/1994	OGS	25	60	192	3200	Vibroseis		
CROP 18/a	42.6	1995	DISCOVERY	25	60	192	3200	Explosive		
CROP 18/b	73.1	1995	DISCOVERY	25	60	192	3200	Explosive		
CROP 11/a	85.4	1996	OGS	25	60	192	3200	Explosive		
CROP 11/b	89.1	1996/1999	OGS/ISMES/GEOTEC	25	40	192	2400	Explosive		
CROP 11/c	85.3	1997/1999	CO.GE.PRO	25	40	192	2400	Explosive		
TRANSALP/a	159.7	1998/1999	GEOITALIA/THOR	18	50	120	6000	Vibroseis		
TRANSALP/b	154.1	1999	GEOITALIA/THOR	18	50	120	6000	Vibroseis		

Table 3 - On-shore seismic profiles: main acquisition and processing parameters. – Profili sismici a terra: principali parametri di elaborazione e di acquisizione dei dati.

 	processing		cdp			
year	company	sec	first	last	Notes	Other Names
1990	OGS	24	1	1589		CROP/ECORS, CROP-01-86 w, Western Alps
1990	OGS	24	1	591		CROP/ECORS, CROP-01-86 e, Western Alps
 1990	OGS	21	131	313		CROP-01-88, CROP Alpi Centrali
1990	OGS	24	134	655		CROP-02, CROP-02-88V, CROP Alpi Centrali
1990	OGS	24	14	563		CROP-03-88, CROP Alpi Centrali
1990	OGS	25	111	306		CROP-04-88, CROP Alpi Centrali
1999	Milan University	10	5	3953	Reprocessed version	CROP-04-89-V
1995	ENI AGIP Division	25/16	5303	8087	Migrated line available	
1995	ENI AGIP Division	25/16	2983	5491	Migrated line available	
1995	ENI AGIP Division	25/16	805	3170	Migrated line available	
1998	ISMES	12	50	1469	Migrated line available	
1998	ISMES	12	112	2546	Migrated line available	
2000	OGS	15	202	3048		
2001	OGS	15	3382	7838		
2001	OGS	15	7839	12102		
2000	ENI AGIP Division	18	196	6581	Migrated line available	CROP 1-1A, CROP-01-98
 2002	ENI AGIP Division	18	6582	12743	Migrated line available	CROP-01-99

CONTENTS - INDICE

Acknowledgments	Page	VII
Presentation	»	IX
Foreword	»	XI
MORELLI C. – An historical perspective to the CROP Project – Una rassegna storica del progetto CROP	>>	1
BERNABINI M. & MANETTI P. – CROP Project: goals and organization – Progetto CROP: scopi e organiz- zazione	»	9
SCROCCA D., DOGLIONI C. & INNOCENTI F. – Constraints for an interpretation of the Italian geodyna- mics: a review – Vincoli per una interpretazione della geodinamica italiana: una revisione	»	15
BERTELLI L., MAZZOTTI A. & PERSOGLIA S. – Planning, acquisition and processing of the CROP seismic data: a few comments – <i>Progettazione, acquisizione ed elaborazione dei dati sismici</i> CROP: alcuni commenti	»	47
CAIELLI G., CAPIZZI P., CORSI A., DE FRANCO R., LUZIO D., DE LUCA L. & VITALE M. – Wide-Angle Sea-Land connections as an integration of the CROP MARE II Project – <i>Connessione mare-</i> <i>terra realizzate dal gruppo Sea-Land come integrazione del progetto CROP MARE II</i>	»	55
STUCCHI E., ZANZI L. & MAZZOTTI A. – Lessons learned from the acquisition and the processing of the CROP C-ALPS/b, CROP 03, CROP 04, CROP 18 NVR and expanding spread seismic data – Esperienze ricavate dall'acquisizione ed elaborazione linee sismiche CROP C-ALPS/b, CROP 03, CROP 04, CROP 18 e dai dati "expanding spread"	»	75
BERNARBINI M., NICOLICH R. & POLINO R. – Seismic lines CROP-ECORS across the Western Alps – Le linee sismiche CROP-ECORS attraverso le Alpi Occidentali	»	89
MONTRASIO A., NICOLICH R. & SCIESA E. – The Profile "CROP Alpi Centrali" – Il profilo "CROP Alpi Centrali"	»	97
CASTELLARIN A., CANTELLI L., BERTELLI L., BORRINI D., FANTONI R., SELLA M., NICOLICH R., MAZZOTTI A., SELLI L., BERNABINI M., LAMMERER B., LUESCHEN E., GEBRANDE H., MILLHAN K., GRASSL H., NEUBAUER F., ONCKEN O., STILLER M. – The Transalp seismic profile and the CROP 1A Sub-project – Il profilo sismico Transalp e il sottoprogetto CROP 1A	»	107
BARCHI M., MINELLI G., MAGNANI B. & MAZZOTTI A. – Line CROP 03: Northern Apennines – La linea CROP 03: Appennino Settentrionale	»	127
BATINI F., CAMELI G.M., LAZZAROTTO A. & LIOTTA D. – Line CROP 18: Southern Tuscany – La linea CROP 18: Toscana Meridionale	»	137
PAROTTO M., CAVINATO G.P., MICCADEI E. & TOZZI M. – Line CROP 11: Central Apennines – La linea CROP 11: Appennino Centrale	»	145
SCANDONE P., MAZZOTTI A., FRADELIZIO G.L., PATACCA E., STUCCHI E., TOZZI M. & ZANZI L. – Line CROP 04: Southern Apennines – La linea CROP 04: Appennino Meridionale	»	155
FANUCCI F. & MORELLI D. – The CROP Profiles across the Western Mediterranean Basins – I profili CROP attraverso i bacini del Mediterraneo Occidentale	»	167
FINETTI I.R. – The CROP Profiles across the Mediterranean Sea (CROP MARE I and II) – <i>I profili CROP attraverso il Mar Mediterraneo (CROP MARE I e II)</i>	»	171

APPENDIX

SCROCCA D. – Plates enclosed with the CROP Atlas – Tavole allegate all'Atlante CROP	»	187
---	---	-----