NOTE ILLUSTRATIVE
della
CARTA GEOLOGICA D’ITALIA
alla scala 1:50.000

foglio 601

MESSINA-REGGIO DI
CALABRIA

a cura di
S. Carbone¹, A. Messina², F. Lentini¹

con i contributi di

Sismicità e Pericolosità Sismica: M.S. Barbano¹, D. Grasso¹

Biostratigrafia e Stratigrafia del Miocene medio-superiore e del
Plio-Pleistocene marino: A. Di Stefano¹

Geologia Applicata: V. Ferrara¹

Geologia dei terreni cristallini rilevati: R. Somma²

¹ Dipartimento di Scienze Geologiche, Università di Catania
² Dipartimento di Scienze della Terra, Università di Messina

Ente realizzatore Regione Siciliana
Direttore del Dipartimento Difesa del Suolo - Servizio Geologico d’Italia:
L. Serva

Responsabile del Progetto CARG per il Dipartimento Difesa del Suolo - Servizio Geologico d’Italia: F. Galluzzo

Responsabile del Progetto CARG per la Regione Siciliana:
G. Arnone (Assessorato Territorio e Ambiente)

Responsabile di Progetto del Foglio e Funzionario Delegato:
D. Greco (Assessorato Territorio e Ambiente)

Per il Dipartimento Difesa del Suolo - Servizio Geologico d’Italia:

Revisione scientifica:
R. Bonomo, M.C. Giovagnoli, E. La Posta

Coordinamento cartografico:
D. Tacchia (coordinatore), F. Pilato

Revisione informatizzazione dei dati geologici:
D. Delogu, L. Battaglini, M.C. Giovagnoli, R. Ventura

Coordinamento editoriale e allestimento per la stampa:
M. Cosci, F. Pilato

Per la Regione Siciliana:

Allestimento editoriale cartografico:
P. Guarnieri (fino a Marzo 2007)

Allestimento informatizzazione dei dati geologici:
P. Guarnieri

Informatizzazione e allestimento cartografico per la stampa dalla Banca Dati:
P. Guarnieri

Allestimento editoriale e cartografico finale:
S.EL.CA. srl - Firenze

Gestione tecnico-amministrativa del Progetto CARG:
M.T. Lettieri (Dipartimento Difesa del Suolo - Servizio Geologico d’Italia)
G. Falanga, S. Stagni (Regione Emilia-Romagna - Servizio Geologico, Sismico e dei Suoli)

Si ringraziano i componenti dei Comitati Geologici per il loro contributo scientifico.

Stampa: S.EL.CA. s.r.l., Firenze - 2007
INDICE

I - INTRODUZIONE ..pag. 7
 1. - INQUADRAMENTO DELL’AREA DEL FOGLIO E METODOLOGIE .. 7
 2. - CARATTERI GEOGRAFICI ... 9

II - STUDI PRECEDENTI .. 11

III - INQUADRAMENTO GEOLOGICO 17

IV - STRATIGRAFIA ... 23
 1.1. - INTRODUZIONE E CRITERI .. 23
 1.2. - BIOSTRATIGRAFIA ... 24
 2. - UNITÀ DELLA CATENA KABILO – CALABRIDE 25
 2.1. - UNITÀ TETTONICA DI MANDANICI 25
 2.1.1. - Studi precedenti .. 28
 2.1.2. - Complesso metamorfico varisico 30
 2.1.3. - Caratteri petrologici .. 31
 2.1.4. - Osservazioni geologiche nell’area del Foglio 32
 2.2. - UNITÀ TETTONICA DI ALÌ ... 33
 2.2.1. - Studi precedenti .. 34
 2.2.2. - Basamento paleozoico .. 36
 2.2.3. - Successione mesozoica 38
 2.2.4. - Caratteri petrologici .. 39
 2.2.5. - Osservazioni geologiche nell’area del Foglio 40
 2.3. - UNITÀ TETTONICA DI PIRAINO 41
 2.3.1. - Studi precedenti .. 43
 2.3.2. - Complesso metamorfico varisico 43
 2.3.3. - Caratteri petrologici .. 44
 2.3.4. - Osservazioni geologiche nell’area del Foglio 46
 2.4. - UNITÀ TETTONICA DEL MELA 46
 2.4.1. - Studi precedenti .. 48
 2.4.2. - Complesso metamorfico varisico 49
 2.4.3. - Caratteri petrologici .. 52
 2.4.4. - Osservazioni geologiche nell’area del Foglio 54
 2.5. - UNITÀ TETTONICA DELL’ASPRONANTE 55
SUCCESSIONE TERRIGENA DEL MIOCENE SUPERIORE-MIOCENE INFERIORE » 71
3.1. - FLYSCH DI CAPO D’ORLANDO » 73
4. - UNITÀ DELLA CATENA APPENNINICO-MAGHREBIDE » 76
4.1. - UNITÀ TETTONICA ANTISICILIDE » 76
4.1.1. - Argille scagliose dei Monti Peloritani » 77
5. - SUCCESSIONE TERRIGENA DEL MIOCENE INFERIORE-MEDIO » 77
5.1. - CALCARENITI DI FLORESTA » 78
5.2. - MARNE DI M. Pitò » 79
6. - SUCCESSIONE CLASTICA ED EVAPORITICA DEL MIOCENE MEDIO-SUPERIORE » 80
6.1. - Formazione di S. Pier Niceto » 80
6.2. - Formazione pre evaporitica » 85
6.2.1. - Tripoli » 85
6.3. - GRUPPO DELLA GESSOSO-SOLFIFERA » 86
6.3.1. - Calcare evaporitico brecciato » 86
6.3.2. - Gessi e argille gessose » 87
7. - SUCCESSIONE DEL PLIOCENE INFERIORE-PLEISTOCENE MEDIO » 87
7.1. - Trubi » 88
7.2. - Formazione di Massa S. Lucia » 89
7.3. - Formazione di Rometta » 89
7.4. - Argille di Spadafora » 92
7.5. - Calcareniti di S. Corrado » 93
8. - DEPOSITI DEL PLEISTOCENE MEDIO-SUPERIORE » 94
8.1. - Depositi marini terrazzati » 94
8.1.1. - Settore siciliano » 95
8.1.1.1. - Ordini dei depositi terrazzati » 97
8.1.2. - Settore calabro » 100
8.1.2.1. - Ordini dei depositi terrazzati » 102
8.2. - Depositi transizionali e continentali » 104
8.2.1. - Conglomerati di Allume e ghiaie e sabbie di Messina » 104
8.2.2. - Depositi alluvionali terrazzati » 107
8.2.3. - Argille nerastre di Spirito Santo » 108
9. - DEPOSITI CONTINENTALI E TRANSIZIONALI OLOCENICI » 108
9.1. - Depositi alluvionali recenti e depositi di piana litorale » 108
9.2. - Depositi alluvionali attuali » 110
9.3. - Coltre eluvio-colluviale .. » 110
9.4. - Deposito di versante ... » 110
9.5. - Deposito di spiaggia ... » 111

V - TETTONICA ... » 113
1. - Premesse ... » 113
2. - Strutture tetttoniche “PELLICOLARI” PALEOGENICO-MIOCENICHE .. » 116
3. - Fasi tetttoniche del Miocene medio-superiore » 118
4. - Strutture tetttoniche Plio-Pleistoceniche . » 118

VI - CENNI DI GEOMORFOLOGIA » 123
1. - Idrografia ... » 123
2. - Litorali ... » 125
3. - Morfologia Costiera .. » 126

VII - GEOLOGIA APPLICATA ... » 129
1. - Frane e depositi di versante .. » 129
2. - Idrogeologia ... » 131
2.1. - Unità idrogeologiche e acquiferi » 131
2.2. - Settore Siciliano .. » 133
2.2.1. - Acquiferi delle successioni di catena » 133
2.2.1.1. - Circolazione idrica nelle metamorfiti » 133
2.2.1.2. - Circolazione idrica nei depositi terrigeni » 134
2.2.1.3. - Sorgenti .. » 134
2.2.2. - Acquiferi dei depositi neogenici e quaternari » 138
2.2.2.1. - Acquiferi dei depositi clastici ed evaporitici » 138
2.2.2.2. - Acquiferi dei depositi continentali e di transizione » 139
2.2.3. - Vulnerabilità all’inquinamento » 140
2.2.3.1. - Vulnerabilità naturale .. » 140
2.2.3.2. - Fattori antropici ... » 142
2.2.3.3. - Valutazione della vulnerabilità » 144
2.3. - Settore Calabro .. » 144
2.3.1. - Acquiferi delle successioni clastiche mioceniche » 144
2.3.2. - Acquiferi dei depositi continentali e di transizione. » 146

VIII - ANALISI DELLA SISMICITÀ E PERICOLOSITÀ SISMICA ... » 147
1. - Sismicità e zone sismogenetiche » 147
2. - Storie sismiche e pericolosità » 149
3. - Considerazioni conclusive .. » 156

APPENDICE 1
STRATIGRAFIA E BIOSTRATIGRAFIA DEI DEPOSITI DELL’OLIGOCENE SUPERIORE-PLEISTOCENE MEDIO » 157

Ringraziamenti ... » 164

BIBLIOGRAFIA ... » 164
I - INTRODUZIONE

1. - INQUADRAMENTO DELL’AREA DEL FOGLIO E METODOLOGIE

Il Foglio è ubicato nella Sicilia nord-orientale e nella Calabria sud-occidentale, all’estremità di un’ampia fascia marina, sulla terminazione del “Rise di Messina” e ricade, per il settore siciliano, interamente nella Provincia di Messina, per quello calabrese nella provincia di Reggio di Calabria. Pertanto il Foglio si ubica in posizione chiave nell’ambito dell’Orogenie Kabilo-Calabride-Peloritano e dell’intera regione centro mediterranea.

Il Foglio Messina–Reggio di Calabria costituisce, nell’ambito del settore meridionale dell’Arco Calabro–Peloritano, un “documento” di aggiornamento scientifico sull’assetto geologico generale, che si avvale di una cartografia “recente” edita tra gli anni ‘80 e 2000. In passato la Regione Calabria, ha goduto degli effetti della Legge “Sullo” che negli anni ’60 aveva disposto la copertura dell’intero territorio nazionale con una cartografia geologica alla scala 1:100.000; in seguito a ciò l’intero territorio regionale usufruisce di carte geologiche a scala 1:25.000. In Sicilia invece sono stati realizzati solo pochi fogli a scala 1:100.000 e per anni la base geologica ufficiale di interi settori dell’Isola è stata rappresentata dalle carte geologiche edite alla fine dell’800 con tutte le limitazioni tecnico-scientifiche in esse contenute.

In passato l’area è stata oggetto di studi prevalentemente a carattere petrografico, di rilevamenti e di analisi stratigrafico-strutturali condotti con fondi di ricerca CNR e ministeriali (MIUR). Nell’ambito di tali progetti è stata prodotta la Carta geologica di Messina e del settore nord-orientale dei Monti Peloritani,
alla scala 1:25.000 (Gargano, 1994) e più recentemente, per iniziativa della Provincia Regionale di Messina, è stata redatta la Carta geologica della Provincia di Messina (Lentini, 2000), che costituisce un documento geologico di base di tutto il territorio messinese e che va a colmare una reale lacuna temporale, se si considera che gli unici prodotti cartografici risalgono a Baldacci (1886). Per il settore reggino il dato cartografico più recente risale alla Carta geologica del bordo occidentale dell’Aspromonte, alla scala 1:50.000 (Atzori et alii, 1983).

La gran parte dei terreni affioranti nel Foglio è costituita da rocce paleozoiche cristalline deformate durante l’orogenesi ercinica ed affette da metamorfismo ercinico di vario grado, da minori lembi sedimentari mesozoici interessati da un blando metamorfismo alpino di anchizona e per la rimanente parte da terreni sedimentari marini terziari e quaternari, fino a continentali e marini attuali.

Il rilievo geologico, per il settore messinese, è stato effettuato alla scala 1:10.000, utilizzando la Carta Tecnica Regionale edita alla fine degli anni ‘80 dall’Assessorato Territorio ed Ambiente della Regione Siciliana, che rappresenta una carta topografica di base aggiornata e dettagliata. Il suo utilizzo ha comportato una notevole diminuzione del margine di errore nel riporto in scala 1:25.000 sui tipi IGM degli elementi rilevati e quindi un generale miglioramento del grado di affidabilità del dato geologico puntuale.

Per il settore reggino è stata utilizzata la cartografia ufficiale IGM a scala 1:25.000, unica base disponibile ad oggi per questa fascia costiera del settore sud-occidentale calabrese.

Per il rilevamento dei litotipi sedimentari ci si è avvalsi del criterio litostatigrafico; i terreni metamorfici sono stati invece raggruppati in Unità tetttoniche, come in uso nella cartografia geologica delle catene a falde di basamento.

La campagna di rilevamento ha interessato un’area eterogenea dal punto di vista litologico-strutturale, caratterizzata da un’ampia zona montuosa ed acclive che rapidamente degrada verso la fascia costiera, solcata da incisioni fluviali che partono da circa 1300 m di quota, e non servita, ad alta quota, da viabilità adeguata ma solamente da mulattiere e sentieri. Alcune limitazioni al rilevamento puntuale sono state imposte dalle aree boschive e dalla copertura vegetale, dalle recinzioni di aree private e di demanio e dall’intensa urbanizzazione della fascia costiera, che hanno costretto i rilevatori ad una estenuante richiesta di permessi di accesso alla viabilità, non sempre prontamente concessi, specialmente in aree di insediamento turistico-balneare.

Gli studi condotti nell’ultimo trentennio nel settore dell’Arco Calabro-Peloritano, prevalentemente da parte di ricercatori delle tre Università della Sicilia, seppur con diverso approccio metodologico e finalità scientifica, hanno migliorato le conoscenze della geologia di questo settore isolano e ciò ha comportato una ridefinizione delle unità litostatigrafiche con sostanziale revisione di formazioni e unità già note in letteratura.

Per la datazione delle formazioni sedimentarie ci si è avvalsi di indagini micropaleontologiche, utilizzando in parallelo foraminiferi e nannofossili calcarei. I campioni (in totale circa 150) sono stati raccolti sia lungo sezioni stratigrafiche
che in maniera sparsa.

Per la caratterizzazione petrografica delle rocce sedimentarie si è fatto riferimento prevalentemente a dati di letteratura.

Lo studio petrografico dei terreni metamorfici condotto su base meso- e microscopico è stato effettuato su circa 230 campioni di roccia e circa 100 sezioni sottili. La grande quantità di dati emersa ha consentito una suddivisione più articolata e precisa delle unità di basamento ercinico e trova riscontro nei litotipi cartografati.

2. - CARATTERI GEOGRAFICI

Il Foglio Messina-Reggio di Calabria è caratterizzato dalla catena dei Monti Peloritani in Sicilia e dall’estremità occidentale del Massiccio dell’Aspromonte in Calabria. Le due regioni sono separate dallo Stretto di Messina, settore ionico, la cui delimitazione geografica meridionale si pone a Scaletta sulla sponda siciliana e a Pellaro su quella calabrese.

I Monti Peloritani si estendono da Capo Peloro sino alla congiungente S. Fratello-Giardini in senso geologico, o sino alla zona di Novara di Sicilia con terminologia geografica. Essi presentano molti caratteri comuni ai monti calabresi: essendo simile la costituzione geologica, appaiono simili anche i lineamenti morfologici di insieme. Risulta, così, molto comune la morfologia data da ampie e profonde fiumare, colmate da spesse coltri alluvionali; mentre diversa si presenta la conformazione delle creste, molto più aguzze e sottili quelle dei Peloritani e dello spartiacque, posto più vicino alla costa ionica, che a quella tirrenica. Sono anche minori rispetto ai rilievi calabresi le altitudini che non superano di norma i 1300 m. In particolare i rilievi più elevati di tutto il sistema montuoso peloritano sono Montagna Grande (1374 m) e Rocca Novara (1340 m).

Nel Foglio l’elemento orografico dominante è rappresentato dalla catena peloritana che, nel settore compreso tra Messina-Dinnammare a nord ed Ali Terme-Pizzo Speria, a sud, costituisce una tipica zona montuosa con versanti ripidi e rilievi che superano i 1000 m disposti secondo due dorsali parallele. I rilievi maggiori si allineano in senso NE-SO lungo l’attuale spartiacque principale tra il versante tirrenico e quello ionico: Dinnammare (1127 m), Pizzo Bottino (1076 m), Puntale Bandiera (1067 m), M. Scuderì (1253 m), Pizzo Faleco (1021 m), Pizzo Speria (936 m); la dorsale più occidentale è caratterizzata dalla vetta più alta nell’ambito del Foglio, rappresentata dal gruppo del M. Poverello (1279 m).

Nel tratto centro settentrionale la catena è attraversata da valichi (Portelle) che si attestano tra i 953 m (Portella dell’Orso) e gli 840 m (Portella Chiarino).

Generalmente lungo lo spartiacque peloritano si osserva una morfologia aspra ed accidentata, tipica dei terreni metamorfici d’alto grado, profondamente incisi dalle fiumare. Queste sono colmate da materiali alluvionali talora di notevole spessore.

Il versante tirrenico mostra tratti pedemontani caratterizzati da una morfologia blanda tipica dei depositi terrigeni terziari e quaternari, data da pianori (Piano
Solimo-Inada-Lacini, tra 350 e 475 m e Piano S. Giorgio, tra 500 e 400 m) e colline più o meno arrotondate con quote variabili fino ad alcune centinaia di metri.

La viabilità è buona in tutta l’area; le principali strade che attraversano il Foglio sono l’A. 18 (Catania-Messina) e A. 3 Salerno-Reggio di Calabria, la S.S. 114 (ME-CT), la S.S. 113 (ME-PA) e S.S. 106 “calabra”, cui si collegano o da cui si dipartono diramazioni viarie comunali o secondarie, a fondo naturale, che risalgono i maggiori corsi d’acqua, fino allo spartiacque peloritano. Quest’ultimo, in cresta, è percorribile lungo tutto il tratto da Portella Chiarino (limite centro-settentrionale del Foglio) a Portella Griole (verso SO), su rotabile secondaria. Da quest’ultima località si dipartono una serie di mulattiere e sentieri che collegano i due versanti peloritani verso l’entroterra del settore tirrenico ovest e quello ionico ad est.

Le caratteristiche climatiche dell’area peloritana-aspromontina sono certamente influenzate dalla complessa articolazione orografica, sensibilmente modificate dall’azione marina. Pertanto, nonostante i caratteri generali siano quelli del clima mediterraneo-marittimo, lungo le coste si registrano di norma estati calde, inverni brevi e generalmente miti, con precipitazioni concentrate nel periodo autunnale-invernale. Nelle aree più interne delle due sponde invece le temperature invernali sono più rigide, mentre quelle estive rimangono pressoché invariate.

Il settore peloritano-aspromontino è caratterizzato da una vegetazione spontanea varia e disomogeneamente distribuita, con oleandro, fico d’india, agave, ginestra, etc. In zone di montagna, in aree ancora incontaminate, si sviluppano lussureggianti pinete, castagneti, nocioleti, sughereti, etc. A causa della forte antropizzazione sono rimaste poche fasce boschive tipiche di montagna; la loro scomparsa è principalmente dovuta al selvaggio e intenso disboscamento e ai periodici incendi che in alcune zone hanno reso, per parecchi chilometri, cime e versanti montani crudamente brulli. In alcune zone già da vari anni sono in atto opere di rimboschimento. Sono invece molto comuni le fasce tipiche della macchia mediterranea a prevalenti uliveti, agrumeti e vigneti.

Al dissesto territoriale più o meno naturale si somma quello antropico con opere di cementazione di intere aree e la presenza, in tutte le periferie dei centri urbani e lungo i versanti delle fiumare e le spiagge, di discariche abusive di rifiuti solidi urbani, di materiale edilizio di risulta e rottami di ogni genere.
In questo capitolo verranno ripercorse le principali tappe evolutive delle conoscenze geologiche sull’Arco Calabro-Peloritano (ACP) e in particolare sul Settore Meridionale nel quale ricade il Foglio.

L’excursus sulla storia scientifica dell’ACP mette in risalto la costituzione di due scuole di pensiero, la più antica, fissista o autoctonista, e la più recente, faldistica.

Vengono di seguito indicati tre modelli interpretativi, il primo e il secondo riconducibili alla teoria fissista, il terzo a quella faldistica, per i quali l’ACP è considerato come:

1) un massiccio autoctono che durante la tettogenesi alpina ha subito solo spostamenti orizzontali, rotazioni, subsidenza e sollevamento (Cortese, 1895; Gorler & Giese, 1978);

2) un edificio tettonico ercinico, o un promontorio africano, interessato durante la tettogenesi alpina da thrust responsabili della formazione di unità tettoniche sostanzialmente radicate (Quitzow, 1935; Caire et alii, 1960; Grandjacquet et alii, 1961; Glangeaud et alii, 1962; Dubois, 1970-1976; Lorenzoni & Zanettin Lorenzoni, 1983; Ferla et alii, 1983; Acquafredda et alii, 1988);

3) un edificio tettonico alpino, costituito da unità tettoniche geometricamente sovrapposte, formate da un basamento pre-alpino (Lugeon & Argand, 1906; Limanowsky, 1913).

La bibliografia che segue rispecchia un ordine cronologico.

Seguenza (1873, 1885) indica, nell’evoluzione geologica siciliana, tre eventi fondamentali:
- alla fine del Lias una fase di sollevamento;
- nel Titonico una fase di abbassamento;
- nel Miocene medio una fase di sollevamento.
Baldacci (1886) con la Descrizione Geologica dell’Isola di Sicilia di supporto alla Carta Geologica a scala 1:100.000 del Servizio Geologico d’Italia, dà inizio agli studi sul sistema montuoso Nebrodi-Peloritani. L’opera, di grande validità storica anche se impostata su idee fissiste, è corredata da una dettagliata descrizione dei terreni in esame.

Per il settore calabrese le conoscenze geologico-geografiche del territorio datano a partire dalla monografia di Cortese (1895), ricca di dati analitici ancora oggi validi, ma anch’esse legate a concezioni autoctonistiche.

In contrapposizione alle idee fissiste di De Lorenzo (1896) per l’Appennino meridionale, i primi modelli faldistici cominciarono ad apparire con Lugeon & Argand (1906), e furono applicati poi anche all’ACP.

Limanowsky (1913) ricostruisce nei terreni cristallini e sedimentari mesozoici dell’Arco, una piega, radicata nel Tirreno, formata da tre digitazioni: Serra S. Bruno, Aspromonte, Monti Peloritani.

Maugeri Patanè (1932) sostiene l’alternarsi di periodi di emersione con periodi di trasgressione marina, durante la storia evolutiva siciliana.

Quitzow (1935) considera l’ACP come una anticlinale ercinica, formata da metamorfiti intrusione di graniti, rovesciata verso occidente e con il fianco occidentale interessato da un metamorfismo regionale. Al di sopra del basamento poggiava terreni in prevalenza carbonatici di età mesozoica con al tetto il flysch eocenico. Nell’Arco, la tettonica alpina determina la formazione di tre unità tettoniche impilate con grado metamorfico crescente dalla più profonda alla più elevata.

Le concezioni faldistiche incominciarono tuttavia ad essere sviluppate in modo analitico solamente a partire dagli anni sessanta.

La prima moderna sintesi della geologia dell’Appennino meridionale, Sicilia e Calabria si deve ad Ogniben (1960 e segg.) che sviluppò in modo analitico le concezioni faldistiche, corredando le sue ricerche geologiche di numerose e precise osservazioni di campo. Analogo moderno approccio metodologico e scientifico va riconosciuto a Truillet (1968).

In Ogniben (1973) le strutture di corrugamento appenninico vengono interpretate secondo il modello di geosinclinale di Auboin (1965), in particolare le unità calabride come derivanti da una zona di “massiccio interno”. Nello schema dell’Autore, con le modifiche apportate da Atzori & Vezzani (1974) e Atzori et alii (1975), nei Monti Peloritani sono riconoscibili quattro falde, strutturatesi prima dell’Oligocene superiore, e ricoperte da sedimenti tardoorogeni (Flysch di Capo d’Orlando), con l’interposizione tettonica delle Argille Varicolori (ricopriamento della Falda delle Argille Antisicilidi). Nel Tortoniano i suddetti terreni (“Complesso Calabride”) sarebbero stati trasportati in accavallamento sui terreni del “Complesso Sicilide” e su quelli del “Complesso Liguride”. Secondo l’Autore le falde del “Complesso Calabride” sono:

- Falda di Longi, la più profonda strutturalmente nei Peloritani, è costituita da un basamento semimetamorfico su cui giace una successione sedimentaria di sottosuolo erosionale del Lias-Eocene, evolvente al Flysch di Frazzanò dell’Eocene-Oligocene. In Calabria la stessa falda è costituita da epimetamorfiti e dalla serie
- Falda di Galati, costituita da filladi semimetamorfiche con una copertura a calcani algali e depositi ruditici del Titonico.

- Falda di Mandanici-Castagna, caratterizzata nei Peloritani (Falda di Mandanici) da filladi di bassa epizona e da resti di una copertura mesozoica (calcari a Calpionelle del Cretacico inferiore); in Calabria (Falda di Castagna) da metabolit di vario grado.

- Falda dell’Aspromonte costituita da metabolit di alto grado con intrusioni granitiche.

Truillet (1961) riconosce nei Peloritani un’unica falda metamorfica con metabolit di alto-medio grado sovrapposte alle epimetamorfit di basso grado, cioè con una sequenza inverteita e rovesciata verso sud.

Negli anni settanta diversi Autori (Haccard et alii, 1972; Dietrich & Scandone, 1972; Alvarez et alii, 1974; Scandone et alii, 1974; Dietrich et alii, 1976), sulla base di dati analizzati principalmente sul settore calabro, interpretano l’ACP come un frammento di catena alpina trasportato sui terreni appenninici.

Nello stesso periodo, ma relativamente al settore peloritano dell’arco, Ferla (1972) riconosce due complessi:

- Complesso Sud-Peloritano, caratterizzato da coperture carbonatiche meso-cenozoiche giacenti su filladi, semiscisti e quarziti erciniche (con una scistosità S1), il cui grado metamorfico, molto basso, progressivamente aumenta verso le parti più profonde.

- Complesso Nord-Peloritano, caratterizzato da rocce di più alto grado e a diverso chimismo, con una S2 che traspone una precedente S1.

Il Complesso Nord-Peloritano, inoltre, subisce diversi eventi metamorfici:

- il primo, pre-ercinico, seguito da una retrocessione in età ercinica;

- segue, in epoca tardo-ercinica, una retrocessione termica regionale per intrusione di filoni granitici, pegmatitici ed aplitici in condizioni post-cinematiche.

La tettonica alpina rovescia il complesso creando scaglie tettoniche.

1) Unità di Capo S. Andrea, costituita da una successione prevalentemente carbonatica meso-cenozoica lacunosa e condensata;
2) Unità di Taormina, data da una successione carbonatica meso-cenozoica continua, con livelli bacinali medioliassici;
3) Unità di Longi, caratterizzata da una sequenza simile alla precedente (successivamente ridefinita Unità di Longi-Taormina);
4) Unità di S. Marco d’Alunzio, rappresentata da una successione carbonatica mesozoica poco potente e lacunosa;
5) Unità di Rocca Novara, data da una sequenza con termini di piattaforma carbonatica del Malm, evolvente a facies di bacino nel Cretacico superiore-Eocene e ad un conglomerato rosso eo-oligocenico.

Le cinque unità sedimentarie poggiano su un unico basamento ercinico semimetamorfico e sono ricoperte tettonicamente, in ordine, dalla Falda di Mandanici e da quella dell’Aspromonte, rappresentate rispettivamente da terreni metamorfici di basso e di medio-alto grado.

Amadio-Morelli et alii (1976), nei Monti Peloritani, distinguono unità paleogeniche, Austroalpine, Africa-vergenti (Longobucco-Longi Taormina) e Unità della catena alpina Europa-vergente (geometricamente più elevate). Le Unità, dal basso verso l’alto, sono:

- U. di Longobucco-Longi Taormina, in cui i terreni dell’area di Taormina, per le caratteristiche sia del basamento sia della copertura, sono unificati ai terreni dell’area silana di Longobucco e comprendono (solo in Sicilia) un basamento di metacalcari, filladi, porfiroidi, metagrovacche e metabasiti ed una copertura di conglomerati, arenarie gradate, siltiti; depositi calcarei e terrigeni di bacino, calcari neritici e dolomie; conglomerati ed arenarie di tipo Verrucano (Oligocene (?)-Lias inferiore).
- U. di Bagni-Fondachelli, in cui i terreni dell’area di Fondachelli vengono correlati con quelli di Bagni (Calabria centro-settentrionale), comprendono un basamento di filladi, metareniti, porfiroidi, metabasiti e anfiboliti (Carbonifero ?) e una copertura di calcari pelagici, torbiditi, corniole, conglomerati e arenarie di tipo Verrucano (Cretacico-Permo-Triassico).
- U. di Mandanici, con il basamento di filladi, spesso a granato e cloritoide, metareniti, marmi e metabasiti (pre-Triassico) e una copertura costituita da successioni sedimentarie simili a quelle dell’Unità di Bagni-Fondachelli (Cretacico-Permo-Triassico ?).
- U. di Castagna, in cui i terreni dell’area più settentrionale dei Peloritani, vengono correlati con quelli di Castagna (Calabria centro-settentrionale). Priva di copertura, presenta un basamento di gneiss occhiatini a due miche, spesso fortemente foliati; granitoidi; paragneiss biotitici minuti a muscovite e localmente a sillimanite; marmi; pegmatiti; anfiboliti e metagrovacche ad orneblenda (pre-Triassico).
- U. dell’Aspromonte (area dell’Aspromonte e dei Peloritani nord-orientali), il cui basamento è costituito da filladi, metagrovacche e metacalcari; gneiss biotitici, a luoghi granatiferi ed a sillimanite, anfiboliti, gneiss occhiatini, pegmatiti,
marmi e micascisti.

Bonardi et alii (1976) danno una nuova interpretazione sull’edificio dei Monti Peloritani, ridefinendo le unità stratigrafico-strutturali, dal basso verso l’alto, come segue:
- U. di Longi-Taormina, caratterizzata da una serie di scaglie tettoniche che includono porzioni di un basamento pre-meso-cenozoico monometamorfico, di bassissimo grado ed una copertura sedimentaria meso-cenozoica;
- U. delle Metabasiti dei Borghi, costituita da metadiabasi, copertura carbonatica e scisti policromi;
- U. di Fondachelli-Portella Mandrazzi, formata da filladi grigio scure, scisti grafittici e calcari cristallini, metareniti e quarziti di basso grado metamorfico;
- U. di Ali, considerata una probabile copertura dell’Unità di Fondachelli, composta da una successione meso-cenozoica anchimetamorfica;
- U. di Mandanici, costituita da filladi raramente a granato e/o cloritoide, intercalate da metabasiti, quarziti e marmi;
- U. dell’Aspromonte, data da terreni metamorfici di medio-alto grado;
- U. di Novara, composta da sedimenti mesozoici.

Messina (2002), Messina et alii (2002, 2003, 2004) e Messina & Somma (2002a, 2002b) sulla base delle relazioni geometriche tra le unità tettoniche riconosciute nel Settore meridionale dell’ACP e della loro composizione ed evoluzione pre-alpina ed alpina, ricostruiscono un nuovo schema strutturale del Settore meridionale (v. Fig. 3), secondo il quale nei Monti Peloritani sono presenti, dal basso verso l’alto:
- Unità di Longi-Taormina, formata da una sequenza paleozoica interessata da un metamorfismo varisco, monofasico e plurifaciale, di bassa P, variabile dalla subfacies alla facies scisti verdi, zona a clorite e, da una potente copertura meso-cenozoica;
- Unità di Fondachelli, costituita da un basamento interessato da un metamorfismo varisco, polifasico e monofaciale, di bassa P, in facies scisti verdi, zona a clorite, e da lembi di una copertura sedimentaria mesozoica;
- Unità di Ali, composta da una successione mesozoico e da un basamento paleozoico epimetamorfico, interessati da una sovrinpronta alpina anchimetamorfica;
- Unità di Mandanici, costituita da un basamento interessato da un metamorfismo varisco polifasico e plurifaciale, responsabile di una zoneografia progradata, realizzatosi a bassa P, variabile dalla facies scisti verdi, zona a clorite, alla facies anfibolitica, zona a almandino+oligoclasio e, da una copertura sedimentaria mesozoica.
- Unità di Piraino, formata da un basamento interessato da un metamorfismo varisico polifasico e plurifaciale, di medio-bassa P, responsabile di una zonografia prograda variabile dalla facies scisti verdi, zona a clorite, alla facies anfibolitica, zona a staurolite+oligoclasio.
- Unità del Mela, costituita da un basamento polimetamorfico, con un primo evento eo-varisico eclogitico relitto ed un secondo di tipo barroviano, polifasico e plurifaciale, variabile da metamorfiti di medio-alta P in facies anfibolitica, zona a cianite-staurolite-granato, a metamorfiti di bassa P in facies scisti verdi, zona a albite-biotite-andalusite.
- Unità dell’Aspromonte, con un basamento polimetamorfico, con relitti granulitici pre-varisici e metamorfiti monofasici e monofaciali varisiche, con una zonografia retrograda, di bassa P, in facies anfibolitica variabile, dalla zona a cordierite-Kfeldspato-sillimanite alla zona a staurolite-oligoclasio-andalusite, intruso da plutoniti tardo-erciniche ed interessato da una sovrimpronta polifasica e plurifaciale alpina da bassa a medio-alta P, variabile dalla facies a scisti verdi fino a quella anfibolitica.

Una sistematica revisione cartografica delle coperture è stata recentemente pubblicata con la Carta geologica della Provincia di Messina a scala 1:50.000 (Lentini, 2000), mentre per il settore meridionale calabrese il prodotto cartografico più recente è rappresentato dalla Carta geologica del bordo occidentale dell’Aspromonte a scala 1:50.000 (Atzori et alii, 1983).

Da ultimo una sintesi delle attuali conoscenze sulla stratigrafia delle coperture terziarie e quaternarie è reperibile in Lentini et alii (2000 e bibliografia in essa contenuta).
III - INQUADRAMENTO GEOLOGICO

I Monti Peloritani e il Massiccio dell’Aspromonte rappresentano la terminazione meridionale dell’Arco Calabro-Peloritano (ACP) (Amodio Morelli et alii, 1976). Questo rappresenta un segmento dell’Orogen Appenninico-Maghreide, esteso dall’Appennino al Nord-Africa ed è costituito da un edificio “multi-layer”, in cui si possono distinguere un sistema a thrust pellicolare Africa-vergente, composto da falde di basamento sovrapposto ad un ulteriore sistema a thrust, a sua volta in ricoprimento su un sistema profondo più o meno radicato. Il primo appartiene alla Catena Kabilo-Calabride e si estende dalla costa settentrionale dell’Africa (Kabylie) all’ACP. Il secondo rappresenta la Catena Appenninico-Maghreide, un thrust belt affiorante con continuità dal Nord-Africa (Tell) attraverso la Sicilia e la Calabria ionica sino all’Appennino meridionale.

Pertanto l’ACP è elemento di raccordo tra le direttive tettoniche NO-SE dell’Appennino meridionale e quelle E-O delle Maghrebidi siciliane e corrisponde al tratto di massima distorsione dell’Orogen Appenninico-Maghreide (Fig. 1). La segmentazione dell’orogene, la torsione dell’arco e la sua migrazione verso SE sono connesse all’apertura del Tirreno con velocità ed entità di espansione massima nella parte meridionale, alla rotazione antioraria della penisola italiana e alla subduzione della placca ionica (Scandone, 1979; Malinverno & Ryan, 1986; Royden et alii, 1987; Patacca & Scandone, 1989; Ben Avraham et alii, 1990; Lentini et alii, 1994, Finetti et alii, 1996).

L’ACP comprende una serie di falde, alcune delle quali con copertura mesocenozoica, costituite da un basamento cristallino premesozoico, e che presentano analogie più o meno marcate con l’elemento austro-alpino delle Alpi, ma che non trovano riscontro nell’Appennino e nelle Maghrebidi siciliane formati esclusivamente da falde di copertura.

La ricca letteratura su struttura, genesi ed evoluzione dell’Arco, ad oggi non vede unanime assenso. Non entrando nel merito delle diverse ed anche

Il Settore meridionale comprende i Massicci delle Serre e dell’Aspromonte e la Catena dei Peloritani.

Fig. 1 - Schema tettonico del Mediterraneo centrale (da Lentini et alii, 1995a, modificato).

Il recente riconoscimento di altre unità tettoniche alpine (Unità del Mela, Messina et alii, 1992 e segg.), ha imposto una revisione geologica dei Monti Peloritani mirante alla ridefinizione della geometria dell’edificio suddetto, all’omogenizzazione della nomenclatura delle unità tettoniche e dei litotipi costituenti i basamenti fino ad oggi diversificati dai ricercatori delle diverse scuole siciliane e napoletana.

La caratterizzazione litologica e la storia evolutiva dei basamenti cristallini, sulla base dei nuovi elementi geologici, mineralogici e petrologici recentemente acquisiti vengono sinteticamente riassunte nello schema comparativo di Fig. 3 (Messina, 1995, 1997). Detto schema considera l’edificio dei Monti Peloritani una struttura alpina a falde cristalline, delimitate da contatti tettonici di primo ordine, che definiscono unità stratigrafico-strutturali a diverso grado metamorfico caratterizzate da storie evolutive differenti.

Fig. 3 - Schema dei rapporti geometrici tra le unità tettoniche dell’Arco Calabro-Peloritano (da Bonardi et alii, 1996, modificato da Messina, 2002).
Le caratteristiche litostratigrafiche delle coperture sedimentarie hanno permesso di identificare il complesso litologico di pertinenza di un originario margine passivo europeo (LENTINI & VEZZANI, 1975), la cui originaria geometria doveva essere tale da consentire, durante il Lias inferiore, l’esposizione di livelli catazionali. La posizione strutturale attuale delle falde è tale che i termini più alti sono anche quelli di più elevato grado metamorfico. Inoltre le coperture sedimentarie mesozoiche sono ridotte o assenti nelle unità apicali.

A partire dal Miocene medio una radicale trasformazione del regime tettono-sedimentario investe i settori occupati dalla Catena Kabilo-Calabride, quale risposta all’inizio dell’apertura del Bacino Tirrenico. Questo evento, che è contraddistinto da una generale inversione delle direzioni di drenaggio e di trasporto del materiale detritico verso i nuovi depocentri in via di individuazione, determina la deposizione di altre unità sedimentarie, che affiorano prevalentemente lungo il bordo tirrenico ed alto ionico in un intervallo cronologico compreso tra il Miocene medio e il Pleistocene.
IV - STRATIGRAFIA

1.1. – INTRODUZIONE E CRITERI

In questo capitolo vengono trattati i caratteri stratigrafici e giaciturali dei terreni affioranti nel Foglio, raggruppati per unità tettoniche disposte geometricamente dal basso verso l’alto.

Le unità tettoniche presenti nel Foglio sono delimitate da contatti tettonici estesi a livello regionale (contatti di sovrascorrimento principale); nella definizione delle unità tettoniche non sono stati presi in considerazione quei contatti tettonici di accavallamento (sovrascorrimenti secondari e faglie inverse) che, in età successiva ai sovrascorrimenti principali, hanno raccorciato insiemi di unità sovrapposte tettonicamente. Queste strutture isolano corpi rocciosi di limitata estensione areale e localmente sono responsabili dell’inversione geometrica dei rapporti tra le unità tettoniche coinvolte.

Per la caratterizzazione delle successioni che compongono le singole unità tettoniche ci si è avvalsi del criterio litostratigrafico con una suddivisione dei terreni in formazioni e, ove possibile, nelle relative litofacies e/o membri. Al di fuori della suddivisione in “unità tettoniche” di primo ordine tra Unità Kabilo–Calabridi e Unità Appenninico–Maghrebidi sono state descritte le formazioni, essenzialmente terrigene, deposte successivamente alle fasi di ricoprimento tettonico. Queste formazioni, a carattere sin-tardo- e postorogene, mostrano giaciture discordanti sulle unità di basamento, anche se a loro volta sono coinvolte da strutture, sia estensionali sia compressive più recenti.

Sulla base dei criteri sopra esposti verranno di seguito descritte le successioni tettono-stratigrafiche nell’ordine della loro sovrapposizione iniziando da quelle più profonde affioranti. La descrizione delle unità tettono-stratigrafiche sarà preceduta da un inquadramento geografico-regionale e per le unità di basamento anche da una nota storica.
1.2. - BIOSTRATIGRAFIA

Nell’ambito del Foglio Messina-Reggio di Calabria lo studio biostratigrafico di dettaglio è stato condotto sui depositi di età compresa tra l’Oligocene superiore e il Pleistocene medio; depositi di età più antica (ad es. le argille scagliose dei Monti Peloritani “ASI”), data la modesta entità di affioramento, sono stati caratterizzati dal punto di vista biostratigrafico tramite analisi di campioni isolati.

L’analisi biostratigrafica ha compreso lo studio di due gruppi di microfossili: foraminiferi e nannofossili calcarei; infatti, l’integrazione di studi basati su diversi gruppi fornisce dati certamente più affidabili rispetto a quelli ottenuti dall’esame di uno solo. L’esigenza di un confronto tra metodologie diverse è ancora maggiore se si considera la natura prevalentemente terrigena dei depositi affioranti nelle aree in studio e dunque la possibilità di commettere errori a causa dell’elevato contenuto di forme rimaneggiate. Non è stato sempre possibile effettuare questa doppia analisi su tutte le sezioni studiate, perché ad es. formazioni come il flysch di Capo d’Orlando sono risultate praticamente prive di associazioni a foraminiferi.

I campioni sono stati preparati con differenti metodologie in base al gruppo di microfossili da esaminare. I campioni per lo studio dei nannofossili calcarei sono stati preparati seguendo le metodologie dello smear-slide, e poi esaminati al microscopio ottico polarizzatore con ingrandimenti di 1.000 o 1.250x. L’analisi è stata inizialmente di tipo qualitativo al fine di verificare l’abbondanza delle associazioni e il loro stato di conservazione. Nelle sezioni più complete e nei campioni in cui le associazioni sono abbondanti e ben conservate è stata effettuata un’analisi quantitativa su determinati generi, per mettere in evidenza gli eventi biostratigrafici di rilievo.

Per lo studio dei foraminiferi i campioni sono stati sottoposti a disgregazione, lavati in acqua semplice e setacciati a secco. L’analisi dei residui si è basata su un’indagine di tipo qualitativa che è stata effettuata al microscopio ottico con luce trasmessa con ingrandimenti di circa 100x.

2. - UNITÀ DELLA CATENA KABILO-CALABRIDE

2.1. – UNITÀ TETTONICA DI MANDANICI

L’UNITÀ di Mandanici (UMa), definita da Bonardi et alii (1976) e, corrispon- dente alla Falda di Mandanici di Ogniben (1960), affiora, in maniera continua, per circa 250 kmq, da Scaletta Zanclea-F.Ra Forza d’Agrò, nel versante ionico, fino alla F.Ra di Naso nel versante tirrenico, raggiungendo lo spessore di 700 m (Fig. 4).

Precedentemente considerata interposta tra le Unità dell’Aspromonte a tetto e di Fondachelli a letto, con un’estensione areale più ampia, risulta invece essere a tetto, prevalentemente, in contatto tettonico con le Unità di Piraino, del Mela e dell’Aspromonte (Messina et alii, 1992a, 1992b, 1995, 1997, 2003; Messina 1998a, 1998b, 2002; Messina & Somma, 2002) (Fig. 5), e a letto, localmente, anche in contatto con l’Unità di Ali. E’ presente ancora, in varie finestre tettoniche, a sud di Pezzolo e ad ovest di Pizzo Croce.

Le fasce cataclastico-milonitiche che separano l’UMa dalle altre unità sono bene esposte lungo gli allineamenti Capo Calavà-Novara di Sicilia a sud e F.Ra Fondachelli-Scaletta a nord.

L’UMa è formata da un basamento di metamorfiti varisiche, polifasiche (tre fasi deformative, le prime due accompagnate da episodi metamorfici sin- e postcine- matici) e plurifaciali, caratterizzate da una zoneografia prograda dalla facies scisti verdi all’inizio di quella anfibolitica e da una copertura mesozoica. Sono diffuse lenti di quarzo e abbondanti mineralizzazioni polimetalliche, ossidi e idrossidi.

Il Complesso metamorfico varisico, comprende para- ed ortoderivati (Tab. 1) di basso grado che mostrano una foliazione principale (Sv2), crenulata, sulla quale crescono, statiche, piccole blastesi di granato e cloritoide.

La Copertura mesozoica è formata da piccoli lembi di prevalenti cargneules ed evaporiti cataclastiche.

Piani di taglio alpini, da centimetrici a chilometrici, diffusi in tutta l’unità,

Tab. 1 - Litotipi dell’Unità tettonica di Mandanici.

<table>
<thead>
<tr>
<th>Copertura</th>
<th>Sedimenti Mesozoici</th>
<th>- calcari, dolomie, cargneules (Mesozoico).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basamento</td>
<td>Paraderivati Varisici</td>
<td>- filladi a sericite+clorite+albite+cloritoide+biotite+granato+oligoclasio e metareniti, quarziti, marmi a mica bianca (Paleozoico°).</td>
</tr>
<tr>
<td>Ortoderivati Varisici</td>
<td>- porfiroidi a clorite+mica bianca+biotite; scisti anfibolici ad actinolite- e orneblenda actinolitica (Paleozoico°).</td>
<td></td>
</tr>
</tbody>
</table>

Rocce Alpine
- cataclasiti e miloniti (Oligocene°°).

° = età del protolite e del metamorfismo
°° = età della deformazione Alpina su metamorfiti Varisiche
sono responsabili di deformazioni solo fragili, con cataclasi e retrocessioni.

Piani di sovrascorrimento, a tetto e letto dell’unità, sono caratterizzate da fasce cataclasto-milonitiche di potenza fino a decametrica, accompagnate da retromorfosi.

L’UMa, come tutte le altre unità tettoniche dell’ACP, mostra caratteri geologici, compositivi ed evolutivi peculiari che la diversificano. I marker specifici di terreno che consentono un sicuro riconoscimento dei litotipi, sono la presenza di:
1 - marmi a grana molto fine a bande chiare e scure e a mica bianca (muscovite o paragonite) ricchi in ossidi, idrossidi e solfuri (v. Fig. 6);
2 - filladi a grana molto fine, da verdastre a plumbee, localmente con piccole blasteri, in funzione della zoneografia (v. Fig. 7);
3 - scisti anfibolici a grana molto fine, con depositi metallici;
4 - porfiroidi.

2.1.1. - Studi precedenti

Ferla (1968, 1972) e Truillet (1968) vedono un’unità a sé stante nei litotipi dell’UMa, posta in continuità stratigrafica sui terreni dell’Unità dell’Aspromonte e definiscono l’insieme Complesso Nord Peloritano.

Ferla (1972) ai terreni dell’UMa e dell’Unità dell’Aspromonte attribuisce un’età caledoniana con una copertura devonica. Basamento e copertura sarebbero stati sottoposti alla successiva orogenesi ercinica, responsabile di aver determinato nella copertura strutture riconducibili alla formazione di una sola scistosità molto inclinata.

Secondo Bonardi et alii (1976) l’UMa risulta costituita da un basamento ercinico di grado variabile dalla facies scisti verdi bassa fino all’inizio della facies anfibolitica e da una sottile copertura sedimentaria meso-cenozoica.

Atzori & D’Amico (1972) e Atzori & Sassi (1973) ricostruiscono le condizioni termobariche del metamorfismo che ha interessato il basamento dell’UMa, tipiche di bassa pressione, con temperature che raggiungono i 550°C.

Cirrincione & Pezzino (1993) nelle metamorfiti dell’UMa riconoscono più fasi deformative legate a due distinti eventi metamorfici: l’ercinico e l’alpino. L’orogenesi ercinica determina più fasi di cristallizzazione. Durante la prima si raggiunge un metamorfismo in facies scisti verdi, dalla zona a clorite fino a quella a biotite. Nei livelli più profondi si ha invece un metamorfismo in facies scisti verdi in zona granato (fase sincinematica), e un metamorfismo in facies anfibolitica, zona a staurolite (fase postcinematica). Durante la seconda fase l’unità raggiunge un metamorfismo in facies scisti verdi, zona a clorite. Il carattere polifasi-
co dell’orogenesi alpina, responsabile dello sviluppo, a diversa scala, di strutture plicative di diversa età che coinvolgono non solo gli originari contatti stratigrafici ma anche i contatti tettonici, non determina cristallizzazioni evidenti, ma origina diffuse deformazioni da cataclastiche a milonitiche.

ATZORI et alii (1994) invece riconoscono che l’evento alpino crea processi di ricristallizzazione in bassa facies scisti verdi (sericite, tormalina, etc.) anche nell’UMa.

Lembi sedimentari, interposti tra l’UMa e quella dell’Aspromonte, sono segnalati da Truillet (1961) nell’area di Novara di Sicilia. Essi costituiscono una lente di calcescisti e calcari, potente circa 2 m, sormontata da 1 m di scisti silicei rossi; la microfauna dei Tintinnidi dei calcari data l’affioramento al Berriasiano superiore.

Per Bonardi et alii (1976) ed Amadio Morelli et alii (1976) terreni ascritti all’Unità di Novara, apparterrebbero all’Unità di Stilo, l’unità tettonica geometricamente più elevata dell’ACP.

Nello schema di Lenti & Vezzani (1975) e successivamente in Atzori et alii (1977) l’Unità di Rocca Novara costituisce, invece, un orizzonte tettonico compreso tra le Metamorfiti III dell’Unità di S. Marco e le filladi dell’UMa. Le due interpretazioni portano ad una differente ricostruzione dell’evoluzione della catena peloritana. In particolare nella prima l’Unità di Novara si sarebbe accavallata
all’apice della “catena alpina” come unico frammento di provenienza europea. Nella seconda la medesima unità non rappresenterebbe la copertura più interna di tutto l’edificio ma i resti di una originaria copertura dell’UMa.

Più specificatamente, nell’area del Foglio, Cirrincione & Pezzino (1994) considerano i terreni di Pizzo Speria e Pizzo Carnavarino, interposti tra gli gneiss occhiadini dell’Unità dell’Aspromonte a tetto e le filladi dell’UMa a letto, come una copertura meso-cenozoica interessata da una blanda sovrimpronta alpina che ha originato un debole metamorfismo.

2.1.2. - **Complejo metamorfico varisico**

Metamorfiti di Mandanici (FDN). Le filladi passanti a metareniti sono i li-totipi più diffusi, con colore e cristallinità correlati, rispettivamente, alla composi-zione e al grado metamorfico. Il colore varia da grigio-scuro nelle filladi grafitose, a grigio-verde nelle cloritiche, a grigio-argento nelle sericitiche, a grigio-plumbeo nelle filladi biotitiche. Il grado di cristallinità aumenta dalle prime alle ultime. Sia nei tipi meno cristallini sia in quelli più evoluti è presente anche granato di composizione variabile.

La scistosità principale Sv2, formata durante la seconda fase deformativa varisica Dv2, è definita da letti irregolari di piccoli cristalli di muscovite e cloriti, alternati a letti quarzoso-albitici. Epidoti e/o ilmenite e/o magnetite e/o biotite e/o granato mimeticamente sincinematiche su questa foliazione sono da ascrivere alla fase statica post-Sv1, marcata dagli stessi minerali. Localmente biotite, muscovite e clorite sono statici sulla Sv2. Il granato, quando è presente, acquista un orlo statico. La Dv3 è responsabile della crenulazione o, raramente, di una terza scistosità Sv3 definita solo da sottili letti di fillosilicati.

I marmi minuti e impuri, da biancastri a grigi con sericite, quarzo, clorite, opachi, si presentano foliati, con una foliazione ascrivibile alla Sv2, poco crenu-
lata o ricca di piani di taglio.

Gli scisti anfibolici, eterogenei per grana e composizione, sono costituiti prevalentemente da anfibolo di tipo actinolite fino ad orneblenda verde.

Le quarziti, fortemente deformate e ripiegate contengono sericite, clorite ed opachi.

2.1.3. - Caratteri petrologici

Evoluzione varisica

L’evoluzione varisica (Tab. 2), ricostruita sui paraderivati (Messina et alii, 1998a), mostra una foliazione principale (Sv2), definita da mica bianca+quarzo+clorite+albite+grafite e localmente, a seconda della zoneografia, da biotite e oligoclasio. Su questa foliazione crescono statici clorite+biotite+cloritoide+granato. E’ sempre presente all’interno dei microlitoni, una prima foliazione (Sv1) a sericite+clorite, con domini di albite e quarzo, sulla quale cresce statica l’ilmenite, successivamente trasposta sulla foliazione Sv2. Il granato e il cloritoide, mostrano crescita da sin-Sv1, con strutture snowball (granato), a statica post-Sv2.

Lungo i piani di taglio alpini si verificano fenomeni da cataclastico a milonitici, con stiramento della foliazione Sv2, accompagnati da retrocessione.

Nell’evento metamorfico varisico, il picco termico e barico sono raggiunti, in ogni zona, nell’episodio metamorfico statico post-Dv2 realizzatosi rispettivamente, a T da valori inferiori a 400°C fino al limite di 550°C e P tra 2 e 3 Kbar.

L’evoluzione metamorfica varisica dell’UMa, come in tutte le altre unità tetto-

<table>
<thead>
<tr>
<th>Tempo Evento</th>
<th>Pre-Var.</th>
<th>Varisico</th>
<th>Tardo-Var.</th>
<th>Alpino</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressione</td>
<td>met</td>
<td>sed</td>
<td>met</td>
<td>retr</td>
</tr>
<tr>
<td>Fase defor.</td>
<td>Dv1</td>
<td>Dv2</td>
<td>Dv3</td>
<td>Dv4</td>
</tr>
<tr>
<td>Strutture</td>
<td>Sv1</td>
<td>Sv2</td>
<td>Sv3</td>
<td>C-Pk</td>
</tr>
<tr>
<td>Episodio Met.</td>
<td>s</td>
<td>st</td>
<td>s</td>
<td>s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Minerale</th>
<th>Quarzo</th>
<th>Plagioclasio</th>
<th>Mica bianca</th>
<th>Clorite</th>
<th>Biotite</th>
<th>Granato</th>
<th>Cloritoide</th>
<th>Tormalina</th>
<th>Apatite</th>
<th>Grafite</th>
<th>Ilmenite</th>
<th>Magneteite</th>
<th>Rutile</th>
<th>Epidoto</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

met = metamorfico	sed = sedimentario	idr = idrotermale
retr = retrogressivo	Dv = fase deformativa Varisica	Da = fase deformativa Varisica
Sv = foliazione Varisica	C = clivaggio di crenulazione	Pk = piega kink
Sa = foliazione Alpina	ZS = zone di shear	PS = piani di shear
s = sincinematico	st = statico	mi = milonitico
ct = cataclastico		
niché, termina con una retrocessione regionale a T e P più basse.

Evoluzione alpina

Le successive fasi deformative, ascrivibili alla tettogenesi alpina (Messina & Somma, 2002), producono solo piani di shear che tagliano le precedenti foliazioni, con cataclasi e retrocessioni.

2.1.4. - Osservazioni geologiche nell’area del Foglio

L’UMa, potente fino a 700 m, è esposta nell’area meridionale del Foglio per circa 35 kmq. Affiora da Pizzo Serracchi (area SO del Foglio) a Monticeddu (a NO di Scaletta Superiore). Lungo il versante ionico l’unità è inoltre esposta, con potenze fino a 350 m, tra Molino e Giampilieri Superiore, nella finestra tettonica, denominata dagli Autori “Finestra di Puntale S. Anna”. In quest’area l’unità è geometricamente sottostante all’Unità dell’Aspromonte e all’Unità del Mela, rispettivamente in destra e in sinistra idrografica del T. di Giampilieri. Inoltre l’UMa affiora, con potenze fino a 250 m, nella “Finestra di T. Lecandro” (a N di Pizzo Speria), al di sotto dell’Unità di Piraino.

Nell’area sud-orientale del Foglio l’UMa è in contatto tettonico sull’Unità di Ali. Tale superficie, esposta tra M. Sapone a sud-ovest e Marina d’Italia a nord-est, presenta un trend NE-SO con immersione di circa 40° verso NO, ben osservabile 1,5 km a nord di Capo d’Ali. Oggetto di dibattito è la natura di questo contatto, in quanto è controverso se si tratti di un sovrascorrimento piegato dalla tettonica successiva alla fase di messa in posto delle falde, di una faglia inversa tardiva che disloca l’edificio a falde già strutturato, o di un contatto tettonico estensionale (Somma et alii, 2005). Nel settore SO del Foglio, tra Portella Ridi e Pizzo Faleco e in sinistra idrografica del T. Bugolia, l’UMa è inoltre in contatto tettonico sull’Unità dell’Aspromonte, tramite un sovrascorrimento secondario ad alto angolo ad andamento E-O e immersione verso N.

I litotipi presenti nell’area del Fo-
glio sono filladi, metareniti, marmi, oltre a quarziti e minori scisti anfibolici, questi due ultimi litotipi non cartografabili alla scala della carta.

Le filladi e le metareniti (FDN_b) (Fig. 7), da grigio-verde a plumbee, sono i tipi più diffusi.

I marmi (FDN_a) sono bene esposti presso Puntale S. Anna (Fig. 6), dove raggiungono uno spessore di circa 200 m, costituendo l’affioramento più esteso e potente del Foglio. Marmi, in lenti estese fino a 1 km e potenti una decina di metri, sono esposti tra il T. Fiumedinisi e il T. Ali e a sud di Giampilieri Superiore.

Rari porfiroidi cloritici sono presenti a SO di Fiumedinisi.

Su tutti i litotipi l’alterazione è sempre ampiamente diffusa.

2.2. - Unità tettonica di Ali

L’Unità di Ali (UA), caratterizzata da CAIRE et alii (1965) e riconosciuta come unità alpina da BONARDI et alii (1976), affiora per circa 4 kmq, lungo la costa ionica, da Marina d’Itala ad Ali Marina, raggiungendo uno spessore di circa 500 m. A tale unità vengono ascritti i lembi mesozoici interessati da metamorfismo alpino, affioranti lungo l’allineamento NO-SE Ali-Montagnareale (a SE di Capo Calavà) (Fig. 4).
Il contatto tettonico inferiore dell’unità non affiora, mentre a tetto l’UA è in contatto sia con l’UMa, sia con l’Unità dell’Aspromonte e l’Unità del Mela (*klippe* di Modderino, a ovest di Capo d’Ali). La cinematica di tali contatti è controversa. Studi in corso su questi contatti e sui rapporti geometrici degli altri lembi mesozoici metamorfici dei Monti Peloritani con i terreni sovrastanti potranno dare un contributo alla risoluzione del suddetto problema.

L’UA è formata da più scaglie tettoniche, a vergenza meridionale, comprensenti una successione paleozoica affetta da un metamorfismo varisico di basso grado ed una copertura mesozoica, entrambi interessati da un metamorfismo alpino di Anchizona.

Il **Complesso metamorfico varisico** è costituito da paraderivati pelitico-arenacei (Tab. 3), di colore grigio-neraastro, i cui caratteri varisici sono ormai obliterati dalla tettonica alpina (“Scisti neri a piante” del Devoniano?-Carbonifero inferiore; DE STEFANI, 1911).

La **Copertura mesozoica** è formata da una successione terrigena e carbonatica (Tab. 3) di età Triassico medio?-Cretacico inferiore?, intensamente piegata e rovesciata verso sud.

Piani di taglio alpini interessano il basamento e la copertura. Essi originano diffuse deformazioni duttili, responsabili di strutture cataclastico-milonitiche, accompagnati da riduzione di grana e nei livelli più pelitici, anche da ricristallizzazioni metamorfiche lungo una foliazione alpina definita da prevalente mica bianca fengitica.

La **ricristallizzazione alpina**, che si articolà in maniera diversa a secondo della competenza dei livelli sedimentari, modifica solo parzialmente, anche nei tipi più pelitici, le strutture precedenti (v. Tab. 4).

Il contatto tettonico a tetto con l’Unità dell’Aspromonte e l’Unità del Mela (Modderino) è caratterizzato da una breccia cataclastica che interessa l’intero klippe di Modderino. La deformazione fragile origina cataclasi e retrocessioni.

Sono diffusi **depositi idrotermali a solfuri, ossidi ed idrossidi**.

2.2.1. - **Studi precedenti**.

Scalia (1914) sintetizza gli studi più antichi sulla successione mesozoica di Ali. **Cuvillier & Truillet** (1967) e **Truillet** (1968) danno una prima descrizione stratigrafica della formazione di Ali, che risulterebbe costituita da: un termine prevalentemente calcareo, un membro di 300-400 m in facies di “Verrucano” e “Scisti neri a piante”.

Atzori (1968), in contrapposizione alle ricostruzioni di **Cuvillier & Truillet**
(1967) e sostenendo in parte le indicazioni di Quitzow (1935) e di Ogniben (1960), considera il lembo sedimentario di Ali in finestra tetttonica. L’Autore descrive inoltre la successione stratigrafica con dati petrografici di dettaglio distinguendo:
- Formazione argilloso-arenacea-conglomeratica (Lias basale);
- Formazione calcarea-dolomitico-marnosa con gessi (Lias inferiore);
- Formazione calcarea-argilloso-diasprigna (Lias medio);
- Alternanza marnoso-argillosa (Lias superiore);
- Alternanza marnoso-calcarea (Titonico-Neocomiano).
Inoltre, per l’Autore, la successione non presenta tracce chiare di metamorfismo.
Atzori et alii (1975) riconoscono nella successione mesozoica di Ali più scaglie tetttoniche, a vergenza meridionale, ricoperte tetttonicamente da meso-meta-morfiti riferibili all’Unità dell’Aspromonte (klippe di Modderino) e da epimetamorfiti dell’UMa.
Bonardi et alii (1976) definiscono la serie mesozoica di Ali un’unità tetttonica alpina, caratterizzata da un blando metamorfismo alpino, con sviluppo di pieghe strizzate e con una scistosità di piano assiale, ben definita da sericite nei livelli terrigeni della parte basale della successione.
Atzori et alii (1994) datano a 26 Ma (metodo Rb/Sr su miche) il metamorfismo alpino dei lembi di copertura di Pizzo Spera e Pizzo Carnavarino.

Somma et alii (2005), avendo individuato nei terreni dell’UA deformazioni duttili estensionali e scollamenti estensionali a basso angolo (raccorciamento verticale; fase deformativa Da2) tra l’UA e l’UMa, preceduti (Da1) e seguiti (Da3) da deformazioni formatesi in regime compressivo, riconoscono nella catena peloritana le prime evidenze di esumazione alpina associata a estensione sinorogena.

2.2.2. **Basamento paleozoico**

Metamorfiti di Ali (MMF). Metasiltiti e metareniti grafitose di colore grigio scuro (Figg. 8, 9; Tab. 3), con lenti e noduli di quarzo. Localmente si intercalano metalutiti nelle quali sono presenti frustoli mal conservati ed impronte di piante attribuite a probabili *Lepidodendron, Sigillaria* e *Bothrodendron* (cfr. “Scisti neri a piante“ *Auct.*) del Devoniano?-Carbonifero inferiore. Questi litotipi sono deformati dalla tettonica alpina, responsabile di una foliazione principale Sa2, a mica bianca fengitica, clorite, quarzo e grafite, che ripiega una foliazione *Sa1* con gli stessi minerali come gran parte della mica bianca sericitica. La struttura tipicamente metamorfica delle metasiltiti varisiche riequilibrate alpine, si differenzia nettamente da quella delle metasiltiti di tipo Verrucano alpine, in quanto la deformazione alpina in queste ultime non ha obliterato il *layering* sedimentario.
Fig. 8 - Unità tettonica di Ali: Basamento paleozoico con sovrimpronta alpina di Anchizona. Loc.: C.da Granci, tra Ali Marina e Itala Marina.

Fig. 9 - Unità tettonica di Ali: Basamento paleozoico con sovrimpronta alpina di Anchizona. Struttura microscopica di Metasiltite varisica di Anchizona (?) con riequilibrazione alpina di Anchizona: clivaggio di crenulazione (Sα2) sub-orizzontale, ascritto all’evento alpino (Solo Pol.; 40X). Loc.: C.da Granci, tra Ali Marina e Marina d’Itala.
2.2.3. - *Successione mesozoica*

Si tratta di una potente successione sedimentaria mesozoica caratterizzata da varie litologie in apparente continuità e interessata da un blando metamorfismo alpino di Anchizona. Lo spessore dell’intera unità non è determinabile a causa dell’intensa deformazione tettonica; la potenza apparente è stimabile intorno a 400 m.

Risulta costituita, dal basso verso l’alto (Figg. 10, 11; Tab. 3) da:

Verrucano peloritano (VEP) - alternanza di metareniti e metasiltiti di colore da rosso vinaccia a giallastro di tipo “Verrucano” con intercalazioni di argilloscisti di colore vinaccia. Lo spessore è circa 200 m. L’età è Triassico medio-Hettangiano;

Dolomie evaporitiche e cargneules (ALD) - successione di ambiente transizionale, caratterizzata da alteranze di calcari e areniti di colore giallastro o rosso vinaccia, dolomie evaporitiche vacuolari rosate, calcari nerastri, carniolo di colore giallastro e grigiastro (*cargneules*), talora gessifere, fortemente cataclastiche ed attraversate da fitti sistemi di fratture riempite da carbonati. Lo spessore varia da 0 a 80 m. L’età è Triassico medio-Hettangiano;

Tab. 3 - *Litotipi dell’Unità tettonica di Ali.*

<table>
<thead>
<tr>
<th>Copertura</th>
<th>Paraderivati Alpini</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>metamarme, metaradiolariti, meta(?)-calcari, metacalcari marnosi, meta(?)-dolomie, metacargneules, metasiltiti e metareniti di Tipo "Verrucano" (Oligocene)*.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Basamento</th>
<th>Paraderivati Alpini</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>metasiltiti e metareniti grafitose (Oligocene**).</td>
</tr>
</tbody>
</table>

* = età del metamorfismo Alpino su depositi del Cretacico inf.?-Triassico medio?

** = età del metamorfismo Alpino su metamorfiti Varisciche
superiore?–Lias inferiore;

Calciulititi, calcisiltiti e marne calcaree (ACS) - alternanza di calciulititi, calcisiltiti e marne calcaree (Fig. 10) di colore grigio-bluastro con noduli di selce scura, di tipo “Medolo”. Spessore fino a 80 m. L’età è Lias medio-superiore;

Argilliti silicee e radiolariti (ALO) - argilliti silicee e “radiolariti”, dal colore rosso vinaccia al verde (Fig. 11), sottilmente stratificate, con intercalazioni di livelli decimetrici di calcareniti e brecciole silicizzate di colore grigio e con noduli di selce. Spessore fino a 30 m. L’età è Lias superiore-Cretacico inferiore?

2.2.4. - **Caratteri petrologici**

Evoluzione varisica

Non è possibile ricostruire l’evoluzione varisica del basamento, poiché la sovrimpronta alpina maschera le strutture varisiche con una foliazione Sa1 a piccole blastesi di pari grado metamorfico. Proprio per quest’ultima caratteristica, è possibile ipotizzare un metamorfismo varisico di condizioni termobariche comprese tra l’Anchizona e la subfacies scisti-verdi (Tab. 4).

Evoluzione alpina

Nell’UA è stata ricostruita la seguente evoluzione tettono-metamorfica alpina (Tab. 4) che interessa basamento e copertura (Somma & Messina, 2001; Messina & Somma, 2002a, 2002b; Somma et alii, 2005):

- una prima fase deformativa alpina, Da1, origina un sistema di pieghe metriche con assi E-O e vergenze meridionali, cui si associa una foliazione di piano assiale Sa1 sub-verticale, definita nelle metasiltiti da mica bianca fengitica+paragonite+clorite+quarzo+ematite+grafite+pirofilite;
- una seconda fase, Da2, genera un sistema di pieghe da centimetriche a metri-
che che deforma le precedenti strutture. Il piegamento presenta assi E-O ed è accompagnato da una foliazione Sa2 sub-orizzontale.

- una terza fase, Da3, individuata principalmente nel basamento, determina la formazione di un sistema plicativo, ad assi circa E-O, accompagnato da un clivaggio di crenulazione Sa3 inclinato di circa 45°.

L’episodio metamorfico sin-Da1, definito da mica bianca fengitica+paragonite+clorite+quarzo+ematite+grafite+pirofillite, si è sviluppato in condizioni di Anchizona (FERLA & AZZARO 1978; MESSINA & SOMMA, 2001), a P intorno a 3 Kbar e a T tra 300 e 350°C.

La fase Da2 si è sviluppata in condizioni termobariche inferiori alle precedenti.

2.2.5. - Osservazioni geologiche nell’area del Foglio

Nell’area di Ali, geometricamente dall’alto verso il basso e geograficamente da NO a SE si riconoscono: una Scaglia superiore, una Scaglia intermedia e le Scaglie inferiori.

La Scaglia superiore è delimitata superiormente dall’UMa e inferiormente dalla Scaglia intermedia, tramite contatti meccanici NE-SO con immersione di circa 45° verso NO (SOMMA & MESSINA, 2001). La successione, qui di seguito descritta, è coinvolta in un’anticlinale, denominata “anticlinale di Granci”, con superficie assiale circa NE-SO con immersione di circa 45° verso NO. Questa è l’unica scaglia che presenta i litotipi stratigráficamente più profondi dell’unità, essendo formata dal basamento Paleozoico (nucleo dell’anticlinale) e dai terreni del “Verrucano” (fianchi della piega). Il basamento (Figg. 8 e 9) affiora, con potenza apparente di 150 m, per circa 0,5 kmq presso Noritteddo, e in lembi distribuiti a NE e SO del klippe di Modderino. Sul basamento seguono, lungo
contatti tettonici, le metasiltiti e metareniti del Verrucano peloritano affioranti tra il T. Ali (a SO) e Marina d’Itala (a NE). La potenza apparente raggiunge i 350 m. La successione termina con lembi di cargneules esposte, con potenza fino a 150 m, a nord-ovest del cimitero di Ali e a sud-est di Ali Superiore.

La **Scaglia intermedia** è delimitata inferiormente dalle Scaglie inferiori, tramite una faglia inversa NE-SO con immersione di circa 45° verso NO nella zona di rampa e sub-orrizzontale nella zona di flat (ben osservabile a sud-ovest di Capo d’Ali). Essa è formata da cargneules, brecce dolomitiche e dolomie, affioranti, con potenze fino a 150 m, tra Ali Terme e Casa Marchese. Localmente si rinvengono calcilutiti, calcisiltiti e marno di tipo Medolo. Questi terreni, scolati su quelli di tipo Verrucano e in posizione rovesciata, affiorano per poche decine di metri, sul promontorio di Capo d’Ali e alla confluenza dei due corsi d’acqua a ovest del capo stesso.

Le **Scaglie inferiori** affiorano lungo la falesia che costeggia la S.S. 114 Messina-Catania. Si tratta di almeno quattro scaglie tettoniche, di moderate dimensioni, delimitate da faglie inverse E-O con immersione N di circa 70° (Giunta & Somma, 1996; Somma & Messina, 2001). Le scaglie sono formate da calcilutiti, calcisiltiti e marno di tipo Medolo (Fig. 10), cui seguono, scollate, argiltili silicee e radiolariti (Fig. 11). I calcari e le argiltili mostrano rispettivamente una potenza apparente di circa 100 e 80 m.

Nell’area di Pizzo Serracchi e Pizzo Speria, tra l’Unità dell’Aspromonte al tetto e l’UMa al letto, affiorano, con trend E-O e per un’estensione areale di circa 0,5 kmq, terreni potenti fino a 30 m, ascritti all’UA. Essi sono formati da cargneules ed evaporiti di colore giallo-rossiccio (ALD), intensamente alterate e interessate da una forte cataclasì che le ha trasformate in breccie, con clasti di filoniti e miloniti dell’Unità dell’Aspromonte. La cinematica dei contatti meccanici al tetto e al letto di tali terreni è di difficile interpretazione.

2.3. - **Unità tettonica di Piraino**

L’UP affiora in maniera discontinua per circa 20 kmq, dall’area a NE di Mandanici, sul versante ionico, alla F.ra di S. Angelo di Brolo, su quello tirrenico, geometricamente interposta tra le Unità del Mela e, localmente, dell’Aspromonte a tetto e di Mandanici a letto (Fig. 4), raggiungendo lo spessore massimo di 400 m, in affioramenti precedentemente attribuiti da Bonardi et alii (1979, 1996) all’UMa. Fasce cataclastico-milonitiche da metriche a decametriche la separano dalle unità cui è interposta. I contatti sono bene esposti tra F.ra e Piraino (destra idrografica della F.ra di S. Angelo di Brolo), lungo la F.ra di Fondachelli Fantina (Foglio 600 Barcellona P.G.) e tra Portella Ridi e Pizzo Strumbo (a SO del Foglio).

L’UP è formata da un basamento di metamorfiti varisiche, polifasciche (quattro fasi deformative di cui le prime tre accompagnate da episodi metamorfici sin- e postcinematici) e plurifaciali, caratterizzati da una zoneografia prograda dalla fa-
cies scisti verdi a quella anfibolitica e da una copertura mesozoica. Il basamento è costituito (Tab. 5) da banchi di filladi passanti a metareniti, deformate da pieghe isoclinali con intercalazioni di lenti metriche di scisti anfibolici e di piccoli corpi di quarziti. Sono diffusi i letti e le lenti di quarzo che delineano le pieghe isoclinali.

Il **Complesso metamorfico varisico**, comprende para- ed ortoderivati (Tab. 5) di basso-medio grado che mostrano una foliazione principale (Sv2), fortemente crenulata e accompagnata da una incipiente Sv3, evidente anche a mesoscala, sulla quale crescono statiche, blastesi centimetriche di granato e più piccole di cloritoide e staurolite.

La **Copertura mesozoica** è costituita da una successione di tipo Verrucano ricoperta da arenarie gradate di età compresa tra il Triassico superiore e il Giurassico medio (Cecca et alii, 2002).

Piani di taglio alpini, da centimetrici a chilometrici, sono diffusi in tutta l’unità, responsabili di deformazioni fragili, con cataclasì e retrocessioni.

Piani di sovrascorrimento, a tetto e letto dell’unità, sono delineati da fasce cataclasto-milonitiche di potenza da metrica a decametrica, con intense retromorfosi.

I terreni dell’UP mostrano caratteri peculiari, notevolmente diversi da quelli dell’UMa, sia per la composizione ed evoluzione tettono-metamorfica del basamento (Messina, 2002), sia per la natura della copertura mesozoica (Cecca et alii, 2002). Tali caratteri sono diversi anche da quelli dell’Unità del Mela, posta geometricamente al di sopra, essendo assenti, nei suoi terreni, i *marker* di campagna distintivi dell’Unità del Mela, quali:

- fase relitta eo-varisica
- marmi con silicati in lenti e letti;
- livelli di ortoderivati concordanti, sia basici, sia acidi.

Sono, invece, *marker* specifici di campagna dell’UP:

1 - filladi a blastesi statiche di granati centimetrici (con composizione variabile in funzione della zoneografia) (v. Figg. 12 e 13);
2 – scisti anfibolici;
3 – quarziti filladiche.

Tab. 5 - Litotipi dell’Unità tettonica di Piraino:

<table>
<thead>
<tr>
<th>Copertura</th>
<th>Sedimenti Mesozoici</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- areniti, siltiti, marne, dolomie e conglomerati</td>
</tr>
<tr>
<td></td>
<td>(Giurassico medio-inferiore).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Basamento</th>
<th>Paraderivati Varisici</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- filladi a clorite±albite±cloritoide±biotite±granato</td>
</tr>
<tr>
<td></td>
<td>±oligoclasio±staurolite e metareniti (Paleozoico°).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ortoderivati Varisici</th>
<th>Basamento</th>
</tr>
</thead>
<tbody>
<tr>
<td>- metabasiti ad actinolite e omeblenda actinolitica</td>
<td></td>
</tr>
<tr>
<td>(Paleozoico°).</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rocce Alpine</th>
<th>Basamento</th>
</tr>
</thead>
<tbody>
<tr>
<td>- cataclasì e miloniti (Oligocene°°)</td>
<td></td>
</tr>
</tbody>
</table>

° = *età del protolite e del metamorfismo*

°° = *età della deformazione su metamorfiti Varisiche*
2.3.1. - *Studi precedenti.*

MESSINA et alii (1998) riconoscono nei Peloritani occidentali terreni costituenti un nuovo complesso epi-mesometamorfico, precedentemente ascritti all’UMa, che presentano caratteri geologici, compositivi e storia tettono-metamorfica peculiari.

CECCA et alii (2002) rinvengono nei terreni silico-clastici della F. ra di Sant’Angelo, considerati in letteratura appartenenti a una successione continentale norico-retica, ammoniti e coccoliti del Giurassico, che testimoniano di un ambiente marino. La correlazione, proposta da DUÈE (1969), di tali terreni con quelli dell’UA non può essere sostenuta poiché quest’ultima unità è interessata dal metamorfismo alpino e i terreni mostrano un’evoluzione sedimentaria differente durante il Triassico superiore-Giurassico medio. Per quanto detto e considerata la posizione geometrica di questi terreni rispetto a quelli posti al tetto e al letto, gli Autori ritengono che la successione della F. ra di Sant’Angelo rappresenti la copertura sedimentaria dell’UP.

MESSINA et alii (2003a, 2003b) illustrano l’estensione areale e la posizione geometrica dell’UP nelle zone in cui è stata riconosciuta (Piraino-Vetriolo), indicano anche i rapporti petrovolumetrici dell’unità (10 Kmq di estensione areale, massimo spessore affiorante 400 m, volume di 1,5 km³) nel contesto delle altre unità cristalline peloritane, e la composizione geochimica di alcuni litotipi chiave, quali le filladi in zona a clorite, a biotite e a granato.

2.3.2. – *Complesso metamorfico varisico*

Metamorfiti di Piraino (FIP). Le filladi, da grigio-verdi a plumbee, sono i litotipi più abbondanti (Fig. 12). Presentano una foliazione principale Sv2, definita da miche e grafite, deformata da una crenulazione accompagnata da un’incipiente Sv3. Indipendentemente dal grado metamorfico, presentano la stessa cristallinità e struttura porfiroblastica per granati centimetrici e, solo localmente, anche per cloritoide o staurolite (Fig. 13). La zoneografia è ricostruibile sia nell’area di Piraino, sia nel versante idrografico sinistro della F. ra di Fondachelli Fantina (Foglio 600).

Le metareniti, a grana minuta, presentano abbondante quarzo ed albite, tessitura orientata e debole struttura porfiroblastica con blastesi statiche solo di granato e raro cloritoide.

Gli scisti anfibolici, in lenti non cartografabili, omogenei per grana e compo-
sizione, sono a grana fine, da verdi a verde-azzurri, costituiti per il 70-80% da orneblenda actinolitica.

Le quarziti, biancastre, a grana fine e ricche in mica bianca, si presentano in corpi metrici deformati.

2.3.3. - Caratteri petrologici

Evoluzione varisica

L’evoluzione varisica, ricostruita sui paraderivati (MESSINA et alii, 1998a), si è articolata in quattro fasi deformative, tre delle quali accompagnate da episodi metamorfici sin- e post-cinematici a carattere ercino-typo, responsabili di una zoneografia prograda dalla facies scisti verdi fino all’inizio di quella anfibolitica (Tab. 6).

La Dv1 origina una prima foliazione Sv1 a sericite+clorite, con
domini di quarzo+albite, ben conservata nei microlitoni. Gli stessi minerali, con l’ilmenite, crescono sia statici nell’episodio metamorfico post-Dv1, sia lungo la seconda foliazione Sv2, originata dalla DV2, dove l’ilmenite viene trasposta e, seguendo la zoneografia, sono presenti anche biotite+cloritoide+granato. Questi ultimi continuano a svilupparsi, come porfiroblasti, nell’episodio metamorfico statico post-Dv2.

La Dv3 determina un clivaggio di crenulazione responsabile di una terza foliazione, Sv3, a clorite+mica bianca nella zona a clorite, e a biotite nelle altre zone. Il granato cresce fino all’episodio post-Dv3, raggiungendo dimensioni centimetriche, mentre, nella zona di più alto grado, cristallizza anche staurolite e un orlo di oligoclasio intorno all’albite.

Nell’**evento metamorfico varisico**, il picco termico e barico è raggiunto, in ogni zona, nell’episodio metamorfico statico post-Dv3, a T compresa tra 400 e 550°C e a P tra 3 e 4 Kbar.

L’evoluzione metamorfica varisica dell’UP, come in tutte le altre unità tettoniche, termina con una **retrrocessione regionale** a T e P più basse.

Evoluzione alpina

Le successive fasi deformative, ascrivibili alla tettogenesi alpina (Messa & Somma, 2002), producono solo piani di *shear* che tagliano le precedenti foliazioni, con cataclasie e retrocessioni.

<table>
<thead>
<tr>
<th>Evento Pre-Var. Variisco Tardo-Var. Alpino</th>
<th>Pre-Var.</th>
<th>Variisco</th>
<th>Tardo-Var.</th>
<th>Alpino</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tempo</td>
<td>met</td>
<td>sed</td>
<td>met</td>
<td>retr</td>
</tr>
<tr>
<td>Pressione</td>
<td>L/P</td>
<td>L/P</td>
<td>M/H</td>
<td>M/P</td>
</tr>
<tr>
<td>Fase deor</td>
<td>Dv1</td>
<td>Dv2</td>
<td>Dv3</td>
<td>Dv4</td>
</tr>
<tr>
<td>Strutture</td>
<td>Sv1</td>
<td>Sv2</td>
<td>Sv3</td>
<td>C-Pk</td>
</tr>
<tr>
<td>Episodio Met.</td>
<td>s</td>
<td>st</td>
<td>s</td>
<td>st</td>
</tr>
</tbody>
</table>

Tab. 6 - Evoluzione tettono-metamorfica dell’Unità di Piraino.

<table>
<thead>
<tr>
<th>Minerali</th>
<th>Pre-Var.</th>
<th>Variisco</th>
<th>Tardo-Var.</th>
<th>Alpino</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quarzo</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Plagioclaso</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Mica bianca</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Clorite</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Biotite</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Granato</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Cloritoide</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Staurolite</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Tormalina</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Apatite</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Grafite</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Ilmenite</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Magnetite</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Rutile</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Epidoto</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
</tbody>
</table>

met = metamorfico sed = sedimentario idr = idrotermale retr = retrogressivo Dv = fase deformativa Varisica Da = fase deformativa Varisica Sv = foliazione Varisica C = crollo di cronolazione Pk = piega kink Sa = foliazione Alpina ZS = zone di shear PS = piani di shear s = sincinematico st = statico mi = mibonico ct = cataclastico
2.3.4. - Osservazioni geologiche nell’area del Foglio

L’Unità di Piraino affiora per circa 3 kmq a SO del Foglio, tra Portella Ridi (a sud) e Pizzo Strumbo (a nord), con una potenza massima di 200 m. Essa giace sull’UMa, lungo una superficie di sovrascorrimento a basso angolo, marcata da una fascia cataclastico-milonitica di potenza metrica. Tale contatto, difficilmente individuabile sul terreno, è definito solo su base petrografica.

Tra Serra Ciappi e Pizzo Strumbo, l’UP è sovrascorsa da gneiss e micascisti dell’Unità del Mela con un contatto che immerge verso N con inclinazioni fino a 35°. Lungo la dorsale di Pizzo Scillizzo (a est di Serra Ciappi) l’UP è ricoperta tettonicamente da piccoli kliippen dell’Unità dell’Aspromonte, potenti alcune decine di metri, formati da gneiss occhiadini e localmente da marmi dolomitici, fortemente milonitici. In quest’area il sovrascorrimento si presenta da sub-orizzontale a immergente a N con inclinazioni fino a 35°. In particolare, a est di Pizzo Scillizzo, il sovrascorrimento è ripreso da un thrust tardivo a direzione N-S e immersione O di 45°, che rialza verso est, di circa 10 m, il precedente contatto. L’UP nell’area rilevata è costituita solo dal basamento di filladi passanti a metarenitico, con lenti di scisti anfibolici e localizzate quarziti. Un affioramento di quarziti con estensione metrica è stato riconosciuto a SO di Serra Ciappi, dove sono state individuate pieghe blande metriche, di tipo parallelo e ad asse E-O.

2.4. - Unità tettonica del Mela

L’UMe (Messina et alii, 1997, 2003, 2004; Messina, 1998a, 1998b, 2002) affiora per circa 150 kmq da Giampilieri Marina, sulla costa ionica, a Capo d’Orlando, sulla costa tirrenica (Fig. 4), in un’area precedentemente attribuita da Bonardi et alii (1979, 1996) all’Unità dell’Aspromonte. Nel cristallino compreso tra i torrenti Mela e Floripotema (tra Barcellona P.G. e Mandanici) l’UMe affiora estesamente, raggiungendo il massimo spessore di 800 m. I contatti con le altre unità, a tetto e a letto, sono caratterizzati da fasce cataclastico-milonitiche di potenza variabile fino a decametrica.

Il contatto tettonico tra le metamorfiti di medio grado dell’UMe e quelle di medio-alto grado dell’Unità dell’Aspromonte è bene esposto a M. Scitale (Piraino) e lungo la F.ra di S. Angelo di Brolo (Foglio 599 Patti). Il contatto tettonico con l’UP è osservabile tra la F.ra di S. Angelo di Brolo e Piraino, e a Pizzo Strumbo (presente Foglio), mentre con le filladi dell’UMa è bene esposto in molte località dei Monti Peloritani, dal versante tirrenico a quello ionico.
Priva di copertura meso-cenozoica, l’UMe è formata da metamorfiti eo-varisiche in facies eclogitica, riequilibrate in età varisica in metamorfiti in facies anfibolitica.

Il basamento è costituito (Tab. 7) da una monotona sequenza di paragneiss passanti a micascisti. Potenti livelli di marmi impuri sono a tetto dell’unità, mentre sono diffuse metafemiti, in amigdale spesso intercalate ai marmi e in livelli concordanti. Subordinati gli gneiss leucocrati a K-feldspato, in livelli concordan- ti. Diffuse le amigdale di quarzo.

L’evento metamorfico più antico nell’UMe è documentato dalla presenza sia negli ortoderivati basici, sia nei paraderivati, di una fase relitta, rispettivamente, a granato e pirosseno nei primi e a solo granato nei secondi. Ambedue i minerali si presentano in associazioni simpelttiche tipiche della facies anfibolitica. Negli ortoderivati le strutture simpelttiche con il clinopirosseno derivano dalla desta-obilizzazione dell’onfacite, indicante condizioni eclogitiche (Compagnoni et alii, 1998). In mancanza di dati radiometrici, tale evento può essere ascruito sia ad un ciclo tettono-metamorfico pre-varisico, sia ad una fase eo-varisica.

Avendo riconosciuto nell’UMe i caratteri distintivi di una sequenza pre-varisica (paleozoica) arenaceo-pelitica con intercalazioni di vulcaniti e di un poten-te livello di calcari, comparabile, per composizione, con tutti i terreni di basso grado delle unità peloritane geometricamente più profonde, l’evento eclogitico dell’UMe, al momento, viene riferito ad un ciclo metamorfico eo-varisico.

Il secondo evento ricostruito nell’UMe è retrogrado, polifasico (quattro fasi deformative, le prime tre con episodi metamorfici sin- e post-cinematici), e pluri-faciale. Il principale episodio metamorfico, post-Dv3, è caratterizzato da blastesi statiche che raggiungono dimensioni centimetriche (andalusite max 4 cm) e sono tipiche di condizioni termobariche variabili dalla facies anfibolitica di media P e bassa T, alla facies scisti verdi di bassa P e alta T. Il metamorfismo, ercino-tipo, è ascruito all’orogenesi varisica.

Il Complesso Metamorfico varisico comprende, para- ed ortoderivati (Tab. 7) di grado medio che mostrano, a meso- e a microscala, una foliazione principale (Sv3), fortemente crenulata, che avvolge il granato relitto destabilizzato, con strut-

Tab. 7 - Litotipi dell’Unità tettonica del Mela.

<table>
<thead>
<tr>
<th>Basamento</th>
<th>Ortoderivati Eo-Varisici</th>
<th>Paraderivati Varisici</th>
<th>Ortoderivati Varisici</th>
<th>Rocce Alpine</th>
</tr>
</thead>
<tbody>
<tr>
<td>- eclogiti, relitte, riequilibrate in meta-orneblenditi granatifere (Paleozoico*).</td>
<td>- gneiss e scisti a due miche+granato+staurolithe+ clinite+sillimanite+cordierite+andalusite; marmi a due miche (Paleozoico°).</td>
<td>- anfiboliti, anfiboliti a porfiroclasti di Andesina, leucogneiss feldspatici (Paleozoico°).</td>
<td>- cataclasiti e miloniti (Oligocene**).</td>
<td></td>
</tr>
</tbody>
</table>

* = età del protolite e del metamorfismo
** = età della deformazione Alpina su metamorfiti Varisiche
tura coronitica (evidente anche a mesoscala), tagliata da grosse blastesi statiche.

Piani di taglio alpini, da centimetrici a chilometrici, sono diffusi in tutta l’unità, responsabili di deformazioni solo fragili, con cataclasi e retrocessioni.

Piani di sovrascorrimento, a tetto e letto dell’UMe, sono delineati sempre dalle fasce cataclastico-milonitiche di potenza da metrica a decadometrica, con intense retromorfosi.

L’UMe mostra caratteri peculiari, notevolmente diversi da quelli dell’Unità dell’Aspromonte, cui era stata ascritta. Infatti, nei suoi terreni sono assenti gli elementi distintivi dell’Unità dell’Aspromonte, quali:
- la mobilitizzazione anatettica (migmatiti);
- gli gneiss occhiadini e metagraniti associati (Complesso plutonico pre-varisico);
- corpi plutonici tardo-varisici;
- il corteggio filoniano tardo-varisico;
- la sovrimpronta metamorfica alpina.

Sono, invece, *marker* specifici di campagna dell’UMe:
- paragneiss e micascisti ricchi in muscovite, caratterizzati da blastesi statica di minerali di media-alta P (cianite e granato) e da un granato relitto destabilizzato (Figg. 14 e 15);
- marmi, a grana fine con concentrazioni di silicati in lenti e letti;
- meta-orneblenditi granatifere (relitti eclogitici) (Figg. 16 e 17);
- anfiboliti a porfiroclasti di andesina;
- leucogneiss feldspatici.

2.4.1. - Studi precedenti

Messina et alii (1992a) segnalano a sud di S. Lucia del Mela (F. 600) la presenza di un complesso metamorfico, affiorante geometricamente al di sopra dell’Unità dell’Aspromonte, caratterizzato da metamorfiti di medio grado, polifasiche, con una storia tettono-metamorfica peculiare. Per geometria, composizione ed evoluzione è ipotizzata una comparazione tra detti terreni ed il complesso metamorfico dell’Unità di Stilo in Calabria.

Borgh et alii (1995) nelle meta-orneblenditi granatifere dell’UMe, riconoscono una storia polimetamorfica, con una fase relitta a granato e pirosseno. Ambedue i minerali mostrano strutture simplettitiche caratterizzate dall’intima
associazione, nel primo, di granato, plagioclasio, quarzo e biotite e nel secondo, di clinopirosseno, anfibolo e plagioclasio sodico, associazione derivante dalla desstabilizzazione dell’onfacite, tipica di condizioni eclogitiche.

Messina (1998b) segnala, nei paraderivati dell’UMe, accanto all’associazione mineralogica varisica post-Dv3 a nuovo granato, staurolite, cordierite e andalusite, la presenza anche di sillimanite, cianite e orli albitici attorno a plagioclasi oligoclascici statici, nonché intensi fenomeni di retrocessioni legati a piani di taglio alpini. L’Autore dà infine le prime indicazioni per la ricostruzione della traiettoria P-T-(t) dell’unità.

Rotolo & De Fazio (2001) riconoscono lungo il T. Ferrà (S. Lucia del Mela), metafemiti a granato+clinopirosseno e a granato+plagioclasio, ascrivibili all’UMe. Gli Autori ricostruiscono un evento metamorfico principale nel campo di stabilità dell’orneblenda, un evento di picco termico a clinopirosseno, Ca-plagioclasio e Ca-granato, e una fase retrograda che destabilizza il granato in corone a plagioclasio sodico e actinolite.

2.4.2. - *Complesso metamorfico varisico*

Metamorfiti del Mela (MLE). I paragneiss, a grana media e colore grigio (Fig. 14), sono le rocce prevalenti affioranti con spessori fino a 800 m (nord di Pizzo Croce, settore est del F. 600). Essi passano lateralmente a micascisti a grana media e per lo più argentei perché ricchi in muscovite. Ambedue i tipi presentano struttura porfiroblastica caratterizzata da una foliazione principale (Sv3m) a Michele, fortemente crenulata, che avvolge un granato relitto centimetrico (Gt I) (Fig. 15), destabilizzato in biotite, plagioclasio e quarzo. La Sv3m è tagliata da porfiro-
Fig. 14 - Unità tettonica del Mela: Metamorfiti varisiche. Micascisto a blastesi statiche di Staurolite+Granato+U+Cianite+U+Sillimanite+U+Andalusite+U+Cordierite e Granato relitto, con evidente foliazione principale (Sv3) crenulata e porfiroblasti di Granato. Loc.: destra idrografica della F.ra di Cumia Inferiore, Messina.

Fig. 15 - Unità tettonica del Mela: Metamorfiti varisiche. Struttura microscopica di Micascisto a blastesi statiche di Staurolite+Granato+U+Cianite+U+Sillimanite+U+Andalusite+U+Cordierite e Granato relitto: foliazione principale Sv3 a miche ruotante attorno al Granato relitto, destabilizzato in Quarzo+Biotite+Plagioclasio (Nicol+; 180X). Loc.: destra idrografica della F.ra di Cumia Inferiore, Messina.
Fig. 16 - Unità tettonica del Mela: Metamorfiti varisiche. Metaorneblenditi granatiferi (Eclogite riequilibrata) in corpo ettometrico. Evidenti grossi Granati preservati (max 1,5 cm). Loc.: destra idrografica F. ra di S. Filippo, Messina.

Fig. 17 - Unità tettonica del Mela: Metamorfiti varisiche. Struttura microscopica di Metaorneblenditi granatiferi (Eclogite riequilibrata): associazioni simplettiche di Plagioclasio (Pl) + Quarzo (Qz) e di Orneblenda (Orn) + Plagioclasio + Clinopirosseno (Cpx), derivanti rispettivamente dalla destabilizzazione del Granato relitto (Gtr) (ancora preservato) e di probabile Onfacite (Solo Pol.; 40X). Loc.: destra idrografica F. ra di S. Filippo, Messina.
blisti di nuovo granato (Gt II), staurolite, cianite, sillimanite (visibile solo al microscopio), cordierite e andalusite. Non è stata riconosciuta alcuna zoneografia. La tettonica alpina origina, lungo piani di shear, solo deformazioni responsabili di fenomeni cataclasici e di retromorfosi.

I marmi, a grana fine e a bande di colore grigio-chiaro e scuro, affiorano in banchi di estensione chilometrica, con spessori apparenti fino a 400 m (Tindari, M. Vernà). Sono caratterizzati da pieghe isocinali e dalla presenza di lenti centimetriche e letti silicatici.

Le metafemiti, ampiamente diffuse, si presentano in tipi differenti, da lenti di anfiboliti, a meta-orneblenditi (orneblenda 75-80%) a grana fine e struttura orientata con orneblenda verde azzurra, a corpi di estensione ettometrica di meta-orneblenditi granatifere (Figg. 16 e 17) a grana media, caratterizzati da orneblenda verde-bruna, abbondante granato in parte destabilizzato e clinopirosseno, plagioclasio e quarzo (visibili solo al microscopio). Sono inoltre presenti livelli giallo-verdastri ad epidoti.

Le anfiboliti a porfiroclasti di andesina, subordinati, sono in livelli metrici concordanti, grigio-verdi, caratterizzati da una matrice minuta di prevalenti anfiboli, con minori plagioclasi e quarzo.

I leucogneiss feldspatici si presentano all’interno dei paraderivati, in livelli metrici concordanti. Hanno colore rosa pallido-ocra chiaro, contatti netti e sono costituiti da prevalente K-feldspato.

2.4.3. - Caratteri petrologici

Relitti eo-varisici

L’evento metamorfico eo-varisico (Compagnoni et alii, 1998) è ricostruito in meta-orneblenditi a granato e clinopirosseno. Gli Autori riconoscono una fase prograda che inizia in facies anfibolitica ad epidoto e prosegue fino ad un picco barico, in facies eclogitica (paragenesi granato-onfacite), realizzatosi a T = 600-580°C e P = 16 Kbar.

Evoluzione varisica

L’evoluzione varisica è ricostruita sui paraderivati. Sono state individuate quattro fasi deformative varisiche, le prime tre accompagnate da episodi metamorfici sin- e post-cinematici (Tab. 8). La foliazione principale, originata durante la terza fase deformativa Dv3, è definita da bande irregolari di miche lepidoblastiche, con muscovite prevalente, alternate a bande granoblastiche di quarzo e oligoclasio. Gli stessi minerali si sviluppano durante gli episodi sin- e post-Dv1 e Dv2. Il granato relitto eo-varisico, parzialmente sostituito da quarzo, plagioclasio e biotite, è avvolto dalla foliazione principale. Segue un’importante crescita statica, di cianite, staurolite, granato II, sillimanite, oligoclasio, cordierite, andalusite e un bordo di albite intorno all’oligoclasio.

Nell’evento metamorfico varisico, il picco termico e barico è raggiunto
all’inizio del principale episodio metamorfico statico (post-Dv3), sviluppatosi a $T = 600-550^\circ C$ e P tra 4 e 6 Kbar (cianite+granato II+staurolite). La crescita successiva di cordierite+sillimanite e poi di andalusite e di un bordo albitico intorno all’oligoclasio, indica un progressivo decremento di P e T fino a $T = 500^\circ C$ e $P < 4$ Kbar.

L’evoluzione metamorfica varisica dell’UMe termina con una **retrocessione statica regionale** post-varisica suggerita dalla presenza di abbondante muscovite (in sericite) a spese degli allumosilicati e clorite-ilmenite (e rutile) a spese di biotite e granato, realizzatasi in condizioni di $T = 500^\circ C$ e $P < 3$ Kbar.

Evoluzione alpina

Numerosi piani di *shear* alpini attraversano la foliazione principale, determinando processi retrocessivi quali lo sviluppo di sericite margaritica a spese di allumosilicati (cianite, sillimanite e andalusite) e di clorite, epidoti e opachi a spese di biotite e granato. Tale evento retrocessivo *alpino* si è sviluppato a T e P poco più basse del processo statico regionale varisico.

Fratture tarde sono riempite da zeoliti, opachi, pumpellyite e calcite.

Tab. 8 - Evoluzione tettono-metamorfica dell’Unità del Mela.

<table>
<thead>
<tr>
<th>Evento</th>
<th>Pre-Var.</th>
<th>Varisico</th>
<th>Tardo-Var.</th>
<th>Alpino</th>
<th>retr</th>
<th>retr+idr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressione</td>
<td>Met/Met</td>
<td>Met</td>
<td>retr</td>
<td>Met</td>
<td>retr+</td>
<td>retr+idr.</td>
</tr>
<tr>
<td>Fase Defor.</td>
<td>Dv1</td>
<td>Dv2</td>
<td>Dv3</td>
<td>Dv4</td>
<td>Da1</td>
<td>Da2</td>
</tr>
<tr>
<td>Struttura</td>
<td>Sv1</td>
<td>Sv2</td>
<td>Sv3</td>
<td>C-Pk</td>
<td>Sa1</td>
<td>Sa2</td>
</tr>
<tr>
<td>Episodio Met.</td>
<td>s st</td>
<td>s st</td>
<td>s st</td>
<td>s st</td>
<td>s st</td>
<td>s st</td>
</tr>
</tbody>
</table>

Minerali

- *Quarzo*
- *Mica bianca*
- *Biotite*
- *Granato*
- *Cianite*
- *Staurolite*
- *Sillimanite*
- *Cordierite*
- *Andalusite*
- *Tormalina*
- *Rutilo*
- *Zircone*
- *Monazite*
- *Apatite*
- *Gratite*
- *Ilmenite*
- *Titanite*
- *Clorite*
- *Margarite*
- *Sericite*
- *Epidoto*
- *Carbonato*
- *Pumpellyite*

Legenda:

- met = metamorfico
- retr = retrogressivo
- sed = sedimentario
- idr = idrotermale
- Dv = fase deformativa Varisica
- Da = fase deformativa Varisica
- C = clivaggio di crenulazione
- Pk = piega kinik
- ZS = zone of shear
- PS = piani di shear
- mi = milonitico
2.4.4. - Osservazioni geologiche nell’area del Foglio

L’unità affiora per circa 80 kmq e con una potenza apparente di 600 m, da M. Rossimanno ad ovest, a Briga Superiore ad est, e prosegue in continuità, sia verso nord fino a Piano Ciappazzi (ad ovest di Mili S. Pietro), sia verso sud-ovest fino a Castello Belvedere, lungo la destra idrografica del T. Fiumedinisi.

Lungo il versante ionico l’unità è esposta con potenze fino a 300 m in alcune finestre tettoniche dell’Unità dell’Aspromonte, allineate lungo un asse NNE-SSO e denominate dagli Autori “Finestra di Cumia”, “Finestra di San Filippo”, “Finestra di Larderia” e “Finestra di Mili”; 4 km a ovest di Pezzolo ne sono state individuate altre due: “Finestra di Mascaroni” e “Finestra di Pizzo Porta”. In quest’ultima l’unità raggiunge una potenza di 400 m. L’UMe affiora inoltre nella “Finestra di Giampilieri”.

Nell’area in studio l’UMe sovrascorre generalmente sull’UMa e solo localmente, come tra Portella Ridi e Pizzo Strumbo, sull’UP. La superficie di sovrascorrimento, marcatà da una fascia cataclastica alpina di potenza variabile dai pochi metri ad un centinaio di metri, ha un andamento abbastanza articolato. La geometria del contatto si presenta da sub-orizzontale a debolmente immergente a N-NNO, come tra Serra Ciappi (area SO del Foglio) e Pizzo Felicioso, o debolmente immergente a NE, come nei pressi di Briga e Giampilieri Superiore. La superficie di sovrascorrimento dell’UMe sull’UMa è bene esposta a Pizzo Piaci, Pizzo Baghi Baghi (in sinistra del T. Fiumedinisi) e a Pizzo Felicioso (a NE di Itala), dove la giacitura del contatto è sub-orizzontale, o a nord di Giampilieri, dove il sovrascorrimento immerge a NE.

L’UMe risulta costituita, anche in queste aree, da paragneiss e micascisti intercalati con metamafiti e rari leucogneiss feldspatici, con al tetto livelli di marmi. I paragneiss rappresentano i terreni con maggiore potenza ed estensione areale (Fig. 14).

I marmi (MLEc), intensamente deformati e piegati isoclinalmente, raggiungono potenze fino a 250 m. Sono distribuiti arealmente in modo abbastanza omogeneo, eccetto che nelle finestre del versante ionico. Gli affioramenti più estesi sono a Pizzo Merche, M. Rossimanno, Rocca Stefana, M. Scuderi, Castello Belvedere, Punta Murtareddo e Rocche Bianche.

Le metamafiti (MLEb), sia come meta-orneblenditi, sia come anfiboliti, verde scuro le prime e verde, verde-azzurro le seconde, affiorano principalmente nelle su citate finestre tettoniche. Tali tipi raggiungono potenze fino a 150 m nella “Finestra di Cumia” e nella “Finestra di San Filippo”. Quest’ultimo affioramento formato da meta-orneblenditi granatiferi (Figg. 16, 17), costituisce il corpo di metamafiti più esteso di tutte le unità peloritane. Livelli di anfiboliti di estensione più ridotta, ma cartografabili, affiorano anche nella “Finestra di Mili”.

Le anfiboliti a porfiroclasti di andesina, verdastre, sono state riconosciute...
solo lungo la F. ra Colonnina, in un livello metrico concordante.

I leucogneiss feldspatici di colore ocra chiaro affiorano in livelli metrici concordanti con la foliazione principale in gneiss e micascisti.

2.5. - Unità tettonica dell’Aspromonte

In Sicilia, come elemento strutturale più elevato dell’edificio Peloritano, affiora con spessori apparenti che superano anche i 1000 m a nord dell’allineamento Guidomandri-Capo d’Orlando, limitata a tetto da depositi miocenico-quaternari e a letto dall’UMe o dall’UMa. Localmente, l’UAs è presente anche in piccoli

Tab. 9 - Litotipi dell’Unità tettonica dell’Aspromonte.

<table>
<thead>
<tr>
<th>Basamento</th>
<th>Ortoderivati Pre-Varisici</th>
<th>Ortoderivati Varisici</th>
<th>Paraderivati Varisici</th>
<th>Plutoniti Tardo-Varisiche</th>
<th>Para- e Ortoderivati Alpini</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- granuliti relitte ad ortopirosseno (Pre-Paleozoico*).</td>
<td>- gneiss occhiadini biotitici di composizione da melatonilitica a monzogranitica; metamplutoniti a due miche di composizione da tonalitica a leuco-monzogranitica; amphiboliti (s.l.); meta-orneblenditi, meta-pirosseniti, meta-peridotiti (Paleozoico**).</td>
<td>- gneiss e scisti a biotite+granato± sillimanite± staurolite± muscovite± cordierite± andalusite; marmi a pirossenoi anfibolo± biotite± muscovite; gneiss anfibolici (?); quarzi; fels Ca-silicatici (Paleozoico***).</td>
<td>- gabbri (inclusi microgranulari in Calabria), dioriti e tonaliti ad anfibolo, dioriti e tonaliti a biotite, granodioriti, monzograniti e leuco-monzograniti a due miche+cordierite+sillimanite+andalusite (Permiano-Carbonifero****).</td>
<td>- gneiss micascistosi a due miche+granato+ anfibolo+cianite+ripidoomite+cloritoide; ortogneiss a due miche granato+anfibolo+cianite e ortogneiss a muscovite+granato; scisti anfibolici ad orneblenda actinolitica+ muscovite+biotite+ ripidoomite+granato e metabasiti a pargasite+ granato (Oligocene****).</td>
</tr>
</tbody>
</table>

* = età del protolite e del metamorfismo
** = età del metamorfismo su plutoniti e metamorfiti Pre-Paleozoicche
*** = età dell'intrusione plutonica
**** = età del metamorfismo Alpino su plutoniti e metamorfiti Varisiche

Le metamorfiti pre-varisiche sono testimoniate dai relitti granulitici preservati in lentì d’estensione ettometrica (MESSINA & SACCA, 1996b). Lenti di metapirosseniti e metaperidotiti varisiche possono essere ascritte anche a rocce più antiche.

Le plutoniti pre-varisiche costituiscono oggi il Complesso metaplutonico varisico, calcicalcalino, formato da gneiss occhiadini e metagranitoidi, con un intervallo compozizionale variabile da dioriti a monzograniti (Tab. 9).

Il Complesso metamorfico varisico (314 Ma, metodo Rb-Sr; Bonardi et alii, 1991, 2000), comprende para- ed ortoderivati (Tab. 9) di grado medio-alto, spesso interessati da mobilizzazione anatetica, con relitti granulitici pre-varisici preservati. Le metamorfiti varisiche mostrano una sola foliazione, poco crenulata (Figg. 18 e 19). I processi di migmatizzazione, caratterizzati da strutture nebulitiche, flebitico-stromatitiche e da bande metriche leucosomatiche e melanosomatiche sono ben evidenti negli affioramenti più settentrionali dell’unità.

Il Complesso plutonico tardo-varisico (292 Ma, metodo Rb-Sr, ROTTURA et alii, 1990) comprende numerosi stocks, costituiti da corpi accostati o intersecati, da Main ad estensione plurichilometrica presenti solo in Calabria, a Minor ad estensione chilometrica a Smaller; inferiori al chilometro. L’intervallo compozizionale è costituito da dioriti a leucmonzograniti, con prevalenza dei termini granodioritici (Tab. 9). I corpi sono post-tettonici nei Peloritani. Contengono inclusi microgranulari femici e xenoliti metamorfici. Una fitta rete di filoni acidi, costituenti le ultime fasi intrusive, attraversa tutto il basamento. Inclusi microgranulari femici e filoni basici sono metalluminiferi, filoni acidi e masse chiare, ricche in muscovite e Al-silicati, sono peralluminiferi, le masse intermedie, a biotite e/o anfibolo (in Calabria) sono mesalluminiferi.

La ricristallizzazione alpina (28-22 Ma, metodo Rb-Sr; BONARDI et alii, 1991, 2000), origina riequilibrazione nelle rocce già metamorfiche e metamorfismo nelle plutoniti (Tab. 9), modificando le strutture precedenti. Essa si svi-
Fig. 18 - Unità tettonica dell’Aspromonte: Metamorfiti varisiche. Gneiss micascistoso poco mobilizzato con vene, pieghe ptigmatiche, e chiazze leucosomatiche. Loc.: Pilla Piano Verde, a N di Dinnamare.

Fig. 19 - Unità tettonica dell’Aspromonte: Metamorfiti varisiche. Struttura microscopica del Micascisto a Sillimanite (Sill)+Staurolite (St)+Andalusite (And): porfiroblasto di Andalusite statico post-Dv1 in crescita a spese di Sillimanite fibrolitica sincinematica e Staurolite e Biotite di incipiente cristallizzazione statica (Solo Pol.; 60X). Loc.: Dinnamare.
luppa originando almeno quattro tipi di deformazione (Messina, 1996), caratterizzati da diversa intensità di riequilibrizzazione, che localmente mostrano un graduale passaggio.

Lungo i piani di sovrascorrimento sulle unità sottostanti, sono presenti fasce cataclastico-milonitiche, di potenza metrica, che interessano sia il letto dell’UAs sia il tetto dell’unità inferiore. La deformazione origina cataclasi e retrocessioni. Questi contatti primari, per lo più sub-orizzontali e con andamento E-O o NO-SE, sono bene evidenti sui Peloritani, dove da nord verso sud, lo spessore dell’UAs va dai valori apparenti di oltre 1100 m di Monte Dinnamare, a qualche metro nella cresta di Puntale Cimmaro (a est di M. Scuderi).

<table>
<thead>
<tr>
<th>Tempo Evento Pre-Var.</th>
<th>Varisco met/ sed</th>
<th>Tardo-Var. met retr</th>
<th>Alpino retr</th>
<th>retr+ider. L/P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressione</td>
<td>ML/P</td>
<td>MH/P</td>
<td>M/P</td>
<td>L/P</td>
</tr>
<tr>
<td>Fase Defor.</td>
<td>Dv1</td>
<td>Da1</td>
<td>Da5</td>
<td>Da6</td>
</tr>
<tr>
<td></td>
<td>Dv2</td>
<td>Da2</td>
<td>Da5</td>
<td>Da6</td>
</tr>
<tr>
<td></td>
<td>Dv3</td>
<td>Da3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dv4</td>
<td>Da4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strutture</td>
<td>Sv1</td>
<td>Sa1</td>
<td>PS</td>
<td>PS</td>
</tr>
<tr>
<td></td>
<td>Sv2</td>
<td>Sa2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sv3</td>
<td>Sa3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C-Pk</td>
<td>ZS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Episodio Met.</td>
<td>s t s t s t</td>
<td>s t s t s t mi</td>
<td>ct ct</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Minerali</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Quarzo</td>
<td></td>
</tr>
<tr>
<td>Plagioclaso</td>
<td></td>
</tr>
<tr>
<td>And. Oli</td>
<td></td>
</tr>
<tr>
<td>K-feldspato</td>
<td></td>
</tr>
<tr>
<td>Muscovite ser.</td>
<td></td>
</tr>
<tr>
<td>Biotite</td>
<td></td>
</tr>
<tr>
<td>Granato</td>
<td></td>
</tr>
<tr>
<td>Stilbite</td>
<td></td>
</tr>
<tr>
<td>Scapolite</td>
<td></td>
</tr>
<tr>
<td>Andalusite</td>
<td></td>
</tr>
<tr>
<td>Albita</td>
<td></td>
</tr>
<tr>
<td>Cloritoide</td>
<td></td>
</tr>
<tr>
<td>Antimonio verde. azz.</td>
<td></td>
</tr>
<tr>
<td>Garnet</td>
<td></td>
</tr>
<tr>
<td>Paragonite</td>
<td></td>
</tr>
<tr>
<td>Fegitite</td>
<td></td>
</tr>
<tr>
<td>Clorite</td>
<td></td>
</tr>
<tr>
<td>Tormalina</td>
<td></td>
</tr>
<tr>
<td>Rugbio</td>
<td></td>
</tr>
<tr>
<td>Zirconite</td>
<td></td>
</tr>
<tr>
<td>Aptite</td>
<td></td>
</tr>
<tr>
<td>Titanite</td>
<td></td>
</tr>
<tr>
<td>Grafite</td>
<td></td>
</tr>
<tr>
<td>Magnesite</td>
<td></td>
</tr>
<tr>
<td>Ilmentite</td>
<td></td>
</tr>
<tr>
<td>Epidoto</td>
<td></td>
</tr>
<tr>
<td>Carbonato</td>
<td></td>
</tr>
<tr>
<td>Pumpelet</td>
<td></td>
</tr>
</tbody>
</table>

* Relitti granulitici ad ortotiposseno

met = metamorfico
sed = sedimentario
retr = retrogressivo
Dv = fase deformativa Varisca
Da = fase deformativa Varisca
C = cileggio di crenellazione
ZS = zone di shear
Pi = piega kink
PS = piani di shear
mi = milonitico
ct = cataclastico
Fig. 20 - Unità tettonica dell’Aspromonte: Metamorfiti varisiche. Gneiss occhiadino biotitico con porfiroclasti centimetrici (max 3 cm) di K-feldspato, attraversato da un filone di leucogneiss concordante con la foliazione varisica (filone acido pre-varisico trasposto in età varisica e metamorfosato). Loc.: a N di Briga Superiore (Piano Pieratti).

Fig. 21 - Unità tettonica dell’Aspromonte: Metamorfiti varisiche. Filone aplitico-pegmatitico a Muscovite e Tormalina, deformato da una piega isoclinale coricata mesoscopica, ad asse orientato N-S. Loc.: 700 m a E di S. Stefano Medio (sinistra idrografica Fiumara S. Stefano).
La complessa storia evolutiva dell’UAs è sintetizzata in Tab. 10. L’unità mostra caratteri geologico-strutturali peculiari che la diversificano dalle altre unità. Pertanto, è possibile indicare i seguenti marker specifici di terreno:

a) mobilizzazione anatettica (migmatiti) (Fig. 18);
b) metaplutoniti (prevalenti gneiss occhiadini) (Fig. 20);
c) plutoniti (prevalenti filoni acidi che permeano tutto il basamento) (Fig. 21);
d) forte sovrimpronta metamorfica alpina (quest’ultimo marker può non essere sempre riconosciuto sul terreno) (Fig. 22).

Fig. 22 - Unità tettonica dell’Aspromonte: Metamorfiti varisiche. Struttura microscopica di Paragneiss Varisici con blanda riequilibratrice Alpina; struttura milonitica con Plagioclasi orientati e debolmente retrocessi e Biotite stirata e deformata, con ai bordi una cristallizzazione alpina di Sericite, Granato, Anfibolo verde-azzurro, Epidoti e Biotite verde-azzurra. Parte della Sericite e la Biotite crescono durante il secondo stadio di più alta temperatura (sin e post-Da2 e Da3); gli altri minerali caratterizzano il primo stadio di cristallizzazione (sin e post-Da1) di più alta pressione (Solo Pol.; 40X). Loc.: a N di Camaro, Messina.

2.5.1. – Studi precedenti

Ferla (1972) ricostruisce due eventi metamorfici nelle metamorfiti di medio-alto grado dei Peloritani; il primo evento, di età pre-ercinica (caledoniana?),

ATZOri et aliI (1974, 1976) considerano, inoltre, tali terreni derivanti da una sequenza sedimentaria pre-ercinica formata da alternanze irregolari di grovacche e peliti, arcoce e calcari marnosi.

ATZOri & Vezzani (1974) definiscono tale metamorfismo come tipico della facies anfibolitica, variabile dalla subfacies a sillimanite+muscovite fino a quella a sillimanite+ortoclasio.

Lo Giudice et aliI (1985) nelle masse chiare dell’UAs riconoscono, oltre a corpi plutonici, anche masse stratoidi e lenti leucosomatiche migmatitiche la cui mobilizzazione, da originari paragneiss a K-feldspato, si è realizzata a T=655-685°C, in condizione di saturazione di acqua.

Ioppolo & PuglisI (1989) riconoscono, nei paragneiss e micascisti dell’UAs, blastesi sin- e postcinematiche a diverse condizioni termobariche (Pizzo Chiarino e Capo Rasocolmo). Le blastesi sincinematiche si sarebbero sviluppate a T=550°C e P=3.5 Kbar nella prima località, e a T=640°C e P=3.5 Kbar nella seconda, mentre le postcinematiche si sarebbero formate a T=550-500°C e P=3.4-3.0 Kbar a Pizzo Chiarino e T=650-600°C e P=4.0-3.2 Kbar a Capo Rasocolmo. Gli Autori ipotizzano l’esistenza di una zoneografia metamorfica che giustifica la differenza di circa 100°C tra le due aree studiate.

MessiNa et aliI (1977) danno indicazioni sulla composizione e genesi di alcuni gneiss granitoidi, in parte associati a paragneiss, i quali presentano composizione da tonalitica a granitica e un metamorfismo di medio-alto grado. E’ ipotizzata una genesi da vulcaniti acide, per i corpi di ortogneiss, e da arcole o vulcanoclastiti in alternanza stratigrafica con grovacche per i livelli di paragneiss.

ATZOri & Lo Giudice (1982a, 1982b) e Lo Giudice et aliI (1985, 1995), in accordo con la derivazione sedimentaria dei protoliti pre-ercinici dell’unità, indicano anche per gli gneiss occhiadini una genesi vulcanica e vulcanoclastica, riolitico-riodacitica.

ATZOri et aliI (1982), sulla base dello studio dei K-feldspati di alcune masse
di occhiadini, stimano temperature di formazione del minerale intorno a 580°C e pressioni di circa 5 Kbar.

Ferla & Rotolo (1992), sulla base dei caratteri sia petrografici sia geochemici, indicano per i magmi costituenti gli ortogneiss suddetti un chimismo calcalcalino, ricco in alluminio, e una genesi anatettica crostale.

Atzori et alii (1990), datando le masse di gneiss occhiadini affioranti nell’estremità nord-orientale dei Peloritani, ottengono valori compresi tra 292-262 Ma (metodo Rb/Sr su biotite). Secondo gli A.A. detto valore, vicino all’età dell’evento metamorfico ercinico, sarebbe stato “ringiovanito” dall’influenza delle intrusioni granitiche tardo-erciniche, le quali danno età simili in tutto l’ACP.

Messina et alii (1996a) considerano gli gneiss occhiadini con i metagraniti associati e gli gneiss leucocrati, un unico complesso plutonico pre-varisico, metamorfosato in età varisica, in facies anfibolitica di alta T. La presenza di mica bianca in dette masse, accompagnata dalla colorazione rosata, più o meno intensa, del feldspato potassico, è marker della tettonica alpina sovrimposta. Secondo gli A.A., la genesi intrusive di detti corpi è testimoniata sia dai caratteri di campagna e dall’associazione con altre masse di ortogneiss di differente grana e composizione, sia dalle microstrutture.

Ferla & Azzaro (1978), sulla base dei caratteri geochimici, riconoscono, sempre nelle anfiboliti della “Falda dell’Aspromonte” Auct., due gruppi, il prevalente legato a originari magmi orogenici di Arco o di margine attivo, l’altro, subordinato, a un magmatismo alcalino sodico fissurale.

Atzori et alii (1984a) definiscono l’intervallo compositivo di dette rocce basiche, il quale varia da basalti sub-alcalini ad andesiti-basalti, ad andesiti, fino a daciti. Gli Autori confermano le due affinità petrogenetiche, calcalcalina e tholeiitica, già riconosciute, e ascrivono quella tholeiitica alle TH di Arco, basse in K₂O.

Atzori (1969b), Ferla (1970), D’Amico et alii (1972), e Gurrieri & Ioppolo (1973) danno indicazioni sulla composizione e genesi dei marmi a silicati dell’UAs, che nell’insieme vengono distinti in gruppi a diverso contenuto in silice.
e geneticamente correlati a protoliti di tipo calcari marnoso-arenacei.

Messina et alii (1996a) oltre a dettagliare i caratteri della sovrimpronta alpina nell’UAs, segnalano una zoneografia metamorfica varisica, retrograda, variabile da metamorfiti di crosta medio-profonda che marcano il limite tra la facies granulitica e quella anfibolitica e costituenti la porzione geometricamente più elevata dell’unità, a metamorfiti di crosta relativamente medio-alta, affioranti alla base dell’unità.

Messina et alii (1996b) riconoscono anche nei Peloritani relitti granulitici pre-varisici, con mineralizzazioni a scheelite.

Messina (1997, 1998b, 2002) definisce la traiettoria P-T-(t) dell’unità, sulla base dei dati petrologici relativi all’evoluzione pre-varisica, varisica, tardo-varisica e alpina dell’unità.

Ioppolo et alii (1982) in una revisione delle masse plutoniche peralluminifere dell’UAs, studiate nel contesto di analoghe masse dell’ACP, indicano trend geochimici simili, riconducibili a processi di frazionamento di magmi granitici di origine crostale.

Atzori et alii (1984) e Lo Giudice et alii (1985) nelle masse plutoniche chiare dell’UAs, ascritte a diversi gruppi compositivi, ipotizzano una genesi anatetica...
crostale tardo-ercinica.

Atzori et alii (1985), in una revisione delle masse plutoniche peralluminifere dell’UAs, individuano fasi alluminifere di genesi sia magmatica, sia restitiva, tardo- e post-magmatica. Gli Autori segnalano, in plutoniti leucocrate, un carattere precoce, sintettonico, delle intrusioni dei fusi anatettici, la cui messa in posto risulta posteriore alla prima fase ercinica, che interessa le metamorfiti del basamento e antecedente o contemporanea alla seconda fase principale, seguita da un episodio di piegamento.

Atzori et alii (1989), in masse plutoniche leucocrate affioranti nei due versanti dei Peloritani, riconoscono, sulla base dei caratteri chimici, graniti collisionali tardo-post-tettonici, di tipo Small.

Atzori et alii (1990) ottengono, nei terreni dell’UAs affioranti nei Peloritani nord-orientali, composizioni isotopiche dello Sr molto più alte (>0.716) nelle metamorfiti rispetto a quelle delle plutoniti erciniche S-type presenti (0.710). Pertanto, le metamorfiti del basamento dell’UAs sono escluse come componenti principali nella sorgente regionale del magmatismo plutonico.

Messina et alii (1996a) ricostruiscono i caratteri della suite magmatica intrusiva dell’UAs, costituita da plutoniti calcalcaline varisiche, sin- e post-tettoniche,.meta- (subordinati) e mesoalluminifere che evolvono a prevalenti masse post-tettoniche peralluminifere.

La tetttonica alpina (Messina et alii, 1990, 1992) nelle aree con riequilibrazione pervasiva, modifica completamente le strutture varisiche. I corpi acquistano grana più minuta, una foliazione alpina (Sa1+Sa2) e si arricchiscono in mica bianca. I vari sistemi filoniani della fitta rete varisica si parallelizzano sulla foliazione principale alpina, accompagnati da una riduzione di grana e delle fasi minerali, quali biotite, muscovite, tormalina e fluorite. Queste fasi minerali nei filoni acidi tardo-varisici riequilibrati alpini consentono di distinguere tali filoni dalle bande leucosomatiche diffuse nelle aree migmatiche, che ne risultano prive.

Messina et alii (2003, 2004) forniscono la nuova estensione dell’UAs (600 Kmq di estensione, massimo spessore 1200 m, volume di 44,59%) e danno, inoltre, indicazioni sulla composizione geochimica di alcuni litotipi chiave.

2.5.2. - Metamorfiti dell’Aspromonte

Unità metamorfica caratterizzata da litotipi di medio-alto grado (Complesso metamorfico varisico – PMA), interessata da intrusioni filoniane acide (Complesso plutonico tardo-varisico – PMP).

Complesso metamorfico varisico (PMA). Il basamento metamorfico è formato da paragneiss passanti a micascisti, con intercalati corpi di gneiss occhiadini
associati a meta-granitoidi e minori lenti di metafemiti. Localmente, sono presenti livelli di marmi a silicati, fels Ca-silicatici e subordinati quarziti.

I paragneiss rappresentano il litotipo prevalente e affiorano con spessore fino a 600 m ed estensione plurichilometrica. Essi passano lateralmente a micasisti (Figg. 18 e 19) e tra i due tipi esistono tutte le petrofacies intermedie. Paragneiss e micasisti biotitici, nella parte più settentrionale dell’unità, presentano colore grigio-scuro, tessitura orientata, o a bande, e grana media. La mica bianca cresce solo lungo i piani di shear alpini. I tipi gneissici sono poco granatiferi (con sillimanite visibile a scala microscopica). I tipi più scistosi sono ricchi, oltre che in biotite, anche in granati e sillimaniti (visibile solo al microscopio). Nella parte più settentrionale degli affioramenti dell’unità sono diffusi segni di mobilitazione anatetica. Gneiss biotitico+sillimanitici±granatiferi costituiscono il paleosoma, mentre la parte leucosomatica è formata da mobilizzati quarzoso+feldspatico+ muscovitici, in chiazze, vene pttigmatiche e filoncelli centimetrici concordanti. Dove la mobilizzazione è più spinta, si formano bande decimetriche di melanosome costituito da accumuli blastici di biotite centimetrica. Verso le porzioni geometricamente più profonde dell’unità gli effetti migmatitici divengono sempre meno evidenti. Nelle aree non mobilizzate, gneiss e micasisti sono grigi, a grana medio-fine e a tessitura da massiva a foliata, caratterizzata dalla presenza costante di muscovite e, soprattutto nei micasisti, da struttura porfiroblastica per fenoblasti centimetrici di granato, staurolite, andalusite e cordierite. Nelle aree più preservate dalla tettonica alpina, le rocce mostrano un’unica foliazione principale spesso crenulata nei tipi più scistosi. Lungo le fasce cataclastiche le rocce sono brecciate e i processi di retrocessione dei minerali sono ampiamente diffusi. Dove la deformazione alpina è pervasiva le rocce presentano aspetto diverso, in funzione delle caratteristiche tessiturali e composizione mineralogica, acquisendo grana più minuta e nuove foliazioni. Conseguentemente, i litotipi delle aree ri-equilibrate sono scisti, più o meno gneissici a due miche e granato, intensamente laminati e a struttura prevalentemente porfiroblastica.

Gli gneiss occhiadini in corpi di estensione plurichilometrica sono diffusi in tutta l’unità con una potenza massima di 800 m. Dette masse se poco interessate dalla tettonica alpina, presentano una sola foliazione principale. Da grigi a grigio-scure, in funzione del rapporto feldspati/biotite, gli gneiss occhiadini sono eterogranulari a grana grossa, tessitura orientata e mostrano una struttura porfiroblastica per la presenza di grossi cristalli tabulari tabulari centimetrici (max 6 cm) di K-feldspato, pecilitici, circondati da biotite e minori quarzo e plagioclasi. Contengono al loro interno bande di gneiss leucocrati concordanti (Fig. 20), rari metafiloni basici concordanti, inclusi microgranulari femici e abbondanti xenoliti metamorfici. Spesso sono associate a masse metaplutoniche a grana più minuta etero- o omeogranulare e in vicinanza del complesso pluto(nico tardo-varisico, sono attraversate da numerosi filoni discordanti di micrograniti e di aplo-pegmatiti. Negli affioramenti più settentrionale dell’unità le masse di gneiss occhiadini manifestano mobilitazioni anatetiche. I corpi tettonizzati si presentano da cataclastici a milonitici, con stiramento della foliazione principale. Lo stiramento de-
gli “occhi” provoca la riduzione di taglia e la retromorfosi diffusa, soprattutto la cloritizzazione della biotite, che dà alla roccia un’intensa colorazione grigio-verde. Deformazioni pervasive che determinano la formazione di nuove foliazioni, originano invece, la ricristallizzazione di abbondante mica bianca, la colorazione in rosa del K-feldspato, e la formazione di occhi polimineralici, con K-feldspato e/o quarzo e/o plagioclaso.

I metagraniti (s.l.) costituiscono banchi prevalentemente associati agli gneiss occhiadini. Presentano tessitura foliata, grana da medio-fine a medio-grossa, per lo più eterogranaulare. Contengono biotite e raramente muscovite (più evidenti nelle fasce milonitiche). Lungo le fasce milonitiche, la grana diminuisce, la foliazione diventa più pervasiva.

Le metafemiti si presentano generalmente in amigdale intercalate a gneiss e micascisti; sono presenti anche all’interno di gneiss occhiadini di composizione tonalitica.

Le anfiboliti (s.l.) costituiscono le lenti più potenti ed affiorano a Dinnamare, a F.r Tracanali e, fuori del Foggio, a Milazzo. Hanno colore verde scuro, tessitura massiva o listata, grana media, con struttura da granoblastica a nematoblastica e composizione variabile da termini ricchi in anfibolo fino al 70% (anfiboliti s.s. ad orneblenda tschermakitica, orneblenda bruna, cumingtonite, minerali osservabili al microscopio), a termini biotitici (anfiboliti biotitiche), plagioclasci (anfiboliti) o feldspatico-quarzosi (da anfiboliti gneissiche a gneiss anfibolici). Localmente anche le anfiboliti presentano segni di mobilizzazione anatettica, con livelli quarzosfeldspatici mobilizzati. La tettonica alpina determina, nelle aree a maggiore riequilibrimento, una riduzione di grana con ricristallizzazione di anfiboli aciculari.

Roccia ultramafiche quali meta-orneblenditi (80% in orneblenda), meta-pirosseniti (clinopirosseni e granati) e meta-peridotiti (clinopirosseno e olivina) sono presenti in lenti intercalate ai paraderivati affioranti nelle aree di Piraino, Bafia (Foglio 600), Valle di Badiazza (Foglio 588) e di Larderia (SO di Messina). Possono essere interessate da deformazioni e ricristallizzazioni alpine ad anfibolo (Valle di Badia). I marni e i fels Ca-silicatici sono diffusi in tutta l’unità, in banchi di potenza metrica. Localmente sono associati a lenti metriche di anfiboliti. Sono grigio-chiarì, massivi o poco orientati, a grana media e tessitura saccaroide. Tra i silicati sono comuni ed evidenti, anche mesoscopicamente, biotite+granati±anfiboli±pi rosseni±muscovite+quarzo+feldspati. Nei rari fels Ca-silicatici, i minerali sopra elencati prevalgono sui carbonati. I marni riequilibrati presentano una foliazione Sa2 spesso tagliata da vene tardive a zeoliti.

Le quarziti, da massive a orientate e di colore biancastro, si alternano a gneiss e micascisti, e affiorano in masse non cartografabili.

Complesso plutonico tardo-varisico (PMP). Consiste in numerosi piccoli stock, tutti peralluminiferi. Ogni stock comprende più corpi, omogenei al loro interno, e diversi tra loro per grana, tessitura e composizione. Nell’insieme, l’intervallo compositivo varia da leucotonaliti a leucomonzograniti, con prevalenza
dei termini granodioritici. Sono ricchi in biotite e/o muscovite, quest’ultimi presentano sillimanite, andalusite e cordierite, con strutture prevalentemente xenolitiche e subordinatamente magmatiche. Contengono xenolioti metamorfici, allungati, a prevalente biotite, ed inclusi rotondeggianti, a biotite e plagioclasi. Al contatto con i paragneiss e i micascisti, si creano fitte implicazioni con la conseguente formazione di strutture di tipo “migmatite d’intrusione”, e a luoghi le stesse plutoniti di bordo sono deformate e foliate. Tale complesso affiora prevalentemente nell’area di Capo Rasocolmo (Foglio 588) e subordinatamente negli stock a Pizzo Margiotta, Pizzo Sale, Pizzo Palombaro. Comuni in queste rocce sono i fenomeni cataclastici, le alterazioni superficiali e le abbondanti litoclasi che le dividono in blocchi.

Lungo i piani di riequilibrage le plutoniti acquistano una foliazione fino a trasformarsi in ortogneiss a tessitura orientata.

Il fitto complesso di sistemi filoniani acidi, tardo-magmatici, che pernea il basamento metamorfico e le stesse plutoniti, comprende micrograniti, pegmatiti, apliti e felsiti, ben distinguibili anche sul terreno:
- i micrograniti hanno grana media o medio-fine, omeo- o eterogranulare, tessitura massiva e sono caratterizzati dalla presenza costante di biotite e muscovite;
- le pegmatiti hanno grana grossa, eterogranoanalare, caratterizzata dalla presenza di quarzo e feldspati, con prevalenza del feldspato potassico, spesso con colorazione rosata; comunemente contengono cristalli pluricientimetrici di muscovite e/o biotite e/o fluorite;
- le apliti hanno grana minuta, omeo- o eterogranoanalare, sono ricche in muscovite con subordinata biotite. Possono essere anche associate alle pegmatiti (filoni aplo-pegmatitici);
- le felsiti, subordinate, hanno grana fine, a volte irrisolvibile ad occhio nudo, sono completamente prive di fennici e costituite da feldspati e quarzo.

Nell’area con riequilibrage alpina i filoni acidi tardo-magmatici sono traspsti e ricristallizzati, pertanto in queste aree è difficile, a macroscala, riconoscere le metafilioti pre-alpini da quelli alpini. La rete filoniana è ben visibile lungo il F. della Santissima, a Pizzo Porta, Pizzo Cavallo, P.la Griele, a NO di Altolìa, lungo la costa tra Giampilieri Marina e Briga, a sud di Scaletta Zanclea, Culma Caravagi, Casa Lamphiddo, Roche Saia e a P.la Spuria.

A letto dell’unità, fasce milonittiche di potenza metrica ad andamento per lo più suborizzontale, mettono a contatto, in località Pizzo Serracchi, Pizzo Speria e C.da Ancona, gneiss occhiadini direttamente su filladi dell’UMa.

2.5.3. - Caratteri petrologici

Relitti pre-varisici
L’evento metamorfico pre-varisico, ricostruito su relitti granulitici, si è realizzato a T = 700°C e a P = 9-10 Kbar, condizioni indicate dalla reazione
ortopirosseno+plagioclasio = clinopirosseno+Ca-granato+quarzo.

Evoluzione varisica

L’evoluzione varisica, ricostruita su paraderivati, è caratterizzata da due fasi deformative (Dv1 e Dv2). La prima (sinmetamorfica) è responsabile dell’unica foliazione varisica (Sv1) ed è accompagnata da due episodi metamorfici, sin-cinematico e statico. La Dv2 crea solo crenulazione. Secondo la zoneografia metamorfica ercino-tipo retrograda, quarzo, plagioclasio, biotite, sillimanite, granato e, localmente, muscovite, mostrano cristallizzazione da sincinematica a statica, mentre sono statici staurolite, cordierite ed andalusite. La zoneografia riconosciuta è caratterizzata da un metamorfismo tipo Bosost e si articola in quattro zone. La più alta in grado, a paragenesi sillimanite+Kfeldspato+granato con cordierite statica, si è realizzata a $T = 700°C$ e $P < 5$ Kbar e marca il limite tra la facies granulitica e quella anfibolitica, mentre la più bassa in grado, a paragenesi oligoclasio+staurolite+andalusite, si è formata a $T = 550°C$ e $P < 3$ Kbar, tipiche dell’inizio della facies anfibolitica. Il picco termico e barico dell’evento varisico si è realizzato durante l’episodio sincinematico in facies granulitica (314 Ma; dati radiometrici Rb/Sr su miche; Bonardi et alii, 2000).

L’evoluzione varisica delle metamorfiti continua con una retrocesione termica regionale, determinata dall’intrusione delle plutoniti tardo-varisiche. Il contatto intrusive tra le masse plutoniche e le rocce metamorfiche, che determina solo fenomeni di retrocesione fino alla completa pseudomorfosi dei minerali varisici, si è realizzato a condizioni isobariche e a $T < 520 °C$.

Evoluzione alpina

La sovrimpronta alpina, che parzialmente o completamente modifica le strutture precedenti (Messina et alii, 1990), si sviluppa lungo piani di shear, crescendo d’intensità con il procedere verso le porzioni geometricamente più profonde dell’unità. Essa si sviluppa originando almeno quattro aree a diversa intensità di riequilibratura, che localmente mostrano un graduale passaggio.

L’UAs mostra, nelle aree pervasivamente riequilibrate, quattro fasi deformative alpine, le prime tre accompagnate da episodi metamorfici sincinematici e statici.

Da1, è responsabile della foliazione Sa1, definita da nuovi minerali di relativa alta P, quali quarzo, albite, epidoti, paragonite (in crescita da plagioclasi varisici), fengite (da biotite), cianite (da sillimanite), cloritoide (da originali domini di sillimanite), almandino, anfibolo verde-azzurro e ripidolite (da biotite). Tutti i minerali elencati hanno cristallizzazione da sin- a post-Da1.

Detta associazione minerologica, di medio-alta P, determina un primo stadio alpino, corrispondente ad un metamorfismo di tipo barroviano realizzatosi a $P = 7 - 8$ Kbar e $T = 480-500°C$, tipico della facies scisti verdi, zona a granato.

Da2 e Da3 sono responsabili rispettivamente della formazione delle foliazioni Sa2 e Sa3. Esse sono accompagnate dalla crescita di minerali di più alta temperatura e più bassa pressione rispetto al primo stadio, come oligoclasio, biotite,
quarzo, mica bianca fengitica (con più bassa molecola celadonitica) ed epidoto. Anche questi minerali mostrano cristallizzazione da sin- a post-cinematica.

Nelle aree pervasivamente riequilibrata, questo secondo stadio metamorfico alpino (da sin- a post-Da2 e Da3), si sviluppa a P < 7 Kbar e T = 550°C, tipiche della facies anfibolitica, zona ad oligoclasio. Le condizioni del picco barico e termico dell’evento alpino si sono realizzate, rispettivamente, durante il primo e il secondo stadio, durante la Da2 (22-28 Ma; dati radiometrici Rb/Sr su miche; Bonardi et alii, 2002).

Le ultime fasi deformative, non metamorfiche, si sono sviluppate durante e dopo la messa in posto delle falde.

2.5.4. - Osservazioni geologiche nell’area del Foglio

L’UAs affiora dal margine nord del Foglio fino a Scaletta Marina ad est, sulla costa ionica, e a Pizzo Pietre Rosse (a sud di M. Poverello) ad ovest, raggiungendo una potenza massima di circa 1100 m (Dinnamare). In Calabria, nell’ambito del Foglio, affiora per pochi metri.

Il **Complesso metamorfico varisico**, caratterizzato dalla presenza di relitti granulitici a Larderia, è costituito da prevalenti paragneiss passanti a micascisti e da minori gneiss occhiadini, con associati meta-granitoidi. Sono subordinate le metafemiti e i marmi, rari i fels Ca-silicatici.

Il **Complesso plutonico tardo-varisico** consta di masse, per lo più leucocratiche, e di una fitta rete di filoni acidi.

In funzione della zoneografia metamorfica, le porzioni geometricamente più elevate, intorno a Dinnamare e a P.le Dinareddi (a NO di Pezzolo), sono migmatitiche. Esse sono intrusive da corpi plutonici e attraversate da sistemi filoniani di micrograniti, pegmatiti, apliti e felsiti, per lo più trasposti lungo la foliazione principale dalla tettonica alpina. Le porzioni geometricamente inferiori dell’unità sono caratterizzate da gneiss e micascisti poco o non mobilizzati, con rari filoni acidi.

Le strutture plicative presenti all’interno dell’unità consistono in pieghe a lunghezze d’onda da centimetriche a metriche, con assi per lo più orientati da E-O a ONO-ESE.

La superficie di sovrascorrimento dell’UAs, marcata da una fascia cataclastica alpina, è deformata da pieghe a lunghezza d’onda chilotrmica e ad ampio raggio di curvatura e da faglie inverse ad alto angolo, a trend E-O, N-S e NE-SO.

Il contatto tettonico tra l’UAs e l’UMe, molto articolato, presenta, da nord verso sud, le seguenti geometrie:
- andamento OSO-ENE e immersione N-NNO, tra Rocca Cavalcati e Pizzo Pietre Bianche;
- andamento N-S e giacitura da sub-orizzontale ad immergente verso est, tra Pizzo Pietre Bianche e Pizzo Franco;
- andamento OSO-ENE e giacitura da sub-orizzontale ad immergente verso NNO, tra Pizzo Franco e P.le Tammurinaru;
- andamento SSO-NNE e immersione ONO, tra P.le Tammurinaru e P.le Calatti;
- andamento NNE-SSO e immersione ESE, tra Rocche d’Alaba e Guidomandri Inferiore.

L’UAs costituisce, inoltre, numerosi klippen di limitata estensione e potenza, formati prevalentemente da rocce cataclastiche. Tali klippen sono sovrapposti alle unità UP e UA. Il klippe di Pizzo Faleco poggia sia sull’UMe, sia sull’UP; il klippe di Pizzo Scillizzo poggia sull’UP; i klippen di Croce e di Guidomandri si sovrappongono all’UMa, e il klippe di Modderino poggia sull’UA. Altri affioramenti si rinvengono a SO del Foglio, tra Pizzo Serracchi e Pizzo Carnavaro.

I paragneiss passanti a subordinati micascisti (Fig. 18) (PMAa), rappresentano le metamorfiti che affiorano con maggiore potenza ed estensione areale. Affiorano in maniera discontinua, da Dinnamare a Zafferia, intrusi localmente da corpi plutonici. Paragneiss e micascisti mostrano, nella parte più settentrionale dell’area in oggetto, evidenze di mobilizzazione anatettica. Sono caratterizzati da un’unica foliazione, localmente crenulata o ripresa dalla tettonica alpina, struttura massiva o listata con livelli a quarzo+plagioclasi+K-feldspato, e livelli lepidoblastico-diablastici a biotite+muscovite, con a luoghi porfiroblasti di granato. Si ricostruisce una storia metamorfica sincinematica ed una postcinematica varisica (Tab. 10). Quarzo, plagioclasi, biotite e sillimanite e granato mostrano cristallizzazione da sincinematica a postcinematica mentre staurolite, cordierite e andalusite solo statica (Fig. 19).

Le deformazioni alpine, da blande fino a pervasive (Fig. 22), negli affioramenti più settentrionali (zona tra Badiazza e P.la Rondine) creano riduzione di grana, nuove foliazioni e ricristallizzazione di abbondante mica bianca. Le associazioni mineralogiche sono schematiche in Tab. 10.

Gli gneiss occhiadini (PMAb), potenti fino a 70 m, affiorano in lembi di ridotta estensione presso M. Serro (Fig. 20), in destra del T. Zaera, nell’abitato di Messina, a Piano Pieratti (a NE di Briga S.), a Passo della Scala, a Pizzo Scillizzo, a Pizzo Faleco e a SE di Pizzo Speria. Mostrano una foliazione spesso stirata e deformata dalla tettonica alpina, responsabile di effetti retrocessivi, che sul terreno sono marcati dalla presenza di clorite a spese della biotite varisica. Subordinati i corpi ricristallizzati alpini, che si presentano laminati e leucocrati perché ricchi in mica bianca. Rari gli inclusi microgranulari femici, numerosi gli schlieren metamorfici. Contengono gneiss leucocrati concordanti e, localmente, sono tagliati da aplo-pegmatiti tardo-varisiche, discordanti.

Le metamafiti (PMAc), potenti fino a 20 m, sono presenti nei pressi di Dinnamare e a F.ra Tracanali, negli unici affioramenti cartografabili. Anfiboliti e gneiss anfibolici, d’estensione non cartografabile sono stati osservati a Camaro, Cumia Superiore, in destra del T. Schiavo (q. 110 m), nel klippe di Modderino (q. 160 m), in C.da Liscera (q. 110 m, a E di Roccavaldina), a Serro Inglese (q. 700
m, a ESE di Roccavaldina) e a Puntale Dinareddi (q. 480 m, a NO di Pezzolo). Le metamafiti presentano tessitura massiva o listata, grana media, e una struttura da granoblastica a nematoblastica con rapporti quantitativi variabili di orneblenda, plagioclasio, quarzo e biotite.

I marmi (PMA\textsubscript{d}) affiorano presso Rocche d’Alaba (a nord di Scaletta S.), e in corpi non cartografabili, a Camaro, Cunia e a S. Lucia, intercalati a paragneiss e micascisti o associati ad anfiboliti. Tali litotipi sono massivi, grigio-chiari a grana media e tessitura saccaroidne, caratterizzati mesoscopicamente dalla presenza di biotite ± granati ± quarzo ± feldspati±muscovite e microscopicamente da diopside ± flogopite ± cummingtonite ± orneblenda ± granato ± andesina/oligoclasio ± muscovite.

Le quarziti, di colore biancastro, affiorano alternate a gneiss e micascisti; generalmente sono massive, con opachi e muscovite. Spesso sono presenti mineralizzati a solfuri.

Il Complesso plutonico tardo-varisico è caratterizzato da plutoniti (PMP\textsubscript{b}) e da filoni pegmatitico-aplitici (PMP\textsubscript{a})

Le plutoniti affiorano localmente a nord di Dinnamare e a SE di Venetico, e in lembi non cartografabili presso Pizzo Cavallo. Sono masse peralluminifere riccamente muscovitiche, localmente milonitizzate.

I filoni pegmatitico-aplitici (Fig. 21) sono più diffusi ma di ridotte dimensioni (potenza massima una decina di metri, ed estensione areale da 100 a 500 m). Si presentano generalmente trasposti sulla foliazione principale alpina, e spesso sono ricristallizzati; raramente, come presso Pizzo Leo Morto (a NO di Dinnamare), sono discordanti. Sul versante orientale di Pizzo Prinzi e tra Pizzo Bottino e P.le Tammurinaro un potente livello di metamorfiti è stato attraversato da una fitta rete di filoni che, essendo cartograficamente indistinguibili l’uno dall’altro, sono stati riuniti in un unico corpo.

3. - SUCCESSIONE TERRIGENA DELL’OLIGOCENE SUPERIORE-MIOCENE INFERIORE

Con questo termine vengono indicati quei terreni depositatisi successivamente alle prime fasi di ricoprimento e riconoscibili sul terreno per l’appoggio discordante sulle unità del substrato/basamento. Tali depositi sono rappresentati dal Flysch di Capo d’Orlando di età Chattiano-Burdigaliano inferiore (Lentini et alii, 1995a; Catalano & Di Stefano, 1996; Lentini, 2000), estesamente affiorante in Sicilia nord-orientale nei Monti Peloritani. Poggia in discordanza al tetto delle unità cristalline della Catena Kabilo-Calabride, suturandone i relativi contatti tettonici, e marginalmente si estende al tetto delle unità caotiche più interne della Catena Appenninico-Maghrebide. Il Flysch di Capo d’Orlando si è depositato sulle falde di basamento già impilate e marginalmente sulla paleosutura tra i due domini strutturali durante fasi precoci del ricoprimento.
della Catena Kabilo-Calabride sulla Catena Appenninico-Maghrebide; seppur smembrato in più scaglie tettoniche, esso conserva gli originari contatti su ambidue gli edifici ed è ricoperto dalla coltre retrovergente delle Argille scagliose dei Monti Peloritani (v. oltre).

Il Flysch di Capo d’Orlando si estende in ampie fasce da Taormina a Floresta e più ad ovest fino ai dintorni di S. Agata di Militello. Relativamente al Foglio Messina-Reggio di Calabria è limitato ad una stretta fascia centrale della carta, affiorando da Pizzo Finocchiaro ad est, ad entrambi i versanti di Vallone Maggiotta ad ovest. Nel settore Reggino gli affioramenti del flysch non rientrano in carta.

Anche Ogniben (1970), rivedendo la sua posizione precedente, conferma il carattere molassico di questi depositi terrigeni ed in particolare unifica il Flysch di Capo d’Orlando ed il Flysch di Pizzo Lando in un solo “flysch tardorogeno calabride” con il termine di Flysch di Capo d’Orlando.

Lentini & Vezzani (1975, 1978) considerano il Flysch di Capo d’Orlando come la copertura terrigena oligomiocene “trasgressiva” su tutte le unità stratigrafico-strutturali già sovrapposte. Inoltre tale flysch rappresenterebbe la prosecuzione della sedimentazione detritica iniziata nel bacino eo-oligocenico con il Flysch di Frazzanò. Pertanto il Flysch di Capo d’Orlando assumerebbe il carattere di un postorogeno rispetto all’accavallamento delle varie falde calabridi (ipotesi confermata dal “carattere molassico” di questa formazione nella sua porzione basale conglomeratica), evolvente verso l’alto ad una facies flyschoide legata a fasi tettoniche più recenti.

Bonardi et alii (1980a) unificano il Flysch di Stilo (Bonardi et alii, 1971), affiorante in Calabria, con il Flysch di Capo d’Orlando ed istituiscono così la Formazione di Stilo-Capo d’Orlando, non utilizzando più il termine flysch o molassa, perché a loro giudizio inadeguato a caratterizzare una formazione postorogeno rispetto ad alcune fasi tettoniche e preorogena rispetto ad altre. Inoltre
per quanto concerne l’età, escludono la presenza di livelli oligocenici, collocando l’inizio della sedimentazione nell’Aquitaniano, poi bruscamente interrotta nel Langhiano dall’arrivo delle Antisicilidi.

3.1. - **Flysch di Capo d’Orlando (COD)**

Il flysch di Capo d’Orlando è caratterizzato generalmente da facies torbiditiche conglomeratico-arenacee evolventi verso l’alto e lateralmente a facies arenacee o arenaceo-pelitiche, più raramente a facies pelitiche.

Nel Foglio l’appoggio della formazione è sempre sui terreni cristallini di medio-alto grado (Unità del Mela e dell’Aspromonte) (Fig. 23).

Litofacies conglomeratica (CODC)

In sinistra della F.r.a di Niceto, lungo il Vallone Chiuppo e sul versante settentrionale di Pizzo Finocchiaro il conglomerato basale giace direttamente sulle metamorfiti (paragneiss e micascisti) dell’Unità dell’Aspromonte. Il colore è giallo ocra e i ciottoli, mal assortiti e di dimensione tra i pochi cm e il mezzo metro, sono costituiti in ordine di abbondanza da quarzo, gneiss, scisti, filladi e calcari.

Litofacies arenacea (CODb)

Litofacies pelitica (CODa)

E’ molto meno diffusa delle due precedenti. Essa solitamente caratterizza la parte mediana della sequenza anche se, in virtù del generale contatto on lap, si registra l’appoggio discordante di questa porzione su varie unità del substrato. Relativamente al Foglio affiora esclusivamente tra Serro Ginestri a nord e
Rocche Iero, in appoggio direttamente sul basamento, e tra Vallone Chiuppo e Pizzo Finocchiaro a sud, in continuità sulla litofacies conglomeratica. Nelle località citate questa litofacies è caratterizzata da una fitta alternanza di argille e argille marnose colore avana e di arenarie fini debolmente gradate e/o laminate, con sequenze di Bouma Tb-c o Tb-d, in strati medio-sottili.

Nell’area del Foglio il flysch di Capo d’Orlando è stato campionato nelle

In altre aree di affioramento (CATALANO & DI STEFANO, 1996; CATALANO ET ALII, 1996) i livelli basali della formazione contengono associazioni caratterizzate da specie tipiche dell’Oligocene superiore (Chattiano) quali *Dictyococcites bisectus* (HAY, MOHLER & WADE), *Helicosphaera euphratis* HAQ.

SEZIONE PIANO LACINI

SEZIONE PIANO INADA

Fig. 24 - Sezione stratigrafica ed età del flysch di Capo d’Orlando sulla base dei nannofossili calcarei nel settore occidentale dello spartiacque peloritano a sud-est di S. Pier Niceto (Sezione Piano Lacini).

Fig. 25 - Sezione stratigrafica ed età del flysch di Capo d’Orlando sulla base dei nannofossili calcarei nel settore occidentale dello spartiacque peloritano a sud-est di S. Pier Niceto (Sezione Piano Inada).
Cyclicargolithus floridanus (Roth & Hay), C. abisectus (Müllera), Sphenolithus moriformis, S. ciperoensis (Bramlette & Wilcoxon). In virtù di questi dati, i conglomerati basali, sterili all’analisi micropaleontologica, vengono riferiti all’Oligocene superiore.

4. - UNITÀ DELLA CATENA APPENNINICO-MAGHREBIDE

4.1 - Unità tettonica Antisicilide

In contatto tettonico sul flysch di Capo d’Orlando e localmente sul basamento cristallino poggiano le argille scagliose dei Monti Peloritani (Fig. 23). Talora si tratta di lembi isolati, ma la loro diffusione su tutta la catena peloritana, oltre che in Calabria, fa pensare che si estendessero a mantello prima di essere ridotte in lembi dall’erosione. Relativamente al Foglio nel settore Reggino questa formazione non arriva ad affidare.

Ogniben (1960) indicò queste argille col termine di Complesso Sud-Liguride e le considerò identiche a quelle del Complesso Sicilide, ipotizzando una provenienza dalla stessa area occupata dalle Argille Variegate del Complesso Sicilide, con un “retrocolamento gravitativo” delle A.S. sicilidi sulla copertura tardorogene del Complesso Calabride. Per questo motivo Ogniben (1969) contraddistinse questi terreni col termine di “antisicilidi”, per evidenziare le analogie litostatiche con le Argille Scagliose sicilidi, dalle quali però differiscono per la posizione strutturale.

Slumps ed olistostromi di Argille Scagliose al tetto del flysch di Capo d’Orlando sono interpretabili come precursori dell’arrivo delle Argille Scagliose nel bacino, che ha interrotto la sedimentazione terrigena (Ogniben, 1960; Bonardi et alii, 1980a), ripresa successivamente nel Burdigaliano superiore con la deposizione delle Calcareniti di Floresta.

4.1.1. - Argille scagliose dei Monti Peloritani (ASI)

La formazione è caratterizzata da argille policrome a tessitura scagliosa, sovente in giacitura caotica, con intercalazioni di radiolariti, di calcoli diasprigni nerastri e di strati sottili argilloso-arenacei. Nell’intera massa sono dispersi frammenti centimetrico-decimetrici di miciti Bianche e siltiti carbonatiche grigie. Localmente sono presenti lembi di calcoli nummulitici non cartografabili. La formazione ingloba blocchi di quarzareniti giallastre (an), identiche a quelle del flysch numidico, di dimensione variabile da pochi dm fino a decine di metri. Di questi i maggiori sono stati cartografati e sono ben visibili a C.da Grottone e a Piano S. Giorgio (a sud di S. Pier Niceto), nel settore NO del Foglio.

Per Campisi (1977) l’età della formazione, oltre che sulle ittiofaune, si basa sulle associazioni a Rotalipora, Guembelina, Ticinella e Pithonella riferite al Cenomaniano, presenti nelle biocalcareniti apicali.

In Calabria, al di fuori dell’area del Foglio, sono segnalate anche faune ad ostreidi del Cenomaniano, radiolariti, calcoli neri e noduli ferromagnesiaci (Barrier, 1987).

Le rare associazioni a nannofossili, presenti nei campioni prelevati nella formazione all’interno del Foglio, sono rappresentate da Arkhangelskiella cymbiformis (Vekshina), Braarudosphaera bigelowii (Gran & Braarud), Calculites obscurus (Defflandre), Ceratolithoides aculeus (Stradner), Micula concava (Stradner), M. decussata Vekshina, Watznaueria barnesae (Black) che estenderebbero l’età al Campaniano.

5. - SUCCESIONE TERRIGENA DEL MIOCENE INFERIORE-MEDIO

Le argille scagliose dei Monti Peloritani sono spesso sormontate da una sequenza terrigena costituita generalmente da arenarie arcosiche fossilifere a cemento carbonatico, note col termine di Calcareniti di Floresta (Ogniben, 1960) (Fig. 23). Si tratta di lembi più o meno isolati dall’erosione, ma diffusi su quasi tutta la catena peloritana-aspromontina, dal versante tirrenico a quello ionico.

Le Calcareniti di Floresta corrispondono al Complesso Post-Sudliguride di Ogniben (1960), che include questi terreni nella successione calabride, considerando la “Formazione delle Argille Scagliose Antisicilidi” soltanto un’intercalazione per trasporto orogenico. Egli interpretò quindi questa formazione come postorogena rispetto al ricoprimento tettonico delle ASI, ma più antica del trasporto orogenico delle unità calabride nella posizione attuale. Sempre Ogniben (1969) definisce ulteriormente le Calcareniti di Floresta come Complesso Post-Antisicilide, data la loro posizione trasgressiva sulle ASI e successivamente tra-
splate con esse, ciò perché l’alto contenuto di clasti carbonatici sembrerebbe legato ad un substrato ben diverso da quello silicoclastico del cristallino calabride.

Carbone et alii (1993) e Lentini et alii (1995a) attribuiscono l’elevata frazione carbonatica della formazione all’erosione e risedimentazione di costruzioni organogene di mare basso, pertanto essa non costituisce prova per un’alloctonia delle calcareniti. Nei Monti Peloritani le Calcareniti di Floresta poggiano, nella maggior parte dei casi, in discordanza con giacitura down lap sulle ASI, ma talora anche direttamente sul flysch di Capo d’Orlando e più raramente sul basamento. Ciò dimostrebbe che si tratta di un deposito autoctono, che satura il contatto tettonico tra le ASI ed il flysch di Capo d’Orlando, postdatandolo al Burdigaliano superiore.

Petrograficamente si tratta di arenarie arcosiche con prevalenti bioclasti, granuli di quarzo a spigoli vivi, miche, feldspati e litici metamorfici con abbondantissimi resti organogeni di alghe, briozoi, ostree, pettinidi e di foraminiferi bentonici.

Sul versante tirrenico dei Peloritani centrali, al tetto delle calcareniti in continuità di sedimentazione, è presente un orizzonte di marne argillose, denominate “Marne di M. Pitò” (Caliri et alii, 1993) il cui contenuto faunistico indica un’età medio-miocenica.

5.1. - Calcareniti di Floresta (CFL)

Nell’area del Foglio la formazione è caratterizzata da biocalcareniti bianco-grigiastre, da massive a stratificazione talora incrociata, con frammenti di alghe, briozoi ed amphistegine e da arcosi glauconitiche a cemento spatico in strati da 20 cm a 2 m circa, alternate a livelli sottili argillosi talora debolmente marnosi.
Nel settore messinese, da sud verso nord, affiorano in lembi ridotti e discontinui in sinistra del T. Fiumedinisi (a SO di Ali) in appoggio sui terreni dell’unità cristallina filladica e lungo l’allineamento C.da Grottone-Manducena-Oliva (a sud di S. Pier Niceto), a sud di Portella Molia (SO di S. Stefano di Briga) in appoggio discordante sulle argille ASI. Lo spessore massimo misurato in affioramento non supera i 30 m.

Sul versante calabrese affiorano esclusivamente in destra della Fiumarella di Lume, a nord di S. Filippo. In questa località la formazione poggia in discordanza sulle argille ASI ed è caratterizzata da un intervallo basale potente circa 20 m costituito da un’alternanza di strati medio-sottili di areniti silicoclastiche da fini in basso a grossolane in alto con sottilissimi interstrati pelitici, evoluti ad areniti ibride glauconitiche a grana da grossolana a conglomeratica, con livelli bioruditi, in strati medi. Lo spessore di questa porzione alta è di circa 30 m.

La frazione bioclastica dei livelli arenitico-ruditici è rappresentata da alghe, briozoi e macroforaminiferi quali Amphisteginae.

5.2. - MARNE DI M. PITÒ (PIO)

Sul versante tirrenico dei Monti Peloritani, localmente, sulle facies calcarenitiche della formazione CFL si estende un orizzonte potente fino a 60 m, dato da marne, argille ed arenarie fini a stratificazione centimetrica piano-parallela (Caliri et alii, 1993).

Le caratteristiche di facies e il contenuto microfaunistico a prevalenti associazioni planctoniche riconosciute, hanno fatto assegnare questo deposito ad un ambiente marino distale, la cui maggiore batimetria è stata messa in relazione con una risalita eustatica durante il Langhiano (Carbone et alii, 1993; Lentini et alii, 1995a, 2000).

Buone esposizioni di tale intervallo si trovano a M. Pitò (a sud di Basicò, Foglio Barcellona P.G.) ad ovest del Foglio in esame e dalla cui località prende il nome la formazione. Nella località tipo questi sedimenti contengono nannoflore a Sphenolithus heteromorphus, Helicosphaera walbersdorffensis (Müller), Cyclicargolithus floridanus, Discoaster musicus Stradner, D. moorei Bukry, D. variabilis Martini & Bramlette, e foraminiferi caratterizzati da Orbulina suturalis Brönnimann e O. universa d’Orbigny nella parte alta, che permettono di attribuire alla formazione un’età Langhiano superiore-Serravalliano inferiore (Carbone et alii, 1993; Caliri et alii, 1993; Lentini et alii, 2000).

Nel settore siciliano del Foglio questi livelli non affiorano, ma sono stati riconosciuti nel settore calabrese, in contatto per faglia normale con le Calcareniti di Floresta, in destra della Fiumarella di Lume (sul versante occidentale di Portella Pantano - punto quotato 234 del settore SE del Foglio). In questa località la formazione è rappresentata da argille marnose e siltose di colore avana, grigie al taglio, a stratificazione indistinta, spesse circa 20 m.

Campioni prelevati in questo intervallo hanno dato associazioni a nannofos-
sili e foraminiferi caratterizzate rispettivamente da *Sphenolithus heteromorphus*, *Helicosphaera carteri*, *Calcidiscus leptoporus* (Murray & Blackman) (Biozona MNN5a) e da *Orbulina suturalis* indicative del Langhiano.

6. - SUCCESSIONE CLASTICA ED EVAPORITICA DEL MIOCENE MEDIO-SUPERIORE

6.1. - Formazione di S. Pier Niceto (PCT)

Si tratta di una successione costituita da diverse litofacies caratterizzate da frequenti passaggi laterali e verticali e da una notevole complessità e irregolarità nella distribuzione, di spessore complessivo superiore ai 500 m. Nel settore siciliano la formazione affiora in maniera piuttosto continua su entrambi i versanti della dorsale peloritana in appoggio discordante su vari termini del basamento e del substrato sedimentario, mentre nel settore reggino è limitata a sporadici e modesti affioramenti a sud di Reggio di Calabria e ad est di Pellaro.

Sebbene in letteratura diversi Autori (SELLI, 1978; GHISSETTI, 1979) ritengano la facies conglomeratica la base della sequenza, in realtà, in virtù dei rapporti eutrofici e di una generale geometria down lap, tutte le litofacies possono poggiare direttamente sul substrato.

Si tratta di depositi da scivolamento in massa e flussi gravitativi di scarpata e conoide sottomarina. L’ambiente di deposizione potrebbe essere ricondotto a un sistema di delta-conoide sottomarino progradante verso nord-ovest, come evidenziato dalla distribuzione delle facies e dalla geometria dei sedimenti, che immergono verso nord e nord-ovest lungo il versante tirrenico e verso ovest lungo quello ionico. La geometria e la giacitura dei livelli conglomeratidi ed arenitici, inducono a ritenere la sedimentazione di tali depositi collegata ad una intensa attività tettonica prevalentemente distensiva, come
evidenziato anche dall’attuale inclinazione dei foreset, che raggiunge in alcuni casi anche valori di 50–60°, e che non può essere attribuita esclusivamente ad un’originaria clinostatificazione.

Gli effetti della tettonica distensiva uniti a quelli delle variazioni eustatiche hanno determinato un’architettura molto complessa di questi depositi che mostrano successioni diverse, in termini di litofacies, spessori e geometrie variabili nelle diverse aree di affioramento. Attualmente le successioni più complete e di spessore più elevato si rinvengono in corrispondenza di depressioni strutturali individuate da faglie normali ad andamento NE-SO o circa N-S, mentre nelle zone di alto si riconoscono successioni incomplete e notevolmente ridotte. L’area più significativa è quella di S. Pier Niceto, dove affiora una successione piuttosto completa, rappresentata da argille marnose siltose con strati sottili arenacei, poggiante su blocchi residui di calcareniti di Floresta o direttamente sulle argille scaglione dei Monti Peloritani, seguite da un intervallo conglomeratico e da un’alternanza arenaceo-argillosa.

Ad est e ad ovest di S. Pier Niceto la distribuzione delle facies è molto irregolare e chiaramente controllata dai sistemi di faglie. Sul versante ionico a sud di Messina la clinostatificazione immergente ad ovest dimostra che la provenienza dei sedimenti durante il Serravalliano-Tortoniano avveniva dalle aree ioniche, oggi sommerse. Nonostante l’estrema variabilità è possibile riconoscere quattro litofacies che mostrano caratteri comuni, descritte di seguito.

Litofacies pelitica (PCTₙ)

È data da marne argilloso-siltose grigie con sottili intercalazioni di arenarie fini arcisiche. Nell’area di S. Pier Niceto è presente un caratteristico livello basale di spessore massimo di 60 m in contatto discordante su blocchi residui di calcareniti di Floresta o direttamente sulla riserva ASI. Uno studio biostratigrafico integrato (foraminiferi e nannofossili) (Fig. 26) ha permesso di riferire questo intervallo alle biozona a *Orbulina suturalis/G. periphereoronda* e *Dentoglobigerina a. altispera* (Foret *et alii*, 1998) e a *Helicosphaera walbersdorfiens/Sphenolithus heteromorphous* (MNN5b) e *Sphenolithus heteromorphous/Reticulofenestra pseudoumbilica* (MNN6a) (Fornaciari *et alii*, 1996) che indicano un’età Langhiano sommitale – Serravalliano basale.

Facies francamente argillose sono distribuite a diversi orizzonti stratigrafici e mostrano chiari rapporti di eteropia con la litofacies arenaceo-pelitica. Nel settore ionico, a sud della F.ra di Larderia, un intervallo, dello spessore massimo di 100 m, di peliti grigio brune con livelli di sabbie o microconglomerati giallastri, poggia direttamente sul substrato e passa verso l’alto alla facies conglomeratica. Le analisi biostratigrafiche mostrano microfaune a *Paragloborotalia partimlabiata* (Ruggieri & Sprovieri) e *Globigerinita glutinata Eggger* nei livelli medio-bassi, e a *Neogloborinoidea acostaensis* (Blow) in quelli sommitali, indicando un’età Serravalliano–Tortoniano inferiore e confermando i rapporti laterali con gli intervalli arenaceo-pelitici. A nord della F.ra
Fig. 26 - Sezione stratigráfica della formazione di S. Pier Niceto nell’”area-tipo” ed è basata su uno studio biostratigráfico integrato a foraminiferi e nanofossili.
di Larderia fino al limite settoriale del Foglio, depositi analoghi e coevi poggiano su un intervallo a volte estremamente ridotto di conglomerati, che tende a chiudersi determinando il diretto appoggio sul basamento. Tra M. Spalatara e M. Banditore, livelli argillosi sommitali sono ascrivibili al Messiniano per la presenza di *Amaurolithus* spp. tra le nannoflore e di *Turborotalita multiloba* (ROME0) tra i foraminiferi.

Orizzonti argiloso-siltosi o esclusivamente sabbiosi, di modesto spessore (circa 10 m), talvolta non cartografabili, sono presenti nella parte apicale della successione e talvolta si estendono a ricoprire direttamente le culminazioni del substrato. A nord dell’abitato di Rometta a Sotto Castello (Fig. 27), livelli di argille siltose brune, discordanti su poche decine di metri di conglomerati, contengono microfaune planctoniche caratterizzate da *N. acostaensis* e bentoniche a *Bulimina aculeata* d’ORBIGNY e *B. echinata* d’ORBIGNY e nannoflore a *Amaurolithus delicatus* GARTNER & BUKRY e *Discocoaster* cf. *quinqueramus GARTNER* (Biozona MNN11a e MNNN1b di RAFFI et alii, 2003) che indicano un’età Tortoniano superiore – Messiniano inferiore.

Litofacies conglomeratica (PCTc)

E’ costituita da clasti poligenici ed eterometrici prevalentemente metamorfici di medio e alto grado e subordinatamente calcarei o quarzarenitici, immersi in un’abbondante matrice sabbioso-limosa color bruno scuro. I clasti hanno dimensioni variabili da pochi cm fino a un massimo di 60-70 cm, mostrano un buon indice di arrotondamento e sono spesso appiattiti. Sono talvolta organizzati in *foreset* attualmente inclinati fino a 50-60° verso quadranti settentrionali, di spessore variabile dal metro fino ad una decina di metri.

Nell’area di S. Pier Niceto costituiscono un corpo a geometria lenticolare con spessore massimo di 200 m ed estensione fino a 5 km, poggiante con contatto netto sulle marne argillose basali o su diversi termini del substrato. Nella zona di Roccavaldina lentì conglomeratiche a matrice sabbiosa, con ciottoli metamorfici ben arrotondati, di spessore fino a 70 m, si intercalano nella parte alta della litofacies arenaceo-pelitica; nella zona di Rometta i conglomerati hanno uno spessore notevolmente ridotto e chiudono la successione.

Sul versante ionico a nord della F.ra di Larderia questa facies costituisce la base della sequenza, giace direttamente sul substrato cristallino e passa verso l’alto alla litofacies pelitica. L’immersione degli strati è generalmente verso ovest o sud-ovest, con valori di inclinazione più elevati del contatto basale (*down lap*). In quest’area lo spessore è generalmente modesto e assume una certa potenza solo a ovest di Monte S. Pietro. A sud della F.ra di Larderia i conglomerati mostrano spessori massimi anche superiori al centinaio di metri e poggiano con contatto netto sulla litofacies pelitica.

L’età dei conglomerati può essere dedotta esclusivamente sulla base della loro posizione stratigrafica e dei rapporti con le facies pelitica e arenaceo-pelitica, databili su base biostratigrafica.
Litofacies arenaceo-pelitica (PCT_b)

E' caratterizzata da un'alternanza di arenarie medio-grossolane, in banchi di spessore fino a 3 m, di silt-argilloses ed argille marnose, per uno spessore complessivo superiore a 200 m (F-ra di Niceto).

Nell’area di S. Pier Niceto questa facies poggia, con limite netto, sull’intervallo conglomeratico e si estende lateralmente su differenti termini del substrato fino a quello cristallino. Complessivamente l’appoggio di questi depositi sul substrato avviene con geometria down lap e con inclinazione degli strati mediamente di 20-25° verso NO. Nella parte alta dell’alternanza si rinvengono spesso lenti di conglomerati ad assetto caotico con ciottoli metamorfici del diametro di 20 cm massimo.

I livelli argilloso-siltosi intercalati alle arenarie (Fig. 26) contengono nanoflore caratterizzate da *Helicosphaera walbersdorfensis*, *Discoaster variabilis*, *Reticulofenestra pseudoumbilicus*, rare *Helicosphaera stalis* Theodoridis (biozone MNN6b-MNN8a di Fornaciari et alii, 1996). Le associazioni a foraminiferi sono molto scarse; rari individui di *Neogloboquadrina acostaensis* sono stati rinvenuti nei livelli sommitali. Sulla base di questi dati l’alternanza arenaceo-pelitica può essere attribuita a un intervallo che va dal Serravalliano al Tortoniano inferiore.

Nella zona del T. Saponara questa facies è costituita da sabbie grossolane in strati amalgamati, cui si intercalano lenti conglomeratico-sabbiose e sottili livelli pelitici, che passano gradualmente a una fitta alternanza arenaceo-siltosa, seguita da un intervallo conglomeratico.
Sul versante reggino i limitati affioramenti possono essere ricondotti a questa litofacies (PCT\textsubscript{b}), che presenta arenarie arcosiche e sabbie grigio-giallastre alternate ad argille e argille marnose, spesso siltose, in strati di spessore tra 10 e 40 cm. Analisi biostratigrafiche indicano la presenza di nannoflore quali *Calcidiscus premacintyrei* THEODORIDIS, *Helicosphaera walbersdorfensis*, *Reticulofenestra pseudoumbilicus* (KAMPNER) della Biozona MNN6b (Serravalliano), in accordo con quanto riscontrato nel settore siciliano.

Biolititi coralgali e breccie carbonatiche (PCT\textsubscript{d})

Localmente nella porzione medio-alta dell’alternanza arenaceo-pelitica si rinvengono blocchi o corpi lenticolari di calcari ad alghe, molluschi e coralli. Le dimensioni variano da qualche metro a un massimo di 20 m, come si osserva in C.da Rocche Asciutte, a ovest di S. Pier Niceto. La distribuzione discontinua di questi affioramenti permette di individuare un’ampia fascia che si prolunga per oltre un centinaio di chilometri lungo il margine peritirrenico. Nell’area del Foglio blocchi minori, talora non cartografabili, affiorano nei dintorni di Roccavaldina e a Sotto Castello (a nord di Rometta).

Si tratta di biocostruzioni a coralli (*Porites* sp. e *Tarbellastraea* sp.) e ad alghe Melobesie (*Mesophyllum-Lithophyllum, Lithothamnium*), cui si associano serpulidi, briozoi (*Celleporaria* sp. e *Holoporella* sp.), foraminiferi sessili (*Gypsina* sp.) e piccoli echinoidi.

L’intervallo basale di questa litofacies generalmente è rappresentato da breccie carbonatiche a clasti centimetrico-decimetrici di biolititi coralgali e a litici cristallini o da biocalcareniti in strati decimetrici a gasteropodi, foraminiferi, alghe e coralli.

L’età di questi depositi, sulla base dei rapporti laterali con la litofacies arenaceo-pelitica, può essere ascritta al Serravalliano-Tortoniano.

6.2. - Formazione pre-evaporitica

Alla base dei terreni del Gruppo gessoso-solfifera talora è presente un intervallo clastico “pre-evaporitico”, rappresentato da diatomiti di colore bianco crema, note come “Tripoli”, il cui spessore ed estensione, variabili da luogo a luogo, ma comunque sempre esigui, non sempre ne consentono la cartografabilità, specialmente alla scala della carta geologica.

6.2.1. - Tripoli (TPL)

Alternanza di diatomiti varvate bianco crema, laminiti di colore da grigio-ocraee a verdi a rosse per la presenza di ossidi e marne tripolacee a grana siltitica o debolmente sabbiosa, in strati medio-sottili, a geometria lenticolare e poco estesi. A causa dell’esiguo spessore, non superiore ad alcuni metri e della geometria
lenticolare, sono stati cartografati solo quelli più estesi (tra S. Cono e S. Domenica, settore NO del Foglio). Poggiano in discordanza sui livelli apicali della formazione PCT. Costituiscono un deposito pre-evaporitico originatosi in bacini a circolazione ristretta (bacini euxinici), come dimostrano anche le lamine mm ritmiche, che denotano condizioni di scarso idrodinamismo.

L’età è Messiniano.

6.3. - GRUPPO DELLA GESSOSO-SOLFIFERA (GS)

Si tratta delle ben note evaporiti relative alla crisi di salinità che ha interessato il Bacino Mediterraneo durante il Messiniano.

Esse sono distribuite nelle zone periferiche rispetto alla catena peloritana; in particolare si presentano sia sulle aree esterne (ioniche) sia nelle zone di retroca-tena, cioè quelle tirreniche. Non sono presenti sul versante reggino e in tutto il settore aspromontino.

Sul versante siciliano la successione è ridotta e lacunosa. Gli affioramenti più estesi sono tutti localizzati nel quadrilatero Monforte S. Giorgio, Rometta, Condor (F.r.a di Niceto), Saponara (quadranre NO del Foglio). Sulla sponda ionica la litofacies evaporitica è caratterizzata esclusivamente da calcari affioranti da Cataratti, ad est di Messina, a Larderia-Tremestieri dove rappresentano i lembi più meridionali. Il litotipo più diffuso è rappresentato da calcari; i gessi affiorano esclusivamente in un limitato lembo a nord di Venetico (estremo settore NO della carta). L’appoggio della formazione è sempre sulle varie litofacies della forma-zione di S. Pier Niceto.

L’età è Messiniano superiore.

6.3.1. – Calcare evaporitico brecciato (GSa)

Calcare microcristallino di colore bianco-grigiastro, talora con intercalazio-ni di laminiti carbonatiche. La tessitura varia da massiva a laminare; generalmente si presenta brecciato e pulverulento, tipicamente vacuolare per processi di dissoluzione. Ciò viene imputato ad un fenomeno di “autobrecciazione” originata da dissoluzione di porzioni più solubili, probabilmente solfato di cal-cio, durante la diagenesi. Si ritiene di escludere una risedimentazione, poichè la breccia è sempre monogenica, non contiene cioè elementi estranei al litotipo cristallino carbonatico.

Sul versante ionico, a sud di Messina, il calcare evaporitico affiora in livelli continui spesso fino a 60 m nella zona tra Monte S. Pietro e C.da Badia Brasiliani. Piccoli lembi discontinui si rinvengono tra Camaro e Cataratti, e a La Montagna e ancora più a sud nei dintorni di Larderia, con spessori variabili da 5 a 20 m. Questa litofacies è risultata totalmente sterile all’analisi micropaleontologica.
6.3.2. - *Gessi e argille gessose (GS*)

Gesso selenitico meso- e macro-cristallino in banchi massivi o in lenti discontinue, solitamente sovrapposto ad argille gessose di colore bruno-grigia-stro, cui si intercalano lenti decimetriche di gesso geminato in grossi cristalli. Affiorano solo a nord di Venetico. Lo spessore massimo è 20 m.

Sul versante tirrenico, al di fuori del Foglio, si hanno limitatissimi lembi poggianti sulle argille supratortoniane-inframessiniane, o direttamente sulle metamorfiti come a Gesso, o sopra il Calcare evaporitico come a Calvaruso.

7. - SUCCESSIONE DEL PLIOCENE INFERIORE-PLEISTOCENE MEDIO

Raggruppa i depositi calcarea-marnosi del Pliocene inferiore e sabbioso-calcarenitico-argillosi di età compresa tra il Pliocene medio ed il Pleistocene inferiore, discordanti sulle coperture sedimentarie o direttamente sul basamento.

Si tratta di unità litostatografiche eterogenee, caratterizzate da rapide variazioni di facies sia in senso laterale che verticale, risultato di una notevole mobilità dei bacini di sedimentazione e sotto l’influenza delle oscillazioni eustatiche.

Nello stesso settore, DI STEFANO & LENTINI (1996) e successivamente LENTINI et alii (2000), su basi geometriche e biostratigrafiche, distinguono quattro unità sedimentarie con caratteri litologici omogenei delimitati da discontinuità riconoscibili in tutta l’area, marcate da lacune temporali di estensione variabile. La successione del Pliocene inferiore è rappresentata dai Trubi siciliani, calcilutiti marnose color bianco crema, che tradizionalmente rappresentano il ripristino delle condizioni marine normali in seguito all’evento evaporitico messiniano. Il Pliocene medio, che mostra le migliori esposizioni a nord del limite superiore del Foglio (zona delle “Masse”), è rappresentato da marne sabbiose, discordanti
su vari termini più antichi, che evolvono gradualmente a sabbie e calcareniti. Seguono, ancora discordanti, depositi prevalentemente calcarenitici che passano nei livelli sommitali ad argille sabbiose, di età Pliocene superiore–Pleistocene inferiore. L’ultimo termine è rappresentato da depositi del Pleistocene medio, che mostrano facies prevalentemente argillosse lungo il margine tirrenico, e sabbiosocalcarenitiche nei settori più a monte e lungo il lato ionico.

Nel presente studio i depositi plio-pleistocenici francamente marini, vengono distinti in base alla loro geometria sul substrato e all’età, e vengono correlati termini analoghi e coevi nel lato siciliano e in quello calabrese (Fig. 29).

7.1. - Trubi (TRB)

Si tratta di calcari marnosi e marne calcaree color bianco-crema ad abbondante plancton calcareo in strati di 10-50 cm di spessore, spesso a fratturazione concoide. Sono distribuiti, anche se in modo discontinuo, su entrambi i versanti dello spartiacque peloritano e anche sul versante reggino. Gli affioramenti più estesi si ritrovano sul lato tirrenico, nell’area di Pirrera-C. da Filippone, a Monforte S. Giorgio e a Venetico, dove raggiungono spessori massimi di circa 40 m, riempiendo antiche depressioni strutturali connesse alla tettonica estensionale peritirrenica. In queste località la formazione è caratterizzata da calcari marnosi e marne biancastre, con una frazione sabbiosa crescente verso i livelli sommitali, in strati di 10-30 cm talora fino a mezzo metro, intensamente fratturati. Localmente alla base è presente un livello conglomeratico a clasti metamorfici, in matrice sabbiosa.

A Pirrera, all’estremità occidentale del Foglio, i Trubi hanno uno spessore di circa 20 m (Fig. 28). Contengono associazioni a nannofossili molto abbondanti e ben conservate, caratterizzate da Helicosphaera carteri, Calcidiscus leptoporus, Discoaster surculus Martini & Bramlette, D. pentaradiatus Tan e Amaurolithus spp. Questa associazione è riferibile alla Biozona MNN12 (Río et alii, 1990) del Pliocene inferiore. La parte alta dei Trubi, in questa zona, presenta un’associazione sostanzialmente simile a quella appena descritta, ma caratterizzata dalla presenza di Helicosphaera sellii Bukry & Bramlette, che consente di riferire l’intervallo alla successiva Biozona MNN13 del Pliocene inferiore.

Nei dintorni di Messina, i Trubi giacciono in discordanza sulle evaporiti
messiniane e sui terreni miocenici o si estendono, in alcuni casi, direttamente sul basamento metamorfico. Presentano un’estensione areale notevolmente ridotta ed affiorano dal versante settentrionale di La Montagna a Cataratti, con spessori non superiori ai 15-20 m. Più a sud la formazione non compare affatto. A nord di La Montagna la base è rappresentata da un conglomerato a matrice biancastra costituito da elementi prevalentemente metamorfici di 5 cm di diametro, potente circa 3 m, che equivale probabilmente all’Arenazzolo affiorante in Sicilia centrale. Campioni isolati indicano anche in questo caso la presenza di nannoflore delle biozoni MNN12 e MNN13, e foraminiferi dell’intervallo MPI1-MPI3, del Pliocene inferiore con Sphaeroidinellopsis spp. nei livelli basali e con Globorotalia margaritae Boll & Bermudez e G. puncticulata (Deshayes) in quelli più alti.

Nel settore reggino esigui lembi si rinvengono nella parte meridionale del Foglio, lungo la Fiumarella di Lume e a sud di S. Filippo. In questa zona la base dei Trubi ha un’età leggermente più giovane (Biozona MNN13 a nannofossili e MPI2 a foraminiferi). La diacronia presente alla base dei Trubi può essere messa in relazione con la presenza, di settori depressi o rialzati, già delineati al momento della loro deposizione, che venivano quindi raggiunti dalla sedimentazione in momenti differenti.

7.2. - Formazione di Massa S. Lucia (FSL)

Prende il nome dalla località tipo di affioramento (Di Stefano & Lentini, 1996; Lentini et alii, 2000), dove è costituita da un’alternanza di marne argillosi e sabbie evolventi a calcareniti e sabbie con sottili intercalazioni argillosi, dello spessore complessivo di 150 m, contenenti nannoflore dell’intervallo MNN16a-MNN16b/17 (Pliocene medio).

Nell’area del Foglio questa formazione si rinviene, incompleta e di spessore notevolmente ridotto, solo nell’area di Rometta (Fig. 28), dove poggia in netta discordanza su lenti di Trubi, sul calcare evaporitico o direttamente sui depositi miocenici. Si tratta di marne sabbiose color giallo pallido con livelli sottili a brachiopodi, di spessore massimo non superiore ai 50 m, contenenti nannoflore caratterizzate da Helicosphaera sellii, Discoaster asymmetricus, D. pentaradiatus, D. surculus, D. tamalis, Calcidiscus macintyrei (Bukry & Bramlette) e Pseudoemiliania lacunosa (Kamptner) (Biozona MNN16a) e foraminiferi a Globorotalia gr. crassaformis (Galloway & Wissler) e Globorotalia bononiensis Dondi, indicativi del Pliocene medio.

7.3. - Formazione di Rometta (ROE)

I depositi di età compresa tra il Pliocene superiore ed il Pleistocene inferiore mostrano una sequenza complessivamente trasgressiva con passaggio da depositi essenzialmente calcarenitico-sabbiosi (ROE) passanti nella porzione sommitale
Fig. 28 - Stratigrafia ed età dei depositi plio-pleistocenici nel settore a ovest della dorsale peloritana (area di Rometta-S. Cono e di Pirrera).
ad orizzonti sabbioso-argillosi (ROEₐ). Spessore complessivo massimo 150 m.

Le principali aree di affioramento si trovano ad ovest dello spartiacque peloritano, a Rometta (da cui prende il nome la formazione), Santa Domenica e Monforte S. Giorgio, e ancora più ad ovest a Pirrera e Zifronte.

Tali depositi sono contraddistinti da un appoggio discordante e diacrono (Di Stefano & Lentini, 1995) su differenti termini del substrato, fino a ricoprire in alcuni punti direttamente le unità cristalline senza l’interposizione dei depositi più antichi. Nell’area di Rometta (Fig. 28) la successione è costituita da calcareniti color oca, ad abbondante malacofauna (prevalenti ostréedi e pectinidi), brachiopodi e briozoi, con stratificazioni piano parallele o vistosamente incrociate a “spina di pesce”, intervallate da strati di sabbie massive, per uno spessore complessivo di circa 120 m; la successione è completata verso l’alto da una decina di metri di argille sabbiose (ROEₐ), affioranti esclusivamente in corrispondenza dell’abitato di Rometta. In quest’area la base della successione calcarenitico sabbiosa è riferibile al Pliocene superiore (Biozona MNN19a e a Globorotalia inflata); le argille sommitali (attribuite alla F.n.e delle Argille di Spadafora), contengono nannoflore della Biozona MNN19f e foraminiferi caratterizzati da Hyalinea baltica (Schroeter) del Pleistocene inferiore.

Nel margine nord-occidentale del Foglio (a Pirrera) (Fig. 28), la successione è costituita da un’alternanza di biocalcareniti grossolane e sabbie giallo oca, dello spessore di 20 m, con frammenti di macrofossili e clasti calcilutitici, che poggiino sui Trubi con contatto irregolare e marcato da un livello di breccie. Le calcareniti passano gradualmente verso l’alto a 10 m di argille sabbiose marnose color grigio chiaro. La base da calcareniti è attribuibile alla Biozona MNN19c del Santerniano sommitale, mentre le argille contengono nannoflore delle biozono MNN19d e MNN19e (rispettivamente a “Large” e “Small” Gephyrocapsa) dell’intervallo Emiliano-Siciliano.

Viene in questo modo confermato l’appoggio diacrono di questi depositi sul substrato e la loro tendenza trasgressiva verso l’alto.

Nel versante ionico, nell’area dell’abitato di Messina, depositi coevi sono rappresentati da sabbie gialle in livelli decimetrici, con orizzonti estremamente ricchi di brachiopodi integri, prevalentemente del genere Terebratula, e subordinatamente di coralli e bivalvi, e da biocalcareniti organogene contenenti triturume dei suddetti organismi. Gli spessori non superano i 20 m e sono localizzati a nord del T. di Larderia (Serro Buddasca), lungo la F.r. S. Filippo e a La Montagna. In quest’ultima località è inoltre presente un caratteristico livello di calcari biancastri a coralli (ROE₃) quali Madrepora oculata Linneo, Lophelia pertusa Linneo e Desmophyllum cristagalli Vaughan e da breccie carbonatiche, cui si associano livelli di conglomerati poligenici. Rare intercalazioni calcarea-marnose contengono scarsi foraminiferi planctonici caratterizzati da Globorotalia inflata (d’Orbigny) e nannoflore delle biozono MNN19b e MNN19c del Pleistocene inferiore.
7.4. Argille di Spadafora (SPD)

Col termine “Argille di Spadafora” Seguenza (1873) indicava depositi prevalentemente argillosi di età pleistocenica affioranti sul margine tirrenico dei Peloritani, nei pressi dell’abitato omonimo. Nell’area del Foglio tali depositi affiorano nel margine nord-occidentale (Torregrotta), dove poggiando in discordanza su spessori esigui di Trubi e di calcare evaporitico, o su diverse litofacies della formazione di S. Pier Niceto. Si tratta di una monotona successione di argille debolmente marnose color grigio-azzurro (SPD<a>) con malacofauna scarsa a stratificazione accennata, con intercalazioni sabbiose e livelli cineritici e pomicei, evolventi verso l’alto a sabbie giallastre (SPD) con intercalazioni conglomeratiche, per uno spessore complessivo massimo di 80 m. Uno studio biostratigrafico effettuato a nord dell’area del Foglio, in corrispondenza di una delle numerose cave presenti sul margine tirrenico (Fig. 29), ha rivelato che l’intera successione ricade nella parte bassa della Biozona MNN19f (nel range di distribuzione di Gephyrocapsa sp.3, sensu Río et alii, 1990) ed è pertanto riferibile al Pleistocene medio.

Fig. 29 - Stratigrafia ed età dei depositi marini del Pleistocene medio, e correlazione tra le successioni affioranti ai due lati della dorsale Peloritana (Torregrotta e S. Corrado) e con quella affiorante nel settore reggino (C.da Luparolino).
Nel settore reggino nei pressi dell’abitato di Archi, affiora una successione pleistocenica nota in letteratura (Placella, 1978; Guadagno et alii, 1979; Di Geromino et alii, 1997), campionata per il presente Foglio poco fuori rispetto al limite orientale, in C.da Luparolino (Fig. 29). La sezione è costituita da calcari marnosi colore bianco crema, con intercalazioni metriche di sabbie grossolane grigio chiaro a struttura gradata, ad abbondante malacofauna (pectinidi e ostreidi) e numerosi orizzonti di tephra e pomici. I calcari marnosi diventano gradualmente sabbiosi verso l’alto fino a passare a delle vere e proprie sabbie contenenti livelli conglomeratici. La successione è completata dalle ghiaie e sabbie di Messina in netta discordanza. I caratteri litologici e il contenuto in nannoflore del tutto simili a quelli riconosciuti nelle argille di Spadafora del settore siciliano, permettono di assimilare a questa formazione i suddetti depositi del settore reggino. Alla medesima unità (litofacies SPD a) vengono riferiti i coevi depositi argilloso-sabbiosi affioranti a SO di S. Filippo.

7.5. - CALCARENITI DI S. CORRADO (ORD)

Col termine “Calcareniti di S. Corrado” vengono qui denominati depositi calcarenitici e sabbiosi, coevi delle “Argille di Spadafora”, affioranti in maniera discontinua lungo il settore ionico, dal margine settentrionale del Foglio fino a Serra Jara. Poggiano in netta discordanza su differenti termini del substrato plio-pleistocenico e pre-pliocenico.

La sezione tipo è stata campionata e studiata a S. Corrado (frazione occidentale della città di Messina, al limite col Foglio 588 - Villa S. Giovanni).

Si tratta di un’alternanza di strati calcarenitici friabili e sabbie grossolane di colore giallo bruno, ad abbondante fauna rappresentata da bivalvi, gastropodi, brachiopodi, scacopodi, echinidi, balani e coralli (ORD a) (Fig. 29). La stratificazione è generalmente piano-parallela e localmente incrociata, specie nei livelli sommitali. Lo spessore è estremamente variabile, ma non supera i 40 m. I livelli sabbiosi contengono nannoflore caratterizzate da Gephyrocapsa sp.3, Pseudoemiliania lacunosa (Biozona MNN19f del Pleistocene medio) e foraminiferi caratterizzati da Hyalinea baltica e Truncorotalia truncatulinosedes excelsa. Alla base di questi depositi è possibile osservare una litofacies conglomeratica (ORD b) più potente nel settore settentrionale dell’area (Cataratti) dove raggiunge i 20 m di spessore, costituita da grossi blocchi di diametro fino a metrico di calcari marnosi bianchi (Trubi), arenarie mioceniche e rocce cristalline, immersi in una matrice argillosa contenente nannoflore della Biozona MNN19f (Pleistocene medio). Nella parte alta delle calcareniti si rinviengono canali incisi riempiti di blocchi di varia dimensione, di natura sedimentaria e cristallina.
8. - DEPOSITI DEL PLEISTOCENE MEDIO-SUPERIORE

8.1. – DEPOSITI MARINI TERRAZZATI (\(g_n \))

Comprendono i depositi sabbiosi, sabbioso-gliaiosi e più eccezionalmente calcarei bioclastici, di ambiente marino, frequentemente affioranti lungo le coste tirreniche e ioniche della Sicilia e della penisola italiana in generale. Tali depositi spesso sono terrazzati e sono ubicati a diverse altezze sul livello del mare e, solo per limitati settori, livelli coevi affiorano ad uguale quota. Questo indica che i diversi settori sono stati interessati da sollevamenti differenziali, variamente intensi, dovuti ad una diversa evoluzione neotettonica delle rispettive aree.

La disamina che segue è basata su dati di letteratura a partire dal 1990; i depositi considerati sono prevalentemente di età tirreniana e sono, per lo più, localizzati in aree limitrofe al Foglio, per entrambi i settori siciliano e calabrese. La differenza di quota cui essi si trovano attualmente è da imputare alla tettonica attiva in tempi recenti.

L’area ubicata sul versante ionico dello Stretto di Messina è caratterizzata dai famosi depositi a *Strombus bubonius*, o in generale ricchi di fauna senegalese. Nell’area di Villa S. Giovanni-Scilla (cfr. Foglio Villa S. Giovanni), ad esempio, depositi a *Strombus bubonius* si rinvengono a quote 160-125 m (MIYACHI et alii, 1994; DUMAS et alii, 1999). Immediatamente ad est dell’area del Foglio (cfr. Foglio Motta S. Giovanni) si citano i depositi di Bovetto e Ravagnese, posti rispettivamente a quota 125 m e 101 m s.l.m. (BONFIGLIO, 1972, 1973; MIYACHI et alii, 1994). I valori di racemizzazione degli aminoacidi, ricavati su valve di *Glycymeris* presenti in questi depositi, rientrano nell’aminogruppo E, correlato con lo stadio isotopico 5e (HEARTY et alii, 1986).

Da sud di Ravagnese fino a Capo dell’Armi (cfr. Foglio Mèlito di Porto Salvo), si seguono numerose linee di riva poste a quote alquanto elevate. I depositi a *Strombus bubonius* raggiungono la quota massima di 157 m s.l.m. a Trapezi Lia, a sud di Pellaro, nel presente Foglio. Tutti i depositi di quest’area hanno dato valori di racemizzazione che rientrano nell’aminogruppo E (DUMAS et alii, 1987).

Sul versante tirrenico nord-orientale della Sicilia e a Capo Peloro (cfr. Foglio
Villa S. Giovanni), sullo Stretto di Messina, i depositi a *Strombus bubonius*, o correlabili con l’Eutirreniano grazie all’aminostratigrafia, si rinvengono a quote analoghe a quelle della Calabria meridionale: a Mortelle (Capo Peloro) a 85 m s.l.m. (Bonfiglio & Violanti, 1983), cioè ad una quota circa 20 m più bassa a causa di dislocazioni tettoniche legate a sistemi di faglie orientati NO-SE; a Capo Milazzo (cfr. Foglio Milazzo) il deposito posto a quota 40-60 m s.l.m., sebbe- ne contenga solo fauna banale, è stato correlato con gli altri depositi tirreniani (Hearty et alii, 1986); a Capo Tindari (cfr. Foglio Barcellona Pozzo di Gotto), lungo la falesia costituita dai marmi dell’Unità dell’Aspromonte, si rinviene solo una fascia di fori di litodomi posta a circa 75-85 m s.l.m., sebbe- ne contenga solo fauna banale, è stato correlato con gli altri depositi tirreniani (Gliozzi & Malatesta, 1982). Pertanto questi due ultimi depositi sono correlabili, sulla base dei valori di racemizzazione, con i depositi tirreniani di Bovetto e Ravagnese del settore ionico reggino.

In ottemperanza alla normativa CARG, la numerazione progressiva attribuita ai depositi marini terrazzati è crescente procedendo verso le quote maggiori (dal più recente gν1, al più antico gν5). Questo criterio è inverso a quello in uso nella pratica stratigrafica, che assegna ai depositi di quota superiore un’ordine numerico più basso, e a quelli di quota inferiore, una numerazione più alta. Per facilitare la correlazione tra i vari ordini di depositi marini terrazzati riconosciuti nell’area del Foglio, e quelli cui ci si riferisce in letteratura, sono stati ridefiniti gli ordini di terrazzamento delle varie citazioni bibliografiche.

8.1.1. - Settore siciliano

Comprende i depositi marini terrazzati presenti sia all’interno dell’area del Foglio, sia quelli localizzati al di fuori di esso, e ai quali si fa riferimento per correlazione.

Si tratta di sabbie di colore giallo ocra talora ghiaiose, di limi o cineriti rossastre e di ghiaie a ciottoli arrotondati ed appiattiti eterometrici, per lo più cristallini, in matrice sabbiosa. L’assetto è massivo o a stratificazione poco evidente. Lo spessore varia da nord a sud da qualche decimetro a 3 m; i depositi sono distribuiti a diverse quote e si correlano alle superfici di abrasione che insi- stono principalmente sui terreni cristallini. Tra il territorio della città di Messina e Scaletta Zanøa, la variazione di spessore registrata per questi depositi è da attribuire principalmente alla notevole antropizzazione dell’area settentrionale e, più a sud, alle condizioni morfologiche del territorio che hanno comportato nell’ordine, asportazione di notevoli spessori di sedimenti e sepoltura dei depo- siti marini ad opera di coperture detritiche continentali alimentate dai retrostanti rilievi. Ancora più a sud, nell’area di Alì, il deposito marino, ove preservato, è rappresentato da sottili livelli di sabbie di spiaggia.

Immediatamente a nord dell’area in esame (Foglio Villa S. Giovanni), lungo il margine peritirrenico dei Monti Peloritani, Catalano & Cinque (1995) riconosco- no quattro ordini di spianate d’erosione disposte tra quota 450 e 70 m s.l.m., di cui
il più alto è rappresentato da lembi che si raccordano ad un’originaria superficie di abrasione marina, impostata su terreni del basamento, profondamente rimodellata da un paesaggio fluviale.

Sempre sul versante tirrenico, nel tratto Capo d’Orlando-Capo Peloro, Catalano & Di Stefano (1997) hanno riconosciuto complessivamente 6 ordini di terrazzi, dislocati tra quota 480 e 35 m s.l.m. Questi rappresentano dei lembi di un’originaria superficie di spianamento sub-aereo oggi ridotta, per la diffusa dissezione dell’area, in vari lembi, la cui correlazione permette di ricostruire un’unica superficie subpianeggiante debolmente immergente verso nord-ovest. Questa paleosuperficie d’erosione è posta tra quota 500 e 400 m s.l.m. ed è ricoperta da una potente successione di mare aperto calcarenitico-sabbioso-argillosa, datata al Pleistocene medio (Di Stefano & Caliri, 1997). I livelli sommitali di tale successione, che presentano una generale evoluzione trasgressiva, sono stati riferiti da Catalano & Di Stefano (1997) ad un’età di 650 ka. I successivi depositi terrazzati, dal II al V ordine, sono sospesi verso mare, fino alla quota di 80 m, in corrispondenza di faglie normali ad andamento NE-SO, le cui scarpate interessano l’apice dei sottostanti terrazzi marini di ordine superiore. L’ultimo ordine di terrazzi marini (VI) è sospeso lungo le linee di faglia, che definiscono la costa attuale. La disposizione di questi terrazzi si segue con discreta continuità lungo tutto il versante tirrenico dei Peloritani.

Lungo la costa ionica dei Peloritani Catalano & Cinque (1995) riconoscono diverse generazioni di paleopaesaggi fluvio-denudazionali sospesi, posti tra le quote 450-380 e 300-260 m s.l.m.; a quest’ultimi ricollegano le forme marine del Pleistocene medio. Queste sono rappresentate da piattaforme di abrasione ridotte in lembi molto discontinui, con una dispersione altimetrica variabile lungo costa. Gli stessi Autori registrano la maggiore dispersione degli elementi proprio nella porzione settentrionale del Foglio, con una serie di superfici dislocate tra la quota 250 e la quota 60 m. Il diverso comportamento lungo costa è legato alla presenza a terra di linee tettoniche ad attività più recente, che si riconoscono nelle aree dello Stretto, e che sono responsabili della dislocazione degli stessi terrazzi. Una maggiore continuità lungo costa si riconosce solo per i terrazzi posti a partire da quota 100 m, procedendo verso il livello del mare.

Sempre lungo la fascia ionica, nell’area di Ali, tra l’abitato e l’omonimo capo, Catalano et alii (2003) riconoscono cinque ordini di depositi marini terrazzati, dislocati tra quota 305 e 65 m s.l.m.

sviluppatosi nell’arco di un intero periodo interglaciale, compreso tra gli stadi isotopici 11 e 7 (Martinson et alii, 1987).

8.1.1.1. - Ordini dei depositi terrazzati

Sul versante peloritano dell’area del Foglio sono stati riconosciuti cinque ordini di spianamenti e/o depositi marini terrazzati, posti tra 330 e 50 m di quota.

I quattro ordini di terrazzamento differenziati da Catalano & Cinque (1995) sulla terminazione settentrionale della dorsale peloritana, dal più alto al più basso, sono distribuiti alle seguenti quote s.l.m.: 450-380 m (4°), 340-290 m (3°), 285-185 m (2°), 130-70 m (1°).

V ordine \(g_{n5}\)

Tracce di una fase di terrazzamento marino riferibile a questo ordine si rinviengono su entrambi i versanti dei Peloritani. Sul versante ionico, da nord a sud, lembi ridottissimi di tali superfici sono presenti nel graben di La Montagna (a ovest di Messina), intagliati sui terreni del Pliocene superiore-Pleistocene medio; nella depressione tettonica tra Larderia e Mili S. Pietro (a Puntale Banno), dove affiorano depositi elasticì medio-supramiocenici; a nord di Giampilieri, direttamente sui terreni di basamento. Nelle tre località citate i terrazzamenti di 5° ordine si rinviengono a quota 310 m. La relativa paleofalesia è individuabile solo a tratti ed è impostata lungo scarpe di faglia del sistema NNE-SSO, parallelo alla costa. Il deposito, quando preservato, è rappresentato da sottili livelli discontinui di sabbie-gliaiose, localmente con frammenti di fossili. Spesso questi livelli sono obliterati da coltri detriche eluvio-colluviali.

Lungo il versante tirrenico del Foglio, è stato individuato un solo terraz-
zamento riferibile a questo ordine, preservato all’interno della depressione di Roccavaldina, a 330 m di quota, su depositi mediopleistocenici al nucleo della sinclinale di Venetico.

IV ordine (g₄₄)

La quarta fase di terrazzamento marino è testimoniata da una serie di lembi di superfici d’abrasione, posti tra quota 275 e 200 m sul versante ionico, e tra 250 e 195 m su quello tirrenico. Il deposito, preservato solo a tratti, è costituito da sottili livelli discontinui di sabbie ghiaiose bioclastiche.

Sul lato ionico tali superfici si attestano ai piedi di paleofalesie a tracciato piuttosto rettilineo, controllate o che si impostano sul sistema di faglie a direzione NNE-SSO; qualche blanda sporgenza di questa paleofalesia si osserva ad ovest di Messina, tra F.ra Zàera e F.ra S. Filippo, nel graben di Santo.

Da nord a sud sono stati attribuiti a questo ordine i terrazzamenti di Cataratti (q. 250-240 m), modellati sulle calcareniti del Pleistocene medio, o sulle ghiaie e sabbie di Messina; di Santo (q. 240 m), su terreni medio-supra miocenici e di Badia Brasiliani (q. 200 m), modellati sui termini da messiniani a medio-pliocenici.

Tra Tremestieri e Ali si segnalano solo altri due terrazzamenti situati rispettivamente a nord di Larderia Inferiore (q. 200 m), intagliato sui depositi del Pliocene superiore-Pleistocene inferiore, e quello di M. Vecchio a nord di Giampilieri Superiore (q. 275 m), sui depositi del Pleistocene medio.

Le differenze di quota registrate fra i vari lembi possono essere imputate all’attuale distribuzione degli alti e bassi strutturali, determinatisi a seguito del controllo esercitato dai sistemi di faglie coniugati.

Sul lato tirrenico i terrazzamenti attribuiti a questo ordine sono distribuiti, relativamente all’area del Foglio, in una stretta fascia sul vertice NO. Sono intagliati sui terreni che si estendono dal Miocene medio-superiore al Pleistocene medio, a ridosso del sistema di faglie orientato NE-SO, e sono debolmente inclinati verso mare. I lembi più orientali sono quelli a sud di Valdina (q. 250 m), i due a est di Torregrotta (q. 220 e 195 m) e quello a sud di Pirrera (q. 195 m). Anche in questo caso la dispersione altimetrica registrata fra i diversi terrazzamenti è da attribuire all’attività tettonica recente e attuale delle faglie a gradinata che collasano il fianco occidentale della dorsale peloritana verso il Tirreno.

III ordine (g₃n₃)

I depositi marini terrazzati assegnati al 3° ordine sono distribuiti costantemente tra quota 175 e 150/140 m, nell’immediato entroterra dei due versanti della dorsale peloritana, e non trovano riscontro, come ordine progressivo, con quello individuato da Catalano & Cinque (1995) (ordine tra 130 e 70 m) per il settore a nord della carta in esame.

I depositi terrazzati di 3° ordine sono conservati in lembi molto ridotti, se considerati singolarmente, ma ove questi si raccordano, tramite blandi gradini, a quelli di 2° ordine costituiscono ampie superfici degradanti verso le rispettive linee di costa. Sono modellati al tetto di vari termini del substrato, fino ai terreni cristallini. L’inviluppo delle quote massime di dislocazione dei depositi di questo ciclo si attesta alla base di una blanda scarpata, che ne rappresentava la relativa paleofalesia, impostata e/o allineata su diretrici tettoniche attive dopo il modellamento dei terrazzamenti di quarto ordine.

Da nord a sud sono stati riconosciuti depositi relativi al 3° ordine ad est di Camaro, dove i due lembi situati al tetto delle ghiaie e sabbie di Messina costituiscono superfici terrazzate debolmente inclinate verso est (rispettivamente a quota 175 e a 145 m). Analoga disposizione presentano i due lembi ad est di Badia dei Brasiliani (q. 170-140 m). Più a sud, tra Galati e Galati Marina è presente un lembo terrazzato, modellato su depositi del Miocene medio-Pleistocene medio, che si estende da quota 170 a 150 m. Tra Briga Marina e Scaletta Zanclea, i depositi terrazzati relativi a questo ordine sono intagliati esclusivamente sui terreni metamorfici di medio-alto grado (varie petrofacies di PMA) e si estendono da quota 170 a 120 m (Convento S. Placido e C.da Cuturi, a nord di Scaletta Superiore), determinando una superficie unica debolmente degradante verso costa, dove è possibile riconoscere, tramite bassi gradini morfologici, la transizione al successivo ordine di terrazzamento.

Nella zona di Ali, gli unici depositi terrazzati relativi a questo ordine sono modellati sulla copertura anchimetamorfica dell’unità omonima. Affiorano a NO e SO di Capo di Ali (q. 150 m); in quest’ultima località, un gradino appena accennato separa questo ordine di terrazzamento dal successivo. L’età del deposito è stata riferita da Catalano et alii (2003), al sottostadio isotopico 5.3.

Sul versante tirrenico depositi terrazzati del 3° ordine sono presenti a SE di Torregrotta (150 m), su depositi argillosi del Pleistocene medio, e a Zifronte (q. 150 m) su depositi calcarenitici del Pleistocene inferiore – ROE₃, separati da quelli di 2° ordine da un debole declivio a quota 140 m. Per questo settore del Foglio i dati disponibili non consentono di tracciare la posizione della linea di costa relativa a questo ordine di depositi terrazzati.

II ordine (g₂n₂)

I depositi terrazzati del 2° ordine sono conservati in lembi di estensione variabile su entrambi i versanti della dorsale peloritana e si sviluppano tra 140 e 65 m di quota, lungo fasce parallele alle linee di costa.

Il lembo più ampio è modellato sulle ghiaie e sabbie di Messina, ad ovest del
porto (q. 70 m), lembi minori sono situati immediatamente a sud, lungo la F. ra di Gazzi (q. 100 m), a est di Badia Brasiliani (q. 100 m), a S. Lucia (q. 128-125 m) e a ovest di Galati Marina (q. 100 m), anche questi modellati quasi esclusivamente sulle Ghiaie e sabbie di Messina.

Nel graben di Puntale Pignara i depositi del 2° ordine insistono sui depositi del Miocene medio-superiore, a quote tra 100 e 80 m (Piano Bagni) e 90 m (a est di Puntale Acquafode).

Tra Ponte Schiavo e Scalella Zanclea i depositi terrazzati sono modellati esclusivamente al tetto delle metamorfiti di alto grado. Gli orli interni si attestano a quote variabili tra 140 e 75 m e definiscono sia terrazzamenti singoli (ovest di Ponte Schiavo, q. 140; sud di Monte Vecchio, q. 100 e 120/100; a ovest di Capo Scalella, q. 95/75 e 90/85), sia spianate che si raccordano, tramite orli di terrazzo, a quelli di ordine inferiore (a est e a sud di Convento S. Placido, q. 140; a ovest di Capo Scalella, q. 140-110).

Nell’area di Capo d’Alì i depositi terrazzati di questo ordine insistono sulla copertura sedimentaria anchimetamorfica dell’omonima unità tettonica e i relativi orli interni sono distribuiti a quota 115, 100 e 65 m.

L’età del deposito è stata riferita da Catalano et alii (2003), ai sottostadi isotopici da 5.1 a 3.3, nel range cronologico tra 80 e 60 ka.

Sul versante tirrenico depositi terrazzati del 2° ordine sono presenti a nord di Torregrotta (q. 140-120 m, sulle litofacies argillose e sabbiose del Pleistocene medio); a ovest di Zifronte (q. 130 m, separato da quello di 3° ordine da un debole gradino morfologico) e a nord di Zifronte (q. 100 m), in entrambi i casi insistono esclusivamente sulle argille sabbiose del Pleistocene inferiore (ROEa).

I ordine (gn1)
L’unico deposito terrazzato relativo a questo ordine è ubicato sul settore ionico, ad ovest di Messina, in destra della F. ra Zàera (q. 50 m circa), sulla terminazione settentrionale dell’horst di Santo. Si tratta di un limitato lembo isolato, modellato sui terreni metamorfici di alto grado, quasi totalmente obliterato dall’edificazione.

8.1.2. - Settore calabro

Lungo la sponda calabra, al di sopra delle successioni terziarie e quaternarie, si sviluppa una serie di depositi terrazzati e spianate di abrasione (Ghisetti, 1981; Atzori et alii, 1983), con livelli apicali di terre rosse. Il deposito che costituisce questi ripiani ha caratteristiche composizionali alquanto omogenee. Si tratta di ghiaie grossolane e sabbie quartzoso-micacee ciottolose, a struttura da massiva a stratificazione parallela, con sacche e canali, passanti a livelli nastriformi con clasti fino a 20 cm di diametro, localmente embriciati. A luoghi la percentuale delle due frazioni granulometriche si inverte. I clasti sono poligenici, prevalentemente cristallini di medio-alto grado; sono arrotondati e di forma piatta e hanno diametro medio di 1 cm. La colorazione è costantemente bruno-rossastra.
Spessore fino a 20 m.
Tali depositi, distribuiti in diversi ordini, sono dislocati dai sistemi di faglie regionali, e costituiscono ampie spianate debolmente inclinate verso l’attuale costa dello Stretto. Sulla base di correlazioni tra episodi marini e fasi d’erosione e sedimentazione continentale Ghisetti (1980) ricostruisce una successione rappresentata da:
- depositi terrazzati sovrapposti al cristallino del versante occidentale dell’Aspromonte (Campi di Reggio, Campi di S. Agata e Piani di Aspromonte), coevi delle successioni calcarenitico-argilloso-sabbiose infrapleistoceniche e datati a 1.5 M.A.;
- depositi terrazzati sovrapposti alle calcareniti di Vinco (Atzori et alii, 1983) (a est di Reggio di Calabria, q. circa 550 m) e coevi delle ghiaie e sabbie di Messina, datati a 0.7 M.A.;
- depositi terrazzati sovrapposti alle ghiaie e sabbie di Messina, datati a 0.2 M.A.;
- un ultimo livello (Croce Valanidi, Ravagnese, S. Elia di Condera, Piani di Anghillà, Campo Piale) è rappresentato dai depositi sovrapposti ai sedimenti tirreniani, riferibili a 0.08 M.A., ed anteriori solo ai depositi legati all’idrografia attuale. Queste superfici mostrano passaggi da depositi fluviali a glacis e a conoidi, e secondo DuMas et alii (1978) costituiscono anche in parte un rimaneggiamento, in ambiente continentale, di precedenti spianate di abrasione marina.
Secondo Ghisetti (1980), la dislocazione altimetrica e le caratteristiche morfo-tettoniche di queste superfici permettono di evidenziare velocità di sollevamento differenziale nel corso del Pleistocene, ma con una tendenza ad aumentare, nel settore di Reggio di Calabria, da valori di 0.1-0.4 mm/anno a 1.5 M.A., a valori di 0.1-0.8 mm/anno a 0.7 M.A. e di 0.9-1.5 mm/anno a 0.08 M.A.

In Calabria meridionale Catalano et alii (2003) riconoscono cinque ordini di terrazzi marini, distribuiti lungo costa da Villa S. Giovanni a Reggio di Calabria. A nord della faglia di Reggio i vari ordini di terrazzo attestano gli orli interni tra quota 200 e 40 m s.l.m.; a sud, sul blocco rialzato della faglia, gli orli interni dei terrazzi sono distribuiti tra q. 270 e 60 m. s.l.m. L’età del deposito e/o delle spianate di abrasione è stata riferita dagli Autori, ai sottostadi isotopici da 7.1 a 3.3 (Balescu et alii, 1997), nel range cronologico tra 200 e 60 ka.

In Calabria meridionale DuMas et alii (2000, 2002) e più recentemente DuMas & Raffy (2004), riconoscono sei ordini di terrazzi marini, distribuiti dall’attuale
livello del mare (1° ordine) a quota 180 m s.l.m. (6° ordine). Essi sono correlati con eventi glacio-eustatici e, sulla base di rinvenimento di fauna a *Strombus bubonius* (DUMAS et alii, 1987), di dati geocronologici ad aminoacidi (DUMAS et alii, 1988) e della termoluminescenza (BALESCU et alii, 1997), il deposito più alto è assegnato al sottostadio 5e (128 ka), il più basso allo stadio 1. Questi terrazzi, il cui deposito secondo DUMAS & RAFFY (2004), può raggiungere spessore da 30 a oltre 100 metri, rimangono approssimativamente alla stessa altitudine per una distanza di circa 40 km, da Villa S. Giovanni a Capo dell’Armi. Per gli Autori citati il tasso di sollevamento dedotto dalla variazione d’altitudine della linea di riva del terrazzo di 6° ordine (sottostadio 5e, 128 ka) oscilla tra 1,21 m/ka e 1,36 m/ka, cioè presenta una differenza di solo 0,15 m/ka, lungo tutto il litorale occidentale della Calabria meridionale. Essi hanno accertato movimenti recenti, ma molto deboli, lungo i principali sistemi di faglia e l’analisi geomorfologica ha confermato variazioni del tasso di sollevamento in proporzione molto ridotta negli ultimi 128 ka. Pertanto, a partire dal Pleistocene superiore, la riattivazione delle faglie non ha giocato un ruolo determinante nell’evoluzione geomorfologica dei margini dello Stretto, e i vari orli di terrazzi sono dovuti al sollevamento regionale, che ha interferito con numerose variazioni del livello del mare.

8.1.2.1. - Ordini dei depositi terrazzati

Sul versante calabro dell’area del Foglio sono stati riconosciuti cinque ordini di spianamenti e/o depositi marini terrazzati, posti tra 40 e 275 m di quota. Come per il settore siciliano, la numerazione progressiva attribuita ad essi è crescente, procedendo verso le quote maggiori.

Nel settore in esame, specialmente a nord di Reggio di Calabria, per diversi ordini di terrazzi, l’orlo interno non rientra in carta, pertanto esso è stato definito in riferimento a quello successivo di ordine immediatamente più alto.

V ordine (g_n5)

E’ stato riconosciuto a Campicello di Pellaro (ad ovest di Bocale, sul margine SE del Foglio): l’orlo interno, non presente in carta, probabilmente si attesta a 275 m di quota, e degrada, su una distanza lineare di circa 1100 m, fino a quota di 225 m s.l.m. Il deposito è intagliato sulla formazione delle ghiaie e sabbie di Messina (MSS).

Relativamente al settore reggino del Foglio non sono state riconosciute altre tracce di terrazzi riferibili a questo ordine.

IV ordine (g_n4)

Tracce di questa fase di terrazzamento marino si rinvengono a est e sud-est di
Pellaro, tra Nocilla e Campicello di Pellaro, ad una quota compresa tra 180 e 125 m s.l.m.; a sud e a nord di S. Filippo, rispettivamente a quota 139 m e 190-125 m. Nel primo il deposito marino si pone su MSS, nel secondo è intagliato sulla formazione di S. Pier Niceto (litofacies PCT\textsubscript{b}) e sulle argille scagliose dei Monti Peloritani (ASI).

III ordine (g\textsubscript{n3})

La terza fase di terrazzamento marino è testimoniata da una serie di ampi lembi di superfici. Da sud a nord sono stati attribuiti a questo ordine i terrazzi ubicati tra Nocilla e Bocale est (quota 110-95 m), e quelli ad est di Marconi-Modena (frazioni a SE di Reggio di Calabria) (quota 140-100 m s.l.m), entrambi posti sulla formazione MSS. Ad est del capoluogo, a borgata Spirito Santo (quota 140-115 m) e a nord di Spirito Santo (quota 125-100 m), i depositi relativi a questo ordine giacciono sia sulle ghiaie e sabbie MSS che sulle argille nerastre di Spirito Santo (ANS). Ancora più a nord, tra Archi Carmine e Gallico, terrazzamenti riferiti a questo ordine, insistenti sulla formazione MSS, sono ubicati tra quota 140 (orlo interno non presente nel Foglio) e 110 m.

II ordine (g\textsubscript{n2})

I depositi marini terrazzati attribuiti al 2o ordine sono presenti tra Trapezi Lia e la periferia nord di Bocale (quota 75-60 m), al Cimitero di Pellaro-S. Giovanni (quota 58-50 m), in una serie di terrazzi ad ovest di Mortara (orlo interno non presente in carta, orlo esterno a quota 50 m s.l.m.) e ad est di S. Gregorio, tra F.ra Valanidi I e F.ra d’Armo (orlo interno non presente in carta, orlo esterno a quota 50 m s.l.m.). Tutti i terrazzi fin qui citati sono modellati sulla formazione delle ghiaie e sabbie di Messina. Al 2o ordine di terrazzamento è attribuita la superficie ubicata tra quota 100 e 75 m, che costituisce il placcone di Case Nesci, a sud-est di Pellaro.

Procedendo ancora verso nord, terrazzi attribuiti a questo ordine sono presenti a sud di Reggio di Calabria, tra F.ra di S. Agata, Arangea inferiore e Ravagnese, (quota 75-50 m) e a Modena (quota 100-45 m). Nell’area di Ravagnese il deposito è caratterizzato da sabbie giallastre in banchi di 1-2 m con intercalazioni di ghiaie, passanti verso l’alto a sabbie a stratificazione indistinta. La componente ghiaiosa è costituita da clasti prevalentemente cristallini di alto grado, e subordinatamente arenitici; la dimensione media dei ciottoli è 5-10 cm, la forma è subarrotolata. Lo spessore affiorante è intorno a 15-20 m. A questo deposito era stato assegnato da Atzori et alii (1983) il termine informale di Sabbie di Ravagnese e Bovetto dalle località ove esso è meglio rappresentato. Ritenuto tirreniano per la presenza di una macrofauna a *Strombus bubonius*, poggia in discordanza sulle Sabbie e ghiaie di Messina, sebbene il contatto non sia osservabile nell’area del Foglio. Il limite interno dell’unità si attesta a circa quota 100 m s.l.m. (al di fuori del Foglio), e si abbassa verso sud-ovest fino a quota 53 m s.l.m.

Il deposito, per le caratteristiche litologiche e per il contenuto fossilifero di “tipo senegalese”, è correlabile con i depositi di spiaggia affioranti nell’area di Capo Peloro, sulla sponda messinese dello stretto (Foglio Villa S. Giovanni),
posti a q. 85 m s.l.m., e riferiti al Tirreniano da Catalano & Di Stefano (1997) e allo stadio isotopico 5.5 da Martison et alii (1987) e Bonfiglio & Violanti (1983).

Tra la periferia nord di Reggio (F. ra dell’Annunziata) e Archi, sulle ghiaie e sabbie di Messina (MSS) e in parte anche sulle argille nerastre di Spirito Santo (ANS), sono modellati piccoli lembi di terrazzi distribuiti a quote 100-58, 87-75, e 75-50 m.

Sempre a nord del capoluogo, modellati sulla formazione MSS sono stati attribuiti a questo ordine i terrazzi di Gallico (orlo interno non presente in carta, orlo esterno a quota 45 m), e quello di Valle, a est di Catona (quota 100-63 m).

I ordine (g\textsubscript{R1})

A quest’ordine sono ascriviti i depositi terrazzati conservati in lembi di estensione variabile e distribuiti da sud a nord tra 50 e 60 m di quota s.l.m.

Il lembo più ampio è modellato sulle ghiaie e sabbie di Messina, a SO di Trapezi Lia (Cosimelio), a quota 50-40 m.

A est di Ravagnese, modellato sui terreni della formazione di S. Pier Niceto, è stato attribuito a questo ordine, il terrazzo di quota 50 m.

I lembi più settentrionali del terrazzo affiorano al limite nord-est del Foglio, presso Valle a quota 50 m, e a S. Giovannello tra quota 60 e 40 m.

8.2. - DEPOSITI TRANSIZIONALI E CONTINENTALI

8.2.1. - Conglomerati di Allume (LLM) e ghiaie e sabbie di Messina (MSS)

Lungo la fascia costiera dei Monti Peloritani, sia sul lato ionico che tirrenico, e nel settore calabrese, affiorano notevoli volumi di sedimenti conglomeratico-sabbiosi poggianti in discordanza su diversi termini del substrato e sul basamento. Questi depositi clastici, attribuiti alle “Sabbie e ghiaie di Messina” ed interpretati come il prodotto di antichi apparati fluvio-deltizi alimentati dalla dorsale peloritana ed aspromontina, si sono sviluppati durante le fasi di surrezione dell’area. In effetti essi sono riferibili a sistemi fluviali indipendenti, a volte coalescenti, con rapporti di letto e sviluppo verticale differenti a seconda delle diverse condizioni locali in cui essi si sono accresciuti. Apparati analoghi, con l’originaria geometria ancora perfettamente conservata, sono riconoscibili anche nelle aree sommerse e sono stati messi in evidenza sia da linee sismiche che da dati di perforazione. Tuttavia, i dati disponibili non sono sufficienti a stabilire se gli apparati sommersi siano duplicati tettonici, ribassati da faglie normali, di quelli affioranti a terra o piuttosto sistemi deposizionali più recenti incastrati a quota inferiore.

I dati emersi dai rilevamenti per la Carta geologica della Provincia di Messina (Lentini, 2000; Lentini et alii, 2000) hanno evidenziato che questi terreni clastici, raggruppati in un’unica formazione, possono costituire successioni appartenenti a sistemi deposizionali leggermente diaconi. La difficoltà di datazione di tali de-
posi ha consentito una correlazione delle superfici deposizionali esclusivamente su base fisica. L’analisi geometrica dei depositi in relazione alle strutture del substrato indica che tali sedimenti sono stati variamente investiti dalla tettonica tardo-pleistocenica, e generalmente sono tagliati verso mare dalle faglie normali che controllano sia la costa tirrenica che quella ionica.

Lungo la sponda messinese, tra Ali Terme e il basso corso del T. Fiumedinisi, sono state riconosciute due sequenze conglomeratiche. Quella inferiore, informalmente denominata “conglomerati di Allume” (LLM), dalla località ove è meglio esposta (cfr. Foglio Taormina), è costituita da conglomerati e da sabbie rossastri in appoggio discordante di tipo on lap sul substrato e/o sull’unità filladica. I conglomerati sono poligenici con clasti eterometrici subarrotondati, filladico-quarzitici e subordinatamente arenitici e carbonatici, in matrice sabbiosa e sono variamente diagenizzati. Affiorano alla base di paleoscarpe di faglia, ove raggiungono uno spessore fino a 150 m. La sequenza superiore, assegnata alle ghiaie e sabbie di Messina (MSS), è caratterizzata da sabbie e ghiaie grigio-giallastre o rossastre nei livelli più alti, con abbondante matrice. I clasti, prevalentemente cristallini, da subbarrotondati a spesso embriciati, hanno dimensioni compresa tra quelle dei ciottoli fino a quelle dei blocchi; sono inoltre presenti livelli e lembi di sabbie fini e silt quarzosi. In questo tratto di costa la formazione MSS sutura le strutture estensionali che dislocavano i conglomerati di Allume.

Selli (1978) attribuisce la formazione ad un ambiente deltizio alimentato dalle fiumare e la divide in una facies deltizia marina ed una deltizia continentale, complessivamente di età infrapleistocenica.

Bonfiglio & Violanti (1983) distinguono una facies inferiore di delta marino, di colore grigiastrso, ed una superiore di delta continentale, di colore rossastro.

Barrier (1987) attribuisce la formazione ad un sistema di tipo Gilbert fan delta e riconosce un bottomset costituito da argille epibatiali e da sabbie a Chlamys septemradiata, un foreset dato da ghiaie clinostratificate, e un topset formato da depositi terrazzati eutirreniani.
Secondo Catalano & Cinque (1995) i livelli inferiori sono dislocati dalle faglie del versante siciliano dello Stretto, mentre quelli apicali in facies continentale sicuramente suturano le faglie poste al bordo della dorsale peloritana; gli Autori, pertanto, individuano anche una discordanza all’interno della formazione.

I dati biostratigrafici raccolti e l’analisi geomorfologica condotta nell’area (Catalano & Cinque, 1995; Catalano & Di Stefano, 1997), nonché i dati disponibili sull’età delle “Ghiaie e Sabbie”, evidenziano che i termini, prima correlati in un unico sistema deposizionale, in effetti costituiscono orizzonti stratigrafici distinti. Le argille epibatiali sono ascrivibili al Pleistocene medio (650 ka); le ghiaie, sulla base del contenuto negli orizzonti sommitali di resti di Elephas mnaidriensis, rinvenuti a Capo Peloro, indicherebbero un’età non più antica di 200 ± 40 ka (Bada et alii, 1991; Bonfiglio, 1991); infine le “ghiaie e sabbie” risultano, nel settore tirrenico, modellate dal terrazzo di quota 180 m, ascrivibile allo stadio isotopico 7, precedente ai picchi eustatici tirreniani.

Nel settore ionico, su entrambi i versanti dello Stretto, la formazione affiora con continuità e potenza, ed è caratterizzata da clinostratificazione ad alto angolo, con valori medi di inclinazione di 20°-25° verso lo Stretto, via via più bassi nella parte alta.

Sul versante messinese, è presente dal settore nord della città sino ad entrambe le sponde della F.ra di Zafferia, in appoggio sui terreni metamorfici di alto grado (PMAa), e su vari termini della copertura miocenica e plio-pleistocenica. A sud della F.ra di Gazi, presso M. S. Pietro, le ghiaie e sabbie di Messina poggiano sulla formazione di S. Pier Niceto, sui calcari evaporitici e sui Trubi; sono clinostratificate con immersioni verso est e sono presenti sia la facies marina, in matrice sabbiosa giallastra, alla base, che quella continentale, in matrice rossastra, alla sommità. Con uguali caratteristiche affiorano da Minissale fino a est di Larderia Inferiore, in appoggio prevalentemente sulla litofacies marnoso-arenacea (PCTa) della formazione di S. Pier Niceto. Nel settore a sud della F.ra di Larderia la formazione riaffiora nei pressi della costa ad est di Mili S. Marco; la litologia, gli spessori medi e il valore angolare dell’inclinazione sono i medesimi di quelli riportati per gli affioramenti nei pressi di M. San Pietro. Affioramenti minori sono presenti tra Mili Marina e Galati Marina. Lo spessore massimo lungo la costa messinese è di circa 250 m.

Nel settore reggino la formazione si estende con continuità lungo tutta la fascia costiera, sia in affioramento che al di sotto della coltre alluvionale, in appoggio quasi esclusivamente sul substrato sedimentario; nell’entroterra reggino, alle pendici dell’Aspromonte, la formazione raggiunge i 400 m di spessore.

Lungo il versante tirrenico dei Peloritani, relativamente all’area del Foglio, le ghiaie e sabbie di Messina affiorano in limitati lembi a nord di Torregrotta, dove risultano dislocate dal sistema di faglie normali orientate NE-SO. La formazione poggia con contatto netto e discordante sui depositi pleistocenici rialzati lungo le gradinate di faglie e si estende al tetto delle argille mediopleistoceniche (SPDa), conservative nelle depressioni strutturali.
8.2.2. - Depositi alluvionali terrazzati (bₙ)

Trattasi di ghiaie poligeniche ed eterometriche, brune o giallastre a clasti prevalentemente arrotondati di diametro da 2 a 30 cm, con matrice argilloso-sabbiosa scarsa, alternate a rari sottili livelli di sabbie argillose rossastre, di sabbie ciottolose a supporto di matrice argilloso-terrosa, in assetto massivo o leggermente stratoide e di limi argillosi rossastri a stratificazione poco evidente. Lo spessore, generalmente modesto, raggiunge la potenza massima di 5 m. Sono ubicati ad altezze diverse sugli attuali alvei; la facies è fluvio-lacustre o esclusivamente fluviale. La composizione dei clasti è relativamente omogenea nei depositi che si collocano lungo l’attuale alto della dorsale peloritana. Lungo i fianchi della dorsale la composizione è molto varia, essendo presenti tutti i litotipi del basamento metamorfico e delle coperture sedimentarie che lo ricoprono. Lungo i corsi d’acqua minori la natura dei ciottoli è funzione delle rocce affioranti nei paleo-bacini.

Localmente costituiscono spianate debolmente inclinate verso valle, disposte in più ordini, lungo i settori di confluenza delle aste tributarie dei corsi principali.

Ove è presente ildeposito, la colorazione bruna o rossastra, più o meno intensa, è determinata dalla presenza di ossidi e idrossidi di ferro, che formano patine sui clasti o si “spalmano” in sottili livelli.

Nel settore siciliano del Foglio sono stati riconosciuti sei ordini di deposito e/o spianate (bₙ₁₋₆), numerati da quello altimetricamente più alto (bₙ₆), al più basso (bₙ₁). Nel settore calabrese, lungo la stretta fascia di territorio rientrante nel Foglio, non sono stati riconosciuti depositi alluvionali terrazzati.

La genesi delle superfici più alte (bₙ₆) è dubbia, essendo rappresentate da forme subpianeggianti sospese, ubicate rispetto a bₙ₅ circa 100 metri più in alto. Sono presenti su entrambi i versanti dei versanti della dorsale peloritana, ma in contesti strutturali differenti, e sono riconducibili a spianate denudazionali che si attestano sui 550 m circa di quota.

Rispettivamente da nord a sud del settore occidentale del Foglio, sul versante tirrenico della dorsale, le superfici bₙ₆ sono presenti a Pizzo Motta (q. 555-550) e ad ovest di S. Cono (q. 540) e coincidono con la superficie di strato suborizzontale dei depositi calcarenitici della Fase di Rometta (ROE). Sempre sul versante tirrenico, presso La Pisterina (q. 550 m), sul fianco occidentale della depressione tetttonica di Piano Solimo-Piano Inadà-Piano Lacini, sui terreni cristallini di alto grado (PMA) è presente un’ampia superficie pianeggiente (bₙ₆) con un esiguo spessore di deposito limoso, probabilmente di tipo eluviale. Un ultimo lembo bₙ₆ è stato riconosciuto sul versante ionico dei peloritani, a sud-est di Belvedere (q. 550 m), sui terreni metamorfici dell’Unità del Mela (MLE). Anche in questo caso sulla superficie pianeggiente è presente un esiguo spessore di limo.

Le quattro superfici bₙ₆ descritte risultano svincolate dall’idrografia attuale, essendo localizzate nelle aree attualmente più elevate e testimoniano il continuo ringiovanimento della dorsale, in risposta al notevole sollevamento regionale in età plio-pleistocenica.
Tutte le altre restanti forme pianeggianti (b\textsubscript{n5-1}), siano esse rappresentate da depositi alluvionali e/o da spianate, disegnano antichi profili di equilibrio, e sono sospese verso mare lungo linee di faglia. È evidente una marcata divergenza tra gli elementi fluviali più antichi e gli attuali profili di equilibrio dei corsi d’acqua. La generale disposizione degli elementi morfologici riconosciuti dimostra, come già segnalato da Catalano & Cinque (1995), un progressivo spostamento dell’attività delle faglie verso mare.

Lungo il versante ionico dei Peloritani, controllato dalle faglie normali del Sistema Messina-Etna, si assiste alla repentina troncatura verso mare degli elementi più antichi del paesaggio, rappresentati da forme di ambiente continentale, i cui equivalenti marini sono stati presumibilmente ribassati nelle aree ioniche sommerse. Gli elementi morfologici più recenti, rimodellati, si collegano verso l’entroterra a terrazzi fluviali sospesi lungo le valli.

L’età dei depositi alluvionali terrazzati è Pleistocene medio-superiore.

8.2.3. - Argille nerastre di Spirito Santo (ANS)

In discordanza sulle ghiaie e sabbie di Messina ad est e a nord di Reggio di Calabria (rispettivamente a Spirito Santo e ad Archi), affiorano terreni caratterizzati da diverse litofacies, attribuibili ad un ambiente fluvio-lacustre e/o palustre. Tali depositi, per posizione stratigrafica, sono stati correlati da Atzori et alii (1983) a quelli di Ravagnese e Bovetto, di ambiente francamente marino, e considerati di età tirreniana per la presenza di *Strombus bubonius*.

In entrambe le località la formazione ha spessore oscillante tra 20 e 25 m. L’età è tirreniana per correlazione con gli equivalenti livelli a *Strombus* di Ravagnese (Atzori et alii, 1983).

9. - DEPOSITI CONTINENTALI E TRANSIZIONALI OLOCENICI

9.1. - Depositi alluvionali recenti e depositi di piana litorale (b\textsubscript{b})

Trattasi di limi e sabbie con livelli di ghiaie, talora terrazzati (b\textsubscript{b}), localizzati in aree più elevate rispetto agli alvei fluviali attuali. La componente ruditica è rappresentata da ciottoli poligenici, prevalentemente cristallini, arrotondati e bene elaborati con diametro medio di 4-5 cm e valore massimo di 30 cm. Talvolta i clasti dei livelli ghiaiosi hanno disposizione embriciata, mentre nei livelli limoso-
sabbiosi la stratificazione è poco evidente. Questi depositi si trovano a varie quote al di sopra dell’alveo attuale, generalmente ad un’altezza media di 3 m (tra una massima e minima rispettivamente di 6 m e 1 m), sono fissati da vegetazione ad arbusti (versante ionico siciliano) ed ampiamente coltivati ad agrumeti sia sulla sponda calabra che su quella tirrenica siciliana (alto corso della F.r.a di Niceto); solo eccezionalmente possono essere rielaborati da piene torrentizie.

Questi depositi sovente si interdigitano ai corpi detritici posti alla base delle pareti rocciose, in altri casi si sovrappongono ai sedimenti alluvionali che costituiscono le alluvioni dei corsi tributari minori, da questi reincise e ormai sospese rispetto all’alveo attuale.

Nel tratto terminale delle valli questi depositi si collegano direttamente a quelli presenti lungo la costa, che costituiscono le piane costiere attuali immediatamente alle spalle dei litorali. Alcune di queste sono molto ampie, come quelle su cui si sviluppano i due capoluoghi di provincia e, oltre ad essere sede di espansione urbanistica o di insediamenti industriali, rappresentano delle aree di interesse idrogeologico.

L’ampiezza della fascia litorale è notevolmente variabile su entrambi i versanti dello stretto; è mal definibile in corrispondenza dei due capoluoghi, a causa dell’intensa antropizzazione. Sul versante messinese essa decresce da nord verso sud da valori medi di circa 1 km a qualche decina di metri in corrispondenza di Giampilieri Marina, fino ad azzerrarsi in corrispondenza di Scaletta Zanclea. Tra Scaletta Marina e nord di Capo d’Ali si attesta su un’ampiezza di circa 100 m, per assottigliarsi fino a scomparire in corrispondenza del promontorio; a sud del capo è presente con estensione media di circa 150 m. L’eccessiva urbanizzazione rende difficile, se non impossibile, il riconoscimento di forme terrazzate ascrivibili a livelli del mare più alti dell’attuale, pertanto l’intera fascia è stata riferita a fasi progradazionali del tardo Olocene. A ridosso si sviluppa una falesia, alta fino a 60-80 m, a decorso per ampi tratti rettilineo, il cui tracciato ricalca di fatto l’andamento delle faglie bordiere.

La sponda calabra è caratterizzata da un profilo della linea di costa molto più articolato, con ampie sporgenze formatesi per i cospicui apporti solidi trasportati dalle fiumare che, dalle pendici aspromontine verso la piana, attraversano terreni facilmente erodibili. L’ampiezza media della fascia alluvionale varia da 1 km a 100 m tra Marinella e Gallico Marina-Archi; tende ad ampliarsi verso sud attorno alla città di Reggio di Calabria sino a Pellaro, da dove si riduce sino a qualche decina di metri a sud del promontorio di Punta di Pellaro-Bocale.

L’età dei depositi è Olocene.
9.2. - Depositi alluvionali attuali (bₐ)

Costituiscono il materiale dell’alveo attuale (bₐ) in continua elaborazione da parte del corso d’acqua, in particolare durante gli eventi alluvionali più intensi. In certi tratti delle valli alluvionali, i limiti esterni dei depositi alluvionali attuali rimangono non chiaramente definiti nei rapporti con le alluvioni recenti (bₙ) immediatamente soprastanti. Trattasi di ghiaie e sabbie limose; la frazione grossolana è eterometrica fino a grossi blocchi e poligenica, essendo costituita da prevalenti clasti metamorfici di vario grado, bene appiattiti ed arrotondati, e sedimentari a spigoli vivi. Su queste alluvioni non insistono insediamenti e coltivazioni, eccezione fatta per quella ad arbusti.

9.3. - Coltre eluvio-colluviale (b₂)

Si tratta di materiale detritico incoerente, derivante dal disfacimento in situ delle rocce ed è costituito da limi, ghiaie e sabbie a supporto di matrice terros-argillosa, a clasti metamorfici prevalenti, da spigolosi a subarrotondati di diametro tra 1 e 10 cm, e da terre rosse di alterazione. Sono più frequenti sui terreni di base privi di vegetazione o dove è stata operata un’intensa azione di disboscamento. Gli affioramenti più estesi sono quelli ad est di Saponara e a nord di S. Stefano di Briga, del settore peloritano.

9.4. - Deposito di versante (a)

Si tratta di depositi detritici generalmente incoerenti, costituiti da materiali eterometrici di varia litologia, spigolosi e localmente a grossi blocchi, accumulati essenzialmente per gravità alla base di versanti più o meno acclivi, o legati a processi di alterazione esogena di particolare significato. Lo spessore può raggiungere i 10 m.

Gli affioramenti più estesi sono quelli localizzati lungo i versanti dell’alto corso della F.r.a di Fiumedinisi e, lungo lo spartiacque peloritano, tra M. Scuderi e Pizzo Cavallo e alla base dei depositi sedimentari ad est di Monforte S. Giorgio.

In prossimità di incisioni vallive il detrito è organizzato in prismi di materiale di dimensioni e forma variabile, frammisto a scarsa matrice, da mal stratificato a clinostratificato, con inclinazione degli strati che localmente, specialmente in corrispondenza di direttrici tettoniche, può superare i 30°. Il deposito è incoerente e in continua evoluzione, a causa dell’erosione esercitata dalle acque di ruscelamento o per scalzamento al piede delle pareti rocciose; l’assetto deposizionale è molto effimero.

Localmente, allo sbocco di incisioni minori, tali depositi si interdigitano a quelli detritici localizzati lungo le pareti o alla base delle masse rocciose, oppure si sovrappongono ai sedimenti alluvionali dei fondovalle.
9.5. - Deposito di spiaggia (g2)

Generalmente si osserva in media un sostanziale ritiro delle spiagge, più pronunciato sulla sponda messinese, come lungo il litorale di Ali Terme, imputabile anche agli sconsiderati interventi di cementificazione dei corsi d’acqua ed a tutte quelle opere che riducono l’apporto solido delle fiumare verso la costa.

I caratteri tessiturali del deposito sono più omogenei sul tratto messinese, ove le spiagge sono prevalentemente ciottolose con clasti di diametro variabile da 1 a 10 cm; l’azione delle correnti lungo costa e del moto ondoso impedisce la permanenza della frazione sabbiosa e/o limosa eventualmente trasportata dai fiumi in fase di piena.

Sul versante calabrese gli aspetti tessiturali dei depositi di spiaggia sono più disomogenei in funzione soprattutto dei notevoli apporti delle maggiori fiumare, che hanno formato ampie piane costiere con lobature e insenature caratterizzate da depositi prevalentemente sabbioso-gliaiosi verso riva e ciottoloso-sabbiosi verso monte.

Sebbene non differenziabili alla scala del Foglio i caratteri tessiturali di tali depositi sono stati misurati lungo tutto il tratto di costa e da sud verso nord possono essere così sintetizzati:

- Bocale-P.ta di Pellaro: la spiaggia, ampia 20-40 m, è prevalentemente ghiaiosa per i primi 6-10 m, con ciottoli di 1-1,5 cm; i successivi 20-30 m verso terra (la piana alluvionale) presentano abbondante frazione sabbiosa con sporadici ciottoli cristallini di 7-8 cm di diametro.

- P.ta di Pellaro-Fiumarella di Lume: in questo tratto la spiaggia raggiunge la massima ampiezza, variando da 30 a 100 m. Il deposito è caratterizzato da ghiaie a clasti di 5-6 mm e da sabbie fini. Nella fascia superiore è presente una modesta percentuale di ciottoli cristallini di 7-8 cm e di pezzame laterizio.

- Fiumarella di Lume-Pellaro-Mortara (Occhio): la spiaggia, ampia da 2 a 25 m, è prevalentemente ghiaiosa con ciottoli di 6-8 cm e con abbondante pezzame di laterizi anche di dimensioni decimetriche. Nella baia di Mortara la dimensione dei clasti è di 2-3 cm.

- Mortara-S.Gregorio: in questo tratto di riva (oltre 2 km) la spiaggia è quasi totalmente assente ad eccezione di piccoli lembi ampi fino a 15 m caratterizzati da ghiaie con ciottoli di 2-3 cm.

- F.ra d’Armo-Vallone Menga: la spiaggia è ampia da 5 a 25 m, è costituita da ghiaie a clasti di 2-3 cm nei primi 4 m, ed è sabbiosa nella fascia superiore.
Dalla zona aeroportuale della città di Reggio verso nord l’intensa urbanizzazione, oltre agli insediamenti balneari più o meno artificiali e quelli industriali, rendono ancor più difficile la ricostruzione della paleo-spiaggia; ciò che di successivo viene descritto si riferisce esclusivamente a quanto affiorante e probabilmente riferibile ai depositi costieri attuali.

- F.ta S. Agata-Punta Calamizzi: la spiaggia è ampia 20-25 m ed è prevalentemente sabbiosa ad eccezione dei primi metri a frazione ghiaiosa con clasti di 6-7 mm.
- Punta Calamizzi: la spiaggia è assente, ad eccezione di limitati lembi ciotolosi.
- Reggio di Calabria (Stazione Centrale) - F.ta dell’Annunziata (Spiaggia dei Giunchi): Trattasi di una spiaggia ghiaioso-sabbiosa artificiale, ampia 15-40 m. Prettamente ghiaiosa nei primi metri, presenta clasti di dimensione di 4-5 mm. L’intera fascia è deturpata da clasti di laterizi.
- Zona Porto (fino a Faro Verde): la spiaggia è assente, mentre è notevole la quantità di materiale di riporto e di massi frangiflutti a protezione del molo di ponente.
- Litorale Archi-Gallico Marina (Pentimele): spiaggia sabbiosa in parte artificiale; assente alla foce del T. Fiumetorbido (Stazione di Archi).
- Stazione di Archi - F.ta Scaccioti: spiaggia ghiaioso-sabbiosa a clasti di 8-10 mm, a tratti ciotolosa a clasti di 8-10 cm e con abbondanti clasti di laterizi. L’ampiezza della spiaggia oscilla tra 5 e 25 m.
- Gallico-Catona: in questo ampio tratto di litorale (oltre 5 km) la spiaggia è prevalentemente sabbiosa, a tratti ghiaiosa nei primi 1-3 m e ciotolosogliaiosa in corrispondenza di massi frangiflutti. La spiaggia è assente in prossimità della foce della F.ta di Gallico. L’età dei depositi è Olocene.
Il Foglio Messina–Reggio di Calabria ricade nella terminazione meridionale dell’Arco Calabro, che costituisce un segmento dell’orogene appenninico-maghrebide, esteso dall’Appennino meridionale alla Sicilia e al Nord Africa. Nella fascia orogenica affiorante nella Sicilia orientale è possibile riconoscere la sovrapposizione di un dominio strutturale Kabilo-Calabride, originatosi a partire dall’Eocene superiore e caratterizzato da falde di basamento con resti delle originarie coperture meso-cenozoiche, al disopra di un sistema a thrust pellicolare denominato Catena Appenninico-Maghrebide, prodotto dalla deformazione dei bacini alpino-tetideo e ionico ad iniziare dal Miocene inferiore. Quest’ultimo risulta sovrascorso al disopra di un sistema a thrust profondo generato dalla deformazione post-tortoniana del margine interno dell’Avampaese africano, denominato Sistema Siculo-Pelagiano (Pelagian-Sicilian Thrust Belt, in Finetti et alii, 2005). Pertanto, al fine di descrivere le caratteristiche strutturali e la prolungata e complessa evoluzione tettonica di quest’area, è necessario separare le varie strutture relative a diverse fasi deformative, che si sono succedute durante la costruzione dell’edificio. Infatti le fasi più antiche sono relative alla tettonica paleozoica, mentre per quelle riferite ad una generica tettonica “alpina” è necessario precisare se si tratta di quella “eolalpina” (di età cretacico-cocenica), ovvero di quella di età paleogenico-mediomiocenica, coeva cioè alla rotazione del Blocco Sardo-Corso. Quest’ultima avrebbe prodotto un orogene Africa-vergente in Sicilia ed Apulo-vergente in Appennino e, al fine di evitare confusione, per essa andrebbe usato il termine di “fase appenninica”. Alle strutture relative a questa fase si sarebbero sovraimposte quelle collisionali ascrivibili al Miocene medio ed al Plio-Pleistocene (Finetti et alii, 1997; Lentini et alii, 2000).

Le strutture di età paleozoica rientrano nell’ambito della geologia del cristal-
lino e pertanto la relativa descrizione è stata fatta contestualmente alla trattazione delle unità di basamento. Per quanto concerne la fase eo-alpina, non si hanno evidenze certe di strutture riferibili a tale fase. Le successioni flyschoidi ed i contatti di ricoprimento delle varie falde di basamento registrano deformazioni di età non più antica dell’Eocene superiore. Gli elementi raccolti, anche nel più ampio contesto regionale, non sono sufficienti ad oggi ad identificare gli eventuali effetti di una tettonica eo-alpina.

Rimane da effettuare un’analisi delle deformazioni dovute alla fase balearica, di età oligo-miocenica, coeva alla rotazione del Blocco Sardo-Corso, e responsabile della chiusura più o meno totale del Bacino della Tetide alpina e della conseguente collisione con la crosta panormide (v. FINETTI et alii, 2005), e di quelle originate da una fase tirrenica, che tuttavia va ad interessare maggiormente le unità appenninico-maghrebidi.

Se da una parte l’attuale configurazione regionale è stata disegnata dalle strutture più recenti che controllano le linee di costa e l’orografia complessiva, dall’altra l’assetto geologico ed i rapporti tra le differenti successioni affioranti si sono delineati durante tutta la storia deformativa polifasata dell’area. Il primo aspetto risulta di particolare interesse dal punto di vista della dinamica geomorfologica e della pericolosità sismica, il secondo è fondamentale per la ricostruzione dell’evoluzione tettonica complessiva dell’area. Tutto ciò risulta complessivamente utile per una classificazione del territorio in termini di vulnerabilità ai rischi geologici.

Considerato che l’edificio peloritano è caratterizzato da falde di basamento, separate da contatti di sovrascorrimento principali, cui si associano strutture minori, si è ritenuto opportuno distinguere in carta i contatti sulla base del loro significato tettonico, che si riflette anche in una netta distinzione delle geometrie delle strutture stesse. Pertanto sono stati segnalati come sovrascorrimenti principali i contatti di ricoprimento tettonico, corrispondenti a superfici di thrust con geometria flat, estese arealmente decine di chilometri, lungo le quali si è realizzata una notevole entità di accavallamento, generalmente tra falde cristalline a differente grado metamorfico, meglio ancora se marcate da resti di originarie coperture sedimentarie. Tali strutture sono relative alle fasi precoci di deformazione, generalmente eo-oligoceniche, durante le quali si sono verificati fenomeni di delaminazione di ciò che viene ritenuto da molti Autori il margine europeo. Una caratteristica dei ricoprimenti è quella di mantenere inalterati per distanze notevoli i rapporti tra i terreni al letto e al tetto della struttura, pertanto i contatti tetttonici non siano esposti in superficie.

L’età dei ricoprimenti è variabile in funzione della polarità orogenica, con generale ringiovanimento degli eventi della prima deformazione verso le aree esterne. Nella Catena Kabilo-Calabride le unità cristalline sono costituite da falde di basamento, il cui metamorfismo è complessivamente ascrivibile a fasi varisiche e pre-varisiche, mentre i ricoprimenti fra le varie falde datano a partire dall’Eocene terminale; sono cioè imputabili alle prime fasi appenniniche, legate alla rotazione
del Blocco Sardo-Corso ed all’apertura del Bacino Balearico. Verso le aree esterne, al difuori del Foglio, le fasi tettoniche, responsabili della strutturazione della Catena Appenninico-Maghrebidse, risalgono al Miocene inferiore e medio, fino a raggiungere il Pliocene-Pleistocene nell’estremo fronte dell’edificio maghrebidse ed interessare il margine dell’avampasce, il Sistema Siculo-Pelagiano. La datazione dei vari ricoprimenti è generalmente basata sul riconoscimento dei terreni più recenti coinvolti dalle strutture e dall’età dei livelli basali delle coperture terrigene discordanti. Nell’edificio kabilo-calabride si deve fare ricorso ai resti delle originarie coperture sedimentarie meso-cenozoiche; queste tuttavia vengono a mancare nelle falde cristalline superiori, quelle cioè ad alto grado metamorfico e l’unico dato è offerto dall’età dei livelli basali del flysch di Capo d’Orlando, ascrivibili all’Oligocene superiore, che post-datano i ricoprimenti.

Nell’assetto attuale i ricoprimenti non conservano la loro giacitura originaria, ma risultano ripiegate e dislocati da strutture contrazionali più recenti che costantemente si sono succedute, nei diversi settori dell’orogene, ai ricoprimenti.

Le strutture contrazionali posteriori ai ricoprimenti mostrano marcate geometrie a rampa. Esse sono state evidenziate con il termine di sovrascorrimenti secondari. A questa categoria, per similitudine geometrica, sono state assegnate anche le superfici di accavallamento tra scaglie embricate all’interno di una medesima unità tettonica. Queste si riconoscono in quanto consistono in superfici comprese tra due contatti di ricoprimento; sono prive di radicamento in profondità ed individuano strutture con tipica geometria a duplex (Boyer & Elliot, 1982).

Nella maggior parte dei casi i sovrascorrimenti secondari indicano strutture che dislocano quelli principali. Esse sono relative alle diverse fasi di embriciatura di tratti dell’edificio orogenico già strutturato. Il radicamento in profondità di dette strutture è prevedibile in base alla loro età. Infatti con l’accrescimento del cuneo delle unità alloctone l’attività lungo i thrust si è progressivamente spostata verso flat posti a profondità sempre più elevate, in relazione all’ispessimento del cuneo stesso. Di conseguenza con il tempo le rampe si sono originate come tagli divergenti da zone di taglio sub-orizzontali sempre più profonde. Cinematicamente e geometricamente le rampe vanno riferite alle superfici di flat di prim’ordine, attive al momento della loro formazione. In altre parole i sovrascorrimenti relativi alle fasi di embriciatura delle falde cristalline già strutturate, di età oligo-miocenica, contemporanee alla deposizione del conglomerato Rosso e del flysch di Capo d’Orlando, si sono originati quando era ancora attiva la superficie di thrust, che mette a contatto l’edificio kabilo-calabride su quello maghrebidse e ad essa si connettono geometricamente. Tali superfici sono oggi totalmente prive di radice crostale e si trovano traslate in posizione alloctona solidalmente con l’edificio che esse ritagliano.

Il breaching dell’orogene ha avuto anche una fase di antivergenza di età burdigaliana, cui si attribuisce la messa in posto delle Unità Antisicilidi, di entità tale da produrre veri e propri ricoprimenti che possono essere definiti “fuori sequenza”, ovvero ai di fuori dell’ordine di propagazione secondo la polarità orogenica.
La tettonica di *breaching* mediomiocenica coincide con l’inizio delle fasi collisionali tra la crosta europea e la crosta continentale che costituiva l’originario basamento della piattaforma panormide (Crostta Maghrebide, Lentini et alii, 2002). Quest’ultima ha subito uno scollamento e si trova oggi in ricoprimento tettonico sulle successioni bacinali (unità imeresi, sicane e di M. Judica), originariamente ubicate in un braccio del paleobacino ionico, compreso tra la piattaforma panormide e le “piattaforme” dell’avampaese africano. L’insieme delle unità appenninico-maghrebidi ha ricoperto estesamente le successioni carbonatiche esterne (Sistema a Thrust Esterno ovvero Sistema Siculo-Pelagiano in Sicilia), a loro volta originatesi a spese del vecchio margine dell’avampaese africano, a partire dal Tortoniano e cioè in concomitanza con la fase di apertura tirrenica. Nella catena peloritana le fasi precoci dell’estensione tirrenica sono databili a partire dal Serravalliano, come dimostrano i dettagliati studi stratigrafici (Lentini et alii, 1995a, 1995b). Relitti strutturali della tettonica estensionale sono conservati un po’ ovunque, a nord dell’allineamento Capo d’Orlando-S. Alessio. Tali strutture sono ben identificabili anche nelle aree sommerse lungo il margine tirrenico mediante linee sismiche (Del Ben et alii, 1996) e sono associate a sistemi di drenaggio dei depositi silicoclastici diretti verso il Tirreno.

Durante il Pliocene ed il Quaternario l’apertura tirrenica si è espressa con lo sviluppo di un sistema orientato NO-SE con componente di movimento destro. A tale sistema, noto come Sistema Sud-Tirrenico (Finetti et alii, 1996), si associano sistemi distensivi orientati NE-SO ovvero E-O, e strutture compressive con vergenza a SE.

Di seguito vengono analizzate le strutture tettoniche pellicolari ascrivibili alle fasi “appenniniche” (alpine s.l.), e quelle legate alle fasi neotettoniche.

2. STRUTTURE TETTONICHE “PELLICOLARI” PALEOGENICO-MIOCENICHE

La Catena Kabilo-Calabride deriva dalla delaminazione, a partire dall’Eocene superiore, di un originario basamento ercinico, costituito da termini metamorfici di vario grado, su cui si erano deposte coperture meso-cenozoiche, riferite ad un originario margine passivo europeo (Lentini & Vezzani, 1975). La posizione strutturale delle falde è tale che i termini più alti sono quelli che presentano grado metamorfico più elevato. E’ così che l’edificio a falde presenta inferiormente un complesso epimetaformico costituito da semiscisti con coperture sedimentarie mesozoico-terziarie più o meno lacunose e condensate negli intervalli medio e supragiurassici (Lentini & Vezzani, 1975 e segg.). Al disopra giacciono in ricoprimento le metamorfiti di medio-basso grado dell’Unità di Mandanici, con resti di originarie coperture sedimentarie mesocenozoiche, a loro volta ricoperte da un complesso di metamorfiti di alto grado (Unità del Mela ed Unità dell’Aspromonte s.s.). Ciò significa anche che la strutturazione in falde di ricoprimento è avvenuta dopo la deposizione degli intervalli terrigeni più recenti coinvolti nella
deformazione (Flysch di Frazzanò, Ogniben, 1960) e cioè a partire dal passaggio Eocene-Oligocene. Inoltre i processi metamorfici vanno generalmente imputati alla fase ercinica, ad eccezione di blandi fenomeni riconoscibili come impronta alpina. Infine l’originaria geometria doveva essere tale da consentire l’esposizione in superficie, durante il Lias inferiore, di livelli crostali più o meno profondi.

Nel Foglio non affiorano le coperture sedimentarie delle falde cristalline più profonde, ma le unità metamorfiche in posizione strutturale più elevata, che poi sono quelle di maggior grado metamorfico, le quali non mostrano generalmente resti di originarie successioni sedimentarie. Fa eccezione l’Unità di Ali, caratterizzata da una sequenza, che inizia con il Verrucano e prosegue fino ad orizzonti ascritti al Giurassico-Cretaceo e riporta un blando metamorfismo attribuito, come sopra riportato, a fasi alpine. La posizione strutturale dell’Unità di Ali è abbastanza incerta; essa viene ritenuta da una parte degli AA. come l’unità più profonda affiorante in finestra tectonica (v. citazioni varie sopra riportate), mentre sul terreno sembra sormontata in fuori sequenza dalle filladi dell’Unità di Mandanici. Queste ultime si accavallano direttamente sugli orizzonti basali dell’Unità di Ali, che si presenta pertanto trasposta in una complicata sequenza di embrici, che portano i termini inferiori a risalire su quelli più giovani della successione sedimentaria. Ulteriori prove sarebbero il klippe di Unità dell’Aspromonte direttamente sovrapposto sull’Unità di Ali a Modderino, ad ovest di Capo d’Ali, e la chiara posizione di lembi correlabili all’Unità di Ali interposti tra le filladi e le metamorfiti di alto grado dell’Unità dell’Aspromonte a Cozzo Speria, a monte dell’abitato di Mandanici.

Per tali motivi la sequenza tettono-stratigrafica nel Foglio rilevato viene fatta iniziare con l’Unità di Mandanici e prosegue verso l’alto con l’Unità di Ali e quindi quella di Piraino. Infine seguono le estese falde cristalline di alto grado, che vengono suddivise inferiormente nell’Unità del Mela e superiormente nell’Unità dell’Aspromonte s.s. L’intera sequenza strutturale viene ritenuta il prodotto di ampi ricoprimenti con sovrapposizioni con geometrie di tipo flat ed Africa vergenti post-datate dal flysch di Capo d’Orlando e cioè precedenti l’Oligocene superiore.

Per datare infatti le fasi tetttoniche responsabili della messa in posto delle falde cristalline, l’elemento più utile è rappresentato dalla copertura del flysch di Capo d’Orlando, che sutura in tutta l’area peloritana i contatti di ricoprimento. L’età dei livelli basali del flysch sono stati datati all’Oligocene superiore, anche se geometrie tipo on lap possono determinare locali ringiovanimenti.

3. - FASI TETTONICHE DEL MIOCENE MEDIO-SUPERIORE

L’analisi delle facies relative alle calcareniti di Floresta (CARBONE et alii, 1993; LENTINI et alii, 2000) e della loro distribuzione ha consentito di individuare la paleogeografia nell’intervallo Burdigaliano-Langhiano con una fase di sollevamento delle aree interne e la conseguente cannibalizzazione delle calcareniti e calciruditi a briozoi e litotamni, i cui resti oggi sono diffusi nell’area a sud di S. Pier Niceto, interposti tra le Antisicilidi ed i depositi del Miocene medio-superiore.

In tutta l’area peloritana sono riscontrabili strutture compressive, che interessano il flysch di Capo d’Orlando e sovverte anche le Unità Antisicilidi; si tratta di sistemi di thrust ad alto angolo, probabilmente legati alle fasi tardive di trasporto delle Unità Kabilo-Calabridi su quelle maghrebidì. Tali contatti sono denunciati dalla presenza di piccoli lembi flyschoidì interposti tra le metamorfiti, talora in corrispondenza di incisioni vallive, come avviene nel Vallone Pietre Bianche a sud di S. Pier Niceto.

Al disopra delle calcareniti di Floresta, le marnes di M. Pitò, ascritte al Langhiano superiore, rappresentano la fase di inversione di drenaggio dai quadranti settentrionali a quelli meridionali, connessa all’incipiente apertura tirrenica, scissiva, in queste che dovevano essere le prime aree ad esserne interessate, al Serravalliano (LENTINI et alii, 1995a).

I depositi silicoclastici del Miocene medio-superiore, indicati come formazione di S. Pier Niceto, presentano distribuzione delle facies molto irregolari e sicuramente legate ad un’attività tettonica sinsedimentaria. I depositi mostrano accentuate clinostatificazioni, spesso con direzione di apporto verso NO e verso ovest anche nelle aree ioniche del Foglio, cioè da aree originariamente emerse, ma oggi sommerse nel Rise di Messina. Gli strati presentano sovente inclinazione molto elevata, perché all’originaria clinostatificazione si sommano gli effetti della tettonica.

4. - STRUTTURE TETTONICHE PLIO-PLEISTOCENICHE

L’interesse che le strutture neotettoniche suscitano nella vasta letteratura geologica nasce dal fatto che l’area dello Stretto di Messina, caratterizzata da intensa urbanizzazione e da infrastrutture portuali, presenta un’elevata sismicità con eventi di notevole magnitudo. Fra tutti spicca l’evento sismico del 1908, per il quale ancor oggi non si è identificata con certezza la struttura sismogenetica.

Secondo l’Autore i dati indicherebbero la presenza di un piano di taglio regionale a “sviluppo subparallelo longitudinale” all’Arco Calabro, con l’accavallamento di una crosta assottigliata su quella ispessita della catena appenninica. In questo contesto l’impostazione del bacino di Reggio viene inquadrata nei processi di apertura coevi della Fossa del Mesima e dello Stretto di Messina, in connessione ai processi deformativi indotti dalla zona di taglio profonda. La coesistenza di meccanismi normali con quelli compressivi viene imputata alla posizione dei settori in distensione al retro di un fronte di compressione che ha migrato verso le aree esterne dell’Arco.

Al contrario BOUSQUET et alii (1980) ritengono che le strutture tettoniche non siano riconducibili ad un unico campo di stress, ma siano dovute a distinte fasi tettoniche: una prima distensiva riferibile al Pliocene superiore–Pleistocene, una seconda modesta fase di compressione verificatasi alla fine del Pleistocene inferiore, ed infine una terza distensiva ascrivibile al Pleistocene medio in poi.

BARRIER (1984) sottolinea che difficilmente la diversità di orientazione delle strutture può essere interpretata secondo un’unica direzione di estensione. BARRIER (1986) ricostruisce l’evoluzione paleogeografica dello Stretto, seguendo i criteri per cui la pluralità dei sistemi di faglie e la natura e la ripartizione diaclona dei sedimenti indicherebbero che i vari disturbi tettonici si sono originati in differenti periodi nel corso del Plio-Pleistocene.

I dati raccolti nell’ambito del progetto CROP Mare permettono di conoscere meglio il quadro strutturale nel quale si colloca l’area del Foglio. Esso è il risultato dello stadio collisionale tra la crosta continentale “maghrebide”, originario basamento delle Unità Panormidi, riconosciuto nella fascia meridionale del Bacino Tirrenico ed il margine pelagiano della placca africana (LENTINI et alii, 2002). A partire dal Pliocene superiore, si è registrata per la maggior parte della Sicilia la totale consumazione della crosta oceanica “paleionica” che ospitava le coperture bacinali maghrebidi (imeresi, sicane, etc.) ed originariamente interposta tra i due blocchi (quello maghrebide e quello pelagiano). Tale stadio collisionale si è realizzato soltanto per la fascia tirrenica centro-settentrionale dell’Isola, dove attualmente il processo di convergenza è inibito, mentre ad est dell’area di Milazzo la crosta “maghrebide” si contrappone invece alla crosta oceanica ionica, ancora in subduzione; ne consegue che il processo risulterà diacrono e le strutture tettoniche mostrano un progressivo ringiovanimento verso est. Allo stadio di migrazione del fronte collisionale è collegata l’attivazione delle faglie destre, ad orientazione NO-SE del “Sistema Sud-Tirrenico” (LENTINI et alii, 1995b; FINETTI et alii, 1996). Tali faglie hanno cumulato rigetti derivanti dalla differente velocità di avanzamento delle unità alloctone tra aree in collisione ed aree ancora libere di migrare su settori di avampaese a crosta sottile come il Bacino Ionico. Attualmente tali faglie si collegano verso sud al fronte collisionale principale e rappresentano una zona di taglio originata da uno svincolo tra le aree nebrodiche in collisione con le aree continentali dell’avampaese africano e le aree peloritane in avanzamento verso SE sui settori in flessurazione del bacino oceanico ionico.

Il limite tra il Blocco Pelagiano (Avampaese Ibleo incluso) e la placca ionica

Un’interpretazione alternativa, anch’essa da verificare con studi finalizzati, è che il “Sistema Messina-Etna” possa essere il prodotto di fenomeni di estensione del cuneo di accrezione in risposta all’arretramento flessurale delle aree ioniche di avampaese. In questo caso le faglie non sarebbero radicate nella litosfera, ma si ricollegerebbero in profondità al sole-thrust della catena. Questo tipo di interpretazione potrebbe ridimensionare la valutazione della pericolosità sismica in termini di magnitudo massima prevedibile.

Il sistema orientato NNE-SSO, comunque, è un elemento morfotettonico che domina la dorsale peloritana ed è responsabile della segmentazione dei depositi del Pliocene medio-inferiore, quindi la sua attivazione data dal Pliocene superiore ed è probabilmente attivo anche nel Pleistocene. Ad esso vengono associati
da Monaco & Tortorici (2000) tassi di sollevamento di 0,5-1,2 mm/anno per gli ultimi 700 ka.

Allo stesso sistema va riferita la faglia che interessa la zona urbana di Reggio di Calabria, che nel Pleistocene inferiore sembra aver controllato l’evoluzione del cosiddetto Bacino di Reggio. Essa si estende per circa 15 km definendo un half-graben riempito da sedimenti del Pleistocene medio-superiore (Ghirotti, 1981; Barrier, 1987). Questi depositi appartengono ad un fan-delta progredente verso ovest e controllato dalla faglia, chiuso in alto da un topset di età tirreniana. I rapporti di on lap tra i depositi wurmiani ed il piano di faglia suggeriscono un’attività di questa durante tale periodo.

Altro importante sistema di faglie, scarsamente valutato dai precedenti Autori, è quello orientato ENE-OSO, cui appartiene il Sistema Ganzirri-Scilla e che corrisponde ad un importante elemento geomorfologico, che si esprime con scarpate sottomarine e controlla la morfologia costiera del tratto settentrionale dello Stretto di Messina. Linee sismiche, che attraversano lo Stretto, indicano chiaramente che il fondo mare è ritagliato da queste faglie (Del Ben et alli, 1996; Lentini, 1996). La morfologia del fondo mare tra Villa S. Giovanni e Ganzirri mostra una superficie suborizzontale a profondità variabili da 60 ad 80 m bordata da strutture, che controllano poi la linea di costa su ambedue i lati dello Stretto. Tale piattaforma sommersa potrebbe corrispondere a quella di Campo Piale sul lato calabrese, ubicata a 120-170 m s.l.m.. Ciò implicherebbe un collasso della zona dello Stretto molto superiore ai tassi regionali.

Le strutture del Sistema Ganzirri-Scilla, che controllano lo Stretto, dislocano le ghiaie e sabbie di Messina del Pleistocene medio e sembrano avere anche un importante ruolo nel controllo del drenaggio fluviale, come si evince dal decorso delle fiumare sulla sponda calabrese, che presentano la medesima orientazione.

Lo stesso sistema N70-80 sembra tagliare quello orientato NNE-SSO e quindi dovrebbe essere più recente, anche se talora le faglie più recenti confluiscono in quest’ultimo che viene pertanto riattivato.

All’interno dell’abitato di Messina il sistema orientato ENE-OSO produce una culminazione strutturale con affioramento del basamento cristallino, controlla la stessa morfologia costiera in corrispondenza del porto (la cosiddetta “falce”) e prosegue a mare dove è intersecata da linee sismiche.

Nell’area del Foglio ed in particolare nello Stretto di Messina il quadro evolutivo della tettonica recente può essere così ricostruito. I depositi pliocenici sono generalmente distribuiti nelle fasce settentrionali, nella zona di Rometta, Le Masse, etc. sul versante siciliano e nella zona di Fiumara di Catona, Calanna, lungo il versante di Scilla al di fuori del Foglio sulla sponda calabrese, mentre a sud in ambedue i settori i depositi calcarenitico-sabbiosi mediopleistocenici giacciono direttamente sul substrato. Ciò indica che durante il Pliocene i settori tirrenici erano ancora prevalentemente sommersi e quelli meridionali emersi: la catena peloritana e la dorsale aspromontina dovevano ancora sostanzialmente individuarsi. La configurazione attuale in sostanza si è raggiunta soltanto nel Pleistocene.
Le ghiaie e sabbie di Messina, con la loro distribuzione e con la netta clinostratificazione, indicano che lo Stretto di Messina si è sostanzialmente individuato a partire dal Pleistocene medio e che la sua apertura è ancora in atto.

Catalano et alii (2002) calcolano tassi di sollevamento di 1,6 mm/anno durante l’intervallo 125-100 ka e di 0,2-0,3 mm/anno a partire dagli ultimi 100.000 anni. I loro dati suggerirebbero una propagazione delle faglie attive del Rift Calabro-Siculno dal settore calabro a quello siciliano.

L’interpretazione delle strutture tettoniche dell’area dello Stretto, la ricostruzione dell’evoluzione neotettonica della zona e la valutazione dei rischi geologici, con particolare riguardo ad eventi sismici attesi, non trovano esauriente ed unanime risposta sia negli studi geologici che nella modellazione eseguita sul terremoto del 1908. I vari Autori pervengono a conclusioni alquanto differenti (v. anche Valensise & Pantosti, 2001). Tuttavia i dati raccolti durante i rilevamenti del Foglio hanno fornito un quadro aggiornato della stratigrafia plio-pleistocenica e delle strutture morfotettoniche, in particolare dell’area dello Stretto.
VI - CENNI DI GEOMORFOLOGIA

I tratti geomorfologici più significativi del Foglio 601 sono dati dalla dorsale dei M. Peloritani e dall’estesa fascia alluvionale che borda la terminazione occidentale del Massiccio dell’Aspromonte. Entrambi le dorsali sono incisi da valli con versanti molto acclivi nel tratto a monte, che conferiscono al paesaggio un aspetto aspro. Verso valle il paesaggio è caratterizzato da una successione continua di superfici subpianeggianti variamente estese, degradanti e separate da evidenti gradini, che danno al versante ionico una tipica conformazione a gradinata. Esso è dissecato da incisioni fluviali, che nel loro tratto terminale svasano in piane alluvionali, più ampie sul versante calabrese.

Questo aspetto è in stretto rapporto con l’evoluzione tettonica recente dell’area che nel Plio-Quaternario ha subito un generale sollevamento, legato a movimenti lungo i principali sistemi di faglie connesse con l’apertura del Bacino Tirrenico.

1. - IDROGRAFIA

Il reticolo idrografico del territorio compreso nei limiti del Foglio presenta caratteristiche tipiche delle aree di recente sollevamento, con presenza di corsi d’acqua a regime torrentizio, denominati “fiumare”, denominazione che si attribuisce ai corsi d’acqua della Sicilia nord-orientale e della Calabria.

In relazione alla morfologia della zona, le numerose incisioni torrentizie presentano andamento quasi rettilineo e all’incirca ortogonale alla linea di costa, lunghezza limitata, *thalweg* ad elevata pendenza per la maggior parte del loro sviluppo, alvei stretti e incassati fra alte pareti rocciose nei tratti montani, che diventano ampi e sovralluvionati nei tratti terminali. I bacini imbriferi sono generalmente di estensione limitata, con ampiezza maggiore nella parte medio-alta e più ristretti nella parte terminale.
I deflussi sono modesti o mancano del tutto per diversi mesi dell’anno, in cui le precipitazioni sono scarse o assenti, mentre sono decisamente consistenti per brevi periodi della stagione piovosa, durante i quali si possono verificare forti piene in coincidenza di eventi meteorici intensi e concentramti.

Altra caratteristica comune per quanto riguarda i deflussi in alveo è di essere alimentati, oltre che dalle precipitazioni dirette, dalle acque di un gran numero di manifestazioni sorgentizie, molte non captate, localizzate a diversa quota lungo i versanti dei bacini; il contributo di tali emergenze risulta più o meno significativo in relazione alla portata delle singole manifestazioni ed alla loro variabilità nel tempo.

Le acque sorgentizie, oltre ad alimentare i deflussi superficiali, contribuiscono all’alimentazione dei deflussi in subalveo, prolungando così nel tempo gli effetti delle precipitazioni meteoriche.

Tutti i corsi d’acqua hanno in comune il regime torrentizio, con assenza di deflusso in alveo per diversi mesi dell’anno e portate di piena in coincidenza con eventi piovosi intensi e concentrati durante le stagioni autunnale e invernale.

Settore siciliano

Il reticolo idrografico è definito da numerose incisioni e fiumare a decorso generalmente ortogonale (NO-SE) rispetto alla dorsale peloritana.

L’idrografia della zona è caratterizzata da corsi d’acqua di estensione e portata variabile a regime torrentizio e carattere decisamente temporaneo. Questo aspetto è collegato al rapido scioglimento delle nevi e agli improvvisi rovesci durante la stagione secca, nonché al rapido deflusso delle acque meteoriche dei versanti verso le aste fluviali.

Gli alvei presentano profili longitudinali poco inclinati nel settore tirrenico, mentre sono più acclivi nel versante ionico, in conseguenza della collocazione dello spartiacque più prossimo alla costa orientale; il tipo e la granulometria degli elementi delle coltri alluvionali indicano un trasporto ad alta energia nei periodi di piena, come dimostrato dall’organizzazione a canali anastomizzati delle principali incisioni. Il profilo trasversale delle incisioni è caratterizzato da versanti acclivi e da una generalizzata forma a V e da gradini morfologici, conseguenza della forte incisione verticale subita in epoca recente a causa dell’accentuato sollevamento regionale. I fondovalle risultano così estremamente ristretti e spesso caratterizzati da meandri incassati. I reticoli fluviali sono ben gerarchizzati nelle aree di testata di bacino, mentre forti anomalie gerarchiche si registrano nelle aree a valle, soggette a recente emersione o nelle aree disturbate da accidenti tettonici.

I bacini idrografici delle principali fiumare che insistono sul versante tirrenico presentano valli articolate ed accidentate nel tratto a monte, ma aumentano di ampiezza procedendo verso mare, a causa della confluenza di incisioni di diversa profondità provenienti da differenti versanti (confluenza F.ra di Niceto-F. ra di Monforte). I bacini idrografici delle fiumare che sfociano nello Ionio, a causa del profilo asimmetrico della dorsale lungo lo spartiacque principale, presentano decorsi più rettilinei e non sviluppano ampie vallate (T. Fiumedinisi).

Tutte le incisioni e le fiumare, a causa del clima di tipo mediterraneo con inverni
piovosi ed estati molto secche, sono prosciugate durante gran parte dell’anno, esclusi gli episodi a carattere torrentizio e ricorrenza stagionale legati alle forti piogge.

Nelle incisioni delle fiumare sono riconoscibili tratti influenzati dalla tettonica, ciascuno dei quali è orientato secondo le tre diretrici tettoniche principali NO-SE, ENE-OSO e circa N-S. La rottura di pendenza fra le ripide incisioni vallive minori e le valli principali dà luogo all’accumulo di coni detritici (coni di deiezione) e conoidi alluvionali a volte coalescenti e localmente molto estesi arealmente; la maggior parte di essi è ormai stabilizzata, talora da opere antropiche.

Lungo quasi tutte le fiumare sono stati effettuati interventi consistenti in imbrigliamenti e argini artificiali ad evitare le onde di piena successive a lunghi periodi di siccità.

Settore reggino

Le osservazioni riguardo i caratteri morfologici della rete idrografica del settore calabrese, considerata la stretta fascia di terra che ricade all’interno del Foglio, devono necessariamente tenere conto degli aspetti orografici del Massiccio dell’Aspromonte (Ricchetti & Ricchetti, 1991). I tracciati fluviali che “intagliano” i versanti occidentale e meridionale dell’Aspromonte hanno decorso lineare, con disposizione circa parallela, rispettivamente verso ovest, tra Scilla e Punta di Pellaro (fiumare di Catona, di Gallico, di Calopinace e di S. Agata tra le principali) e verso sud (fiumare di Melito e di Amendolea) (al di fuori del Foglio) in accordo con le locali condizioni orografiche e strutturali.

La rete idrografica è caratterizzata da corsi unitari con sviluppo lineare nei quali si immettono ortogonalmente brevi affluenti, anche questi scarsamente gerarchizzati. I corsi d’acqua, generalmente poco alimentati nel tratto a monte, presentano in molti casi sezioni vallive poco escavate e a fondo piatto; nel tratto intermedio sono caratterizzati da elevata frequenza di affluenti e assumono il caratteristico profilo a V poco svasato, con valli simmetriche bene escavate e con versanti a gradinata. Nei tratti a minore pendenza diminuiscono gli affluenti, si formano valli a fondo piatto, reincise e, in prossimità della foce, ripidi versanti a gradinata e ripiani coperti da depositi alluvionali.

Nel tratto di costa sullo Stretto di Messina le fiumare che formano piane alluvionali presentano un letto progressivamente più ampio verso la foce con cospicuo accumulo di materiale da sabbioso a ciottoloso prevalente, che si protende verso mare con ampie conoidi deltizio-alluvionali, localmente coalescenti. Il letto alluvionale nella parte a valle è solcato da rami divaganti o anastomizzati delimitati da argini naturali (cfr. Fiumara di Valanidi, a sud di Reggio, nella frazione di S. Gregorio).

2. - LITORALI

La fascia litoranea siciliana è caratterizzata da estesi tratti di costa a spiaggia, da Messina a sud di Ali Terme, con minori tratti a ripa rocciosa (Capo d’Ali). Il decorso
NNE-SSO della linea di riva, pressoché rettilineo con sporgenze appena accennate in corrispondenza delle foci dei corsi d’acqua, è sicuramente controllato dagli elementi strutturali che ne hanno fortemente condizionato l’evoluzione morfogenetica.

Nel settore calabrese, la fascia litoranea che si affaccia sullo Stretto è caratterizzata da una linea di costa con andamento meridiano, in cui ampie baie si alternano a sporgenze lobate in corrispondenza dello sbocco delle fiumare e in relazione alla presenza di ampie conoidi deltizio-alluvionali; in molti tratti i depositi delle conoidi sono inglobati nella stessa piana costiera con passaggi laterali a duneti costieri appena accennati e allungati parallelamente alla linea di costa.

L’ampiezza della piana litorale-spiaggia varia mediamente da 20 a 50 m nel settore reggino; a causa della notevole riduzione dell’apporto solido nelle fiumare si registra un notevole arretramento della linea di costa con conseguente discrepanza tra topografia relativa ai tipi IGMI (le cui edizioni datano al 1954) e ciò che è la topografia attuale. Di fatto ne risulta, in senso longitudinale, una estesa fascia litoranea in cui l’effetto combinato tra antropizzazione e diminuzione dell’apporto solido, ha ridotto sensibilmente e in alcuni tratti annullato la presenza della spiaggia, come è possibile osservare nel tratto compreso tra le due fiumare di Valanidi a sud di Reggio di Calabria e a nord della città tra la Stazione Marittima e la spiaggia di Pentimele.

Sulla sponda messinese la fascia litoranea è meno estesa e a ridosso della falesia. Le coste a spiaggia sono costituite da depositi prevalentemente ciottolosi e corrispondono a piane costiere formate essenzialmente per apporti fluviali parzialmente rimaneggiati dall’azione del mare.

La forma e la costituzione dei fondali antistanti la fascia litoranea di entrambe le sponde (almeno fino all’isobata –100), bene si correla con le morfologie che caratterizzano i corrispettivi tratti a terra.

3. - MORFOLOGIA COSTIERA

Lungo le coste basse delle due sponde ioniche, costituite da spiagge ghiaioso-sabbiose, è in atto un processo di arretramento riscontrabile sia attraverso una comparazione dei rilievi cartografici storici, che dagli effetti negativi sui manufatti. Questo fenomeno bene si inquadra nella tendenza generale delle coste italiane che risultano per un terzo della loro estensione in erosione, per i due terzi in equilibrio, grazie soprattutto ad interventi di difesa, e solo per un 5% in avanzamento.

Le cause principali di questo fenomeno, negativamente rilevante per il danno non solo ambientale, ma anche economico in aree turistiche, sono legate sia a processi naturali che, soprattutto, a modificazioni indotte dall’attività antropica.

La distribuzione lungo costa dei sedimenti viene operata dalle correnti paral- lele al litorale. Nella fascia costiera del Foglio le correnti litorali, generate dai venti prevalenti orientati verso i quadranti meridionali, tendono a distribuire i depositi di spiaggia verso sud. Non essendo presenti lungo la costa particolari manufatti, se si escludono le opere portuali relative alle due principali città, le modificazioni
all’equilibrio del litorale sono da imputare essenzialmente alla diminuzione degli apporti fluviali. Tale minore apporto solido è da addebitare alle opere di regimazione dei corsi d’acqua tesi alla salvaguardia dei versanti ed alla mitigazione degli effetti di piena. Pertanto, la realizzazione di interventi lungo i corsi d’acqua, con l’obiettivo di difesa del suolo e di protezione delle zone vallive dei bacini idrografici, spesso resi necessari da interventi antropici contrari ai principi di salvaguardia dell’equilibrio ambientale, costituisce la maggiore causa dell’arretramento delle coste e del notevole impatto negativo sull’equilibrio del litorale.
PROGETTO CARG
VII - GEOLOGIA APPLICATA

1. - FRANE E DEPOSITI DI VERSANTE

Nel settore siciliano compreso nel Foglio si ha la presenza di forme di dissesto, costituite in parte da corpi di frana ben individuabili in base alla morfologia ed in parte da fenomeni superficiali presenti su ampie superfici alle quote medio-alte. Nel settore calabro, comprendente soltanto un tratto della fascia costiera pianeggiante costituita in prevalenza da depositi alluvionali, non si riscontrano apprezzabili forme di dissesto, ad esclusione di una sola frana parzialmente compresa entro il limite meridionale del Foglio. Analogamente si riscontra per i depositi di versante e le coltri eluvio-colluviali, che sono frequenti nel settore siciliano, e quasi assenti in quello calabro.

I fenomeni franosi nel settore siciliano interessano meno del 2% dell’intero territorio, con una distribuzione non uniforme; in particolare, una maggiore frequenza di essi si ha nella zona nord-occidentale e in tutta la fascia orientale. Nel corso del rilevamento geologico ne sono stati individuati complessivamente circa 130, generalmente di estensione limitata (< 4 Ha), fatta eccezione per alcune maggiori, di estensione fino a 10 Ha.

Le litologie maggiormente interessate sono:
- nella zona nord-occidentale, l’alternanza di arenarie, silt argillosi e sottili livelli di argille marnose della formazione di S. Pier Niceto;
- nella fascia orientale, le filladi e metareniti a tessitura scistosa, le marne argillose della formazione di S. Pier Niceto e i paragneiss del Complesso metamorfico Varisico dell’Unità tettonica dell’Aspromonte.

Alle quote maggiori, dove affiorano litologie più resistenti all’azione di degrado di natura fisica (metamorfiti di alto grado con assenza di superfici di alterazione, plutoniti), i fenomeni franosi sono scarsamente presenti, mentre forme di dissesto si riscontrano frequentemente sulle predette litologie alle quote più
basse, principalmente lungo le incisioni torrentizie ed in presenza di consistenti coperture di alterazione.

In linea generale, la frequenza dei fenomeni dipende dalle caratteristiche morfologiche del territorio, costituito da versanti ad accentuata acclività, dalla litologia delle formazioni affioranti e dalle condizioni strutturali dell’area. Tutti questi fattori contribuiscono alla predisposizione al dissesto, mentre altri fattori, quali in particolare le precipitazioni meteoediche ed i frequenti fenomeni sismici, costituiscono fattori innescanti i movimenti di massa lungo i versanti.

Nel Foglio sono stati cartografati i corpi di frana (a) sia senza indizi di evoluzione e/o stabilizzate, sia con evidenze di movimento negli ultimi cicli stagionali o che si riattivano per le stesse cause che le hanno innescate.

Altra importante tipologia, ben rappresentata anch’essa nell’area in esame, è data da “colamenti di terra e di detritio”, che interessano le coperture di alterazione per i primi metri dal piano di campagna. L’associazione delle due predette tipologie dà origine in qualche caso a “frane complesse”, soprattutto su litologie a parziale o totale natura pelitica.

“Frane di crollo” sono presenti sugli affioramenti di formazioni prevalentemente lapidee, costituite principalmente da rocce metamorfiche o anche arenacee.

I depositi di versante (a), costituiti da materiale poligenico ed eterometrico spesso in matrice argillosa e a volte a grossi blocchi, sono distribuiti in piccole placche su tutta l’area, ma sono maggiormente presenti, anche con estensione di oltre 60 Ha, alle pendici dei maggiori rilievi della dorsale peloritana: M. Scuderi e Culma Caravagi a sud, Pietra Mola, M. Ferra, Pizzo Bandiera–Puntale Principe a nord. Essi sono il risultato dell’azione di degrado operata dagli agenti atmosferici sulle rocce, in particolare quelle maggiormente fratturate per effetto della tettonica. I depositi possono localmente avere spessori consistenti e assetto stratificato, con clinoformi immergenti di parecchi gradi; ciò comporta condizioni di instabilità potenziale, che possono dar luogo a movimenti di massa specialmente in condizioni di satuario idrico. Più facilmente essi sono soggetti a processi di erosione, talora accentuati, con rimobilizzazione di materiale lungo i versanti.

I bacini idrografici in cui ricadono i fenomeni franosi e le litologie maggiormente interessate sono le seguenti:

-Fiumara Monforte–Niceto: le frane si innescano principalmente sulle alternanze arenaceo-argillose della formazione di S. Pier Niceto (PCTb), nella parte meridionale del bacino, dove è prevalente la componente pelitica. In tale area sono anche presenti numerosi depositi di versante (a), seppure di limitata estensione, costituiti in prevalenza da elementi arenacei di piccole dimensioni in matrice argillosa.

-Torrente Saponara–Fiumara Trecanali: le poche frane presenti, anche di
apprezzabili dimensioni, interessano il bacino nella sua parte mediana; alcune ricadono sulle alternanze arenaceo-argillose della formazione di S. Pier Niceto (PCTb), altre, di minori dimensioni, sui micascisti (PMAa) dell’Unità tettonica dell’Aspromonte. Estesi depositi di versante (a), costituiti da accumuli di materiale eterometrico spigoloso, inglobanti grossi blocchi, sono inoltre presenti nella parte montana del bacino.

2.- IDROGEOLOGIA

2.1. - Unità idrogeologiche e acquiferi

In relazione alle complesse condizioni stratigrafico-strutturali prima descritte, il territorio in esame risulta caratterizzato da particolari condizioni idrogeologiche, che si traducono in una distribuzione alquanto disomogenea delle risorse idriche sotterranee. I terreni affioranti presentano infatti sostanziali differenze di comportamento nei confronti dell’infiltrazione delle acque meteoriche e della circolazione idrica al loro interno, in dipendenza della litologia e delle caratteristiche strutturali che ne condizionano la permeabilità (Coltro et alii, 1980; Ferrara, 1987; Barbagallo et alii, 1993).

Nelle zone a più alta quota, dove affiorano in prevalenza metamorfiti e depositi terrigeni in alternanza, la permeabilità è discontinua, dipendendo principalmente dalla frequenza, distribuzione e tipologia delle discontinuità, oltre che dal grado di alterazione superficiale degli ammassi rocciosi. Lungo le fasce collinari, caratterizzate da notevole eterogeneità litologica, le condizioni risultano molto variabili da luogo a luogo per la presenza di termini a permeabilità differente per tipo e grado. Nelle pianure costiere e lungo i fondovalle, dove più estesi e consistenti sono i depositi alluvionali, si riscontrano condizioni di alta permeabilità per porosità che favoriscono l’esistenza di falde estese e di apprezzabili risorse
Le condizioni di permeabilità dei terreni presenti possono essere schematicamente così riassunte:

Settore siciliano

Terreni a permeabilità elevata per porosità: depositi alluvionali di fondovalle e delle pianure costiere.

Terreni a permeabilità media per porosità e/o per fessurazione: ghiaie e sabbie di Messina, calcareniti e sabbie, alternanza di arenarie medio-grossolane e di argille siltoso marnose (formazione di S. Pier Niceto), metamorfiti di medio-alto grado.

Terreni a permeabilità medio-bassa per porosità e/o per fessurazione: depositi fluvio-marini terrazzati, alternanza argilloso-arenacea del flysch di Capo d’Orlando, metamorfiti di medio-basso grado.

Terreni a permeabilità molto bassa: Trubi, argille scaglieose dei Monti Peloritani.

Settore calabro

Terreni a permeabilità elevata per porosità: depositi alluvionali di fondovalle e delle pianure costiere, conoidi di deiezione.

Terreni a permeabilità medio-alta per porosità: depositi continentali ghiaioso-sabbiosi post-tirreniani, sabbie e ghiaie di Messina.

Terreni a permeabilità media prevalentemente per fessurazione: alternanza arenaceo-argillosa medio-supramiocenica (formazione di S. Pier Niceto), calcareniti di Floresta.

Terreni a permeabilità molto bassa: argille marnose nerastre suprapleistoceniche, argille e argille sabbiose grigio-azzurre infrapleistoceniche.

In base alle caratteristiche sopra descritte e tenuto conto della giacitura e della geometria delle varie unità litostatigrafiche, nei settori in questione si riconoscono acquiferi di diversa potenzialità, le cui risorse sono oggetto di sfruttamento non sempre razionale e localmente eccessivo rispetto alle disponibilità.

Le falde di maggiore interesse sono contenute nei depositi alluvionali di fondovalle delle fiumare, sotto forma di corpi idrici indipendenti, che si unificano in corrispondenza delle più estese pianure costiere.

Le aree di alimentazione sono rappresentate dai bacini imbriferi dei vari corsi d’acqua con foce al litorale tirrenico e ionico. Essendo questi costituiti per la maggior parte da rocce con permeabilità localizzata e discontinua, gli spartiacque idrografici assumono il significato di limiti di idrostrutture indipendenti. Nella zona collinare, dove affiorano terreni sedimentari a diversa litologia e permeabilità, questi limiti sono talora determinati da elementi strutturali che hanno condizionato anche le modalità di deposizione di tali terreni.

Alla ricarica delle falde di fondovalle contribuiscono, oltre che le precipitazioni dirette, di carattere nevoso alle quote più alte, i deflussi superficiali lungo gli alvei e le acque delle numerose manifestazioni sorgentizie, scaturenti a quote diverse lungo i versanti costituiti da terreni a permeabilità discontinua affioranti nei bacini. Un ulteriore contributo è rappresentato, alle quote più basse, dall’infila-
trazione delle acque utilizzate per irrigazione e quelle di rifiuto dei centri abitati.

In particolare, nel semestre ottobre-marzo la ricarica è collegata principalmente alle precipitazioni meteooriche, mentre nei mesi successivi, fino ad estate inoltrata, risultano significativi i contributi delle sorgenti e delle acque utilizzate.

2.2. - SETTORE SICILIANO

2.2.1. - Acquiferi delle successioni di catena

Le successioni litologiche costituenti le unità tettono-stratigrafiche della Catena Kabilo-Calabride sono sede di acquiferi di modesto significato in relazione alla netta prevalenza di rocce metamorfiche, la cui permeabilità è legata allo stato di fratturazione ed al grado di alterazione, ambedue molto variabili da punto a punto e comunque limitati alla parte più superficiale degli affioramenti.

Gli altri termini litologici di tipo lapideo, di estensione e potenza sempre limitate, si comportano in maniera abbastanza simile alle metamorfiti, rivestendo un ruolo ancora più modesto come acquiferi. I depositi terrigeni ed in particolare le alternanze litologiche del flysch, che presentano maggiore estensione e spessore, non si discostano da questo quadro, essendo condizionati dall’esistenza di livelli pelitici a permeabilità molto bassa tra gli strati arenacei, spesso discretamente permeabili per fessurazione (FERRARA, 1990, 1999; FERRARA et alii, 1995).

2.2.1.1. - Circolazione idrica nelle metamorfiti

Nei terreni metamorfici la circolazione idrica sotterranea è discontinua e frazionata, la qual cosa esclude l’esistenza di falde estese e di significativa potenzialità. La permeabilità risulta localizzata generalmente nella parte superficiale alterata e decompressa degli affioramenti, mentre l’ammasso roccioso sottostante, seppure deformato e fessurato, presenta permeabilità bassa. Fanno eccezione talune situazioni, a carattere locale, in cui la roccia è interessata da fratture estese ed in parte aperte e sono presenti livelli di calcari cristallini, anch’essi intensamente fratturati. La più elevata permeabilità consente in questi casi una maggiore capacità di immagazzinamento delle acque di infiltrazione ed una circolazione più attiva, lasciando però immutato il ruolo di acquiferi modesti, dato il limitato volume del serbatoio ricettore (FERRARA, 1999).

La circolazione idrica negli ammassi rocciosi metamorfici, così come descritta, determina l’esistenza di un elevato numero di manifestazioni sorgentizie, la cui portata presenta generalmente un’elevata variabilità in un ristretto arco di tempo ed è direttamente condizionata dalle precipitazioni meteooriche.

Le acque di infiltrazione sono restituite dopo breve tempo, qualora non captate e derivate, al deflusso superficiale, concorrendo così all’alimentazione degli acquiferi alluvionali di fondovalle.
Questo comportamento si riscontra, oltre che nelle parti alterate, fessurate e decompressi degli ammassi rocciosi, anche nelle consistenti coperture detritiche, eluviali e colluviali, presenti con alta frequenza lungo i versanti. A tali coperture, dotate di un diverso grado di permeabilità per porosità in relazione alla granulometria, si collegano manifestazioni sorgentizie spesso effimere, che danno origine ad una diffusa circolazione di acque in superficie subito dopo gli eventi piovosi. L’esistenza in seno a questi materiali di una componente pelitica talora non trascendibile comporta in molti casi l’instaurarsi di movimenti di massa per effetto della saturazione in acqua e dell’accentuata pendenza dei versanti.

2.2.1.2. - Circolazione idrica nei depositi terrigeni

Fra i depositi terrigeni che si sovrappongono alle metamorfiti, l’alternanza del flysch di Capo d’Orlando è quella che affiora nel territorio, seppure in lem- bi di limitata estensione. Essendo la permeabilità localizzata nei livelli o banchi arenacei fessurati, che si alternano a strati argillosi praticamente impermeabili, la circolazione idrica è limitata agli orizzonti lapidei. Questi assumono il significato di acquiferi in dipendenza del grado di fessurazione e delle condizioni di giacitura. Ognuno di questi orizzonti ha spesso un comportamento indipendente rispetto agli altri analoghi corpi arenacei, essendo essi compresi fra strati impermeabili. In taluni casi si possono verificare interconnessioni fra orizzonti diversi per motivi tettonici, la qual cosa aumenta il volume del serbatoio e quindi la sua capacità di immagazzinamento. Anche in questo caso le acque di infiltrazione sono restituite sotto forma di sorgenti localizzate lungo i versanti, il cui regime è sempre molto variabile, analogamente a quanto detto per le metamorfiti.

2.2.1.3. - Sorgenti

Le numerose sorgenti che scaturiscono a diversa quota dai terreni affioranti nei bacini idrografici sono espressione, come già detto, di una circolazione idri-ca sotterranea molto discontinua e frazionata. Le loro acque, in gran parte non captate per la modestia delle singole portate e la grande dispersione dei punti di emergenza, defluiscono lungo i versanti raggiungendo i depositi alluvionali di fondo valle. Esse contribuiscono pertanto all’alimentazione dei deflussi di subal-veo in un arco di tempo relativamente esteso rispetto al periodo dell’anno in cui si verificano le precipitazioni meteoriche.

Il numero maggiore di sorgenti ricade sugli affioramenti di terreni cristallini e quelle con portata più significativa si collocano sulle metamorfiti di alto grado (gneiss occhiadini, paragneiss biotitici con lenti di apliti e pegmatiti), che costituiscono le parti sommitali dei rilievi montuosi. Le sorgenti con portata più elevata e a carattere perenne sono captate mediante opere semplici e spesso rudimentali e le acque sono utilizzate per scopi potabili o irrigui. Diverse emergenze temporanee
Tab. 11 - Sorgenti alimentanti l’acquedotto “Santissima” del Comune di Messina (da FERRARA, 1999).

<table>
<thead>
<tr>
<th>° d’ordine</th>
<th>Denominazione</th>
<th>Coordinate</th>
<th>Quota m s.l.m.</th>
<th>Portata l/s</th>
<th>Data della captazione</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bottino I</td>
<td>WC320161</td>
<td>835</td>
<td>0.38</td>
<td>1905</td>
</tr>
<tr>
<td>2</td>
<td>Bottino II</td>
<td>WC320162</td>
<td>834</td>
<td>1.28</td>
<td>1905</td>
</tr>
<tr>
<td>3</td>
<td>Bottino III</td>
<td>WC321162</td>
<td>818</td>
<td>2.50</td>
<td>1905</td>
</tr>
<tr>
<td>4</td>
<td>Bottino IV</td>
<td>WC321161</td>
<td>815</td>
<td>0.33</td>
<td>1905</td>
</tr>
<tr>
<td>5</td>
<td>Bottino V</td>
<td>WC321162</td>
<td>810</td>
<td>0.48</td>
<td>1905</td>
</tr>
<tr>
<td>6</td>
<td>Cambia I</td>
<td>WC322164</td>
<td>790</td>
<td>0.70</td>
<td>1905</td>
</tr>
<tr>
<td>7</td>
<td>Cambia II</td>
<td>WC322165</td>
<td>780</td>
<td>0.16</td>
<td>1905</td>
</tr>
<tr>
<td>8</td>
<td>Cambia III</td>
<td>WC322166</td>
<td>770</td>
<td>0.5</td>
<td>1905</td>
</tr>
<tr>
<td>9</td>
<td>Cambia IV</td>
<td>WC322166</td>
<td>770</td>
<td>0.5</td>
<td>1905</td>
</tr>
<tr>
<td>10</td>
<td>Cambia V</td>
<td>WC323165</td>
<td>755</td>
<td>2.50</td>
<td>1905</td>
</tr>
<tr>
<td>11</td>
<td>Cianciana I</td>
<td>WC324164</td>
<td>760</td>
<td>6.25</td>
<td>1905</td>
</tr>
<tr>
<td>12</td>
<td>Cianciana II</td>
<td>WC324165</td>
<td>760</td>
<td>1.0</td>
<td>1905</td>
</tr>
<tr>
<td>13</td>
<td>Bocche d’acqua I</td>
<td>WC326166</td>
<td>770</td>
<td>37.0</td>
<td>1905</td>
</tr>
<tr>
<td>14</td>
<td>Bocche d’acqua II</td>
<td>WC326166</td>
<td>690</td>
<td>24.50</td>
<td>1905</td>
</tr>
<tr>
<td>15</td>
<td>Bocche d’acqua III</td>
<td>WC327166</td>
<td>680</td>
<td>4.0</td>
<td>1905</td>
</tr>
<tr>
<td>16</td>
<td>Faraone I</td>
<td>WC329161</td>
<td>780</td>
<td>0.83</td>
<td>1905</td>
</tr>
<tr>
<td>17</td>
<td>Faraone II</td>
<td>WC329162</td>
<td>780</td>
<td>0.62</td>
<td>1905</td>
</tr>
<tr>
<td>18</td>
<td>Faraone III</td>
<td>WC334165</td>
<td>710</td>
<td>0.50</td>
<td>1905</td>
</tr>
<tr>
<td>19</td>
<td>Scacciafiche I</td>
<td>WC335165</td>
<td>875</td>
<td>0.19</td>
<td>1905</td>
</tr>
<tr>
<td>20</td>
<td>Scacciafiche II</td>
<td>WC334165</td>
<td>870</td>
<td>0.25</td>
<td>1905</td>
</tr>
<tr>
<td>21</td>
<td>Scacciafiche III</td>
<td>WC334165</td>
<td>850</td>
<td>0.50</td>
<td>1905</td>
</tr>
<tr>
<td>22</td>
<td>Cammarone</td>
<td>WC338172</td>
<td>720</td>
<td>0.14</td>
<td>1961</td>
</tr>
<tr>
<td>23</td>
<td>Ulapernici I</td>
<td>WC344166</td>
<td>760</td>
<td>0.17</td>
<td>1949</td>
</tr>
<tr>
<td>24</td>
<td>Ulapernici II</td>
<td>WC344166</td>
<td>740</td>
<td>0.16</td>
<td>1949</td>
</tr>
<tr>
<td>25</td>
<td>Margini</td>
<td>WC345153</td>
<td>650</td>
<td>0.16</td>
<td>1930</td>
</tr>
<tr>
<td>26</td>
<td>Cannizola</td>
<td>WC344160</td>
<td>640</td>
<td>3.50</td>
<td>1930</td>
</tr>
<tr>
<td>27</td>
<td>Sanbuco</td>
<td>WC332138</td>
<td>690</td>
<td>57.77</td>
<td>1920</td>
</tr>
<tr>
<td>28</td>
<td>Valli</td>
<td>WC332140</td>
<td>690</td>
<td>57.77</td>
<td>1920</td>
</tr>
<tr>
<td>29</td>
<td>Lamperi</td>
<td>WC339146</td>
<td>688</td>
<td></td>
<td>1920</td>
</tr>
<tr>
<td>30</td>
<td>Pomara</td>
<td>WC349156</td>
<td>795</td>
<td>0.55</td>
<td>1920</td>
</tr>
<tr>
<td>31</td>
<td>Bertuccio</td>
<td>WC350155</td>
<td>660</td>
<td>1.50</td>
<td>1920</td>
</tr>
<tr>
<td>32</td>
<td>Scalpello</td>
<td>WC353156</td>
<td>660</td>
<td>0.40</td>
<td>1920</td>
</tr>
<tr>
<td>33</td>
<td>Porta I</td>
<td>WC354161</td>
<td>690</td>
<td>0.52</td>
<td>1920</td>
</tr>
<tr>
<td>34</td>
<td>Porta II</td>
<td>WC354161</td>
<td>695</td>
<td>2.50</td>
<td>1920</td>
</tr>
<tr>
<td>35</td>
<td>Porta III</td>
<td>WC353161</td>
<td>695</td>
<td>0.16</td>
<td>1935</td>
</tr>
<tr>
<td>36</td>
<td>Rocca Corvo I</td>
<td>WC362162</td>
<td>640</td>
<td>0.86</td>
<td>1910</td>
</tr>
<tr>
<td>37</td>
<td>Rocca Corvo II</td>
<td>WC362162</td>
<td>640</td>
<td></td>
<td>1910</td>
</tr>
<tr>
<td>38</td>
<td>Rocca Corvo III</td>
<td>WC362163</td>
<td>638</td>
<td>0.17</td>
<td>1910</td>
</tr>
<tr>
<td>39</td>
<td>Grioli I</td>
<td>WC369162</td>
<td>680</td>
<td>0.20</td>
<td>1937</td>
</tr>
<tr>
<td>40</td>
<td>Grioli II</td>
<td>WC368163</td>
<td>675</td>
<td>0.10</td>
<td>1937</td>
</tr>
<tr>
<td>41</td>
<td>Grioli III</td>
<td>WC369164</td>
<td>672</td>
<td>0.60</td>
<td>1937</td>
</tr>
<tr>
<td>42</td>
<td>Valancazzo I</td>
<td>WC351152</td>
<td>735</td>
<td>0.45</td>
<td>1934</td>
</tr>
<tr>
<td>43</td>
<td>Valancazzo II</td>
<td>WC352153</td>
<td>730</td>
<td>0.25</td>
<td>1934</td>
</tr>
<tr>
<td>44</td>
<td>Arialopii I</td>
<td>WC345168</td>
<td>807</td>
<td>0.18</td>
<td>1934</td>
</tr>
<tr>
<td>45</td>
<td>Arialopii II</td>
<td>WC345169</td>
<td>770</td>
<td>0.09</td>
<td>1934</td>
</tr>
<tr>
<td>46</td>
<td>Grotticeilli I</td>
<td>WC337146</td>
<td>685</td>
<td>0.05</td>
<td>1934</td>
</tr>
<tr>
<td>47</td>
<td>Grotticeilli II</td>
<td>WC338148</td>
<td>670</td>
<td>0.55</td>
<td>1934</td>
</tr>
<tr>
<td>48</td>
<td>Grotticeilli III</td>
<td>WC338149</td>
<td>663</td>
<td>0.04</td>
<td>1934</td>
</tr>
<tr>
<td>49</td>
<td>Grillo I</td>
<td>WC374171</td>
<td>715</td>
<td>0.37</td>
<td>1958</td>
</tr>
<tr>
<td>50</td>
<td>Grillo II</td>
<td>WC375171</td>
<td>705</td>
<td>0.55</td>
<td>1958</td>
</tr>
</tbody>
</table>
sono altresì interessate da semplici sistemi di derivazione delle acque, le quali sono utilizzate per l’irrigazione di modesti appezzamenti di terreni coltivati.

Si tratta generalmente di sorgenti per limite di permeabilità definito (CIVITA, 1972), nel caso di emergenze localizzate al contatto tra termini carbonatici o arenacei e termini pelitici delle alternanze flyschoidi (Fig. 30). Sorgenti per soglia di permeabilità sottoposta si hanno talora al contatto tra metamorfiti di alto grado e semimetamorfiti di unità strutturali diverse. Sorgenti per limite di permeabilità indefinito si riscontrano frequentemente al contatto tra gli ammassi cristallini e metamorfici e le relative coperture detritiche e di alterazione (Fig. 31).

Le sorgenti che scaturiscono da terreni cristallini presentano spesso portate iniziali non trascurabili, ma hanno una tendenza all’esaurimento in tempi relativamente brevi per le ridotte dimensioni dei serbatoi. In taluni casi si hanno ancora

Fig. 30 - Ubicazione delle principali sorgenti censite.
Fig. 31 - Rappresentazione schematica di manifestazioni sorgentizie nelle successioni di catena (a); nelle metamorfiti (b) (da Ferrara, 1999).
portate apprezzabili, che si mantengono fino all’inizio della successiva ricarica.

Le sorgenti collegate a depositi terrigeni e alle alternanze flyschoidi hanno in prevalenza portate modeste e poco persistenti, essendo alimentate da orizzonti acquiferi costituiti da singoli livelli o banchi arenacei più o meno fessurati, generalmente di scarsa estensione.

Fra le sorgenti captate per scopi idropotabili, scaturenti da metamorfiti di alto grado, quelle che alimentano il sistema acquedottistico del comune di Messina rappresentano l’insieme più consistente e significativo dell’intero territorio. Si tratta di sorgenti alimentanti l’acquedotto “Santissima” (Tab. 11), riconducibili a quattro gruppi localizzati negli alti bacini dei torrenti Fiumedinisi e Niceto, con portata complessiva media di 150 l/s. A queste si aggiungono 35 sorgenti, affente all’acquedotto “Frazioni Alte”, riconducibili a sei gruppi localizzati nell’alto bacino del Torrente Saponara, con portata media di 16 l/s. Le acque captate da questi gruppi sorgentizi costituiscono soltanto un’aliquota modesta, seppure importante, delle risorse utilizzate dal comune di Messina, la maggior parte delle quali deriva da opere di captazione ubicato ai margini dell’area vulcanica etnea e che sono addotte alla città mediante due acquedotti di diverse decine di chilometri di lunghezza.

2.2.2. - Acquiferi dei depositi neogenici e quaternari

2.2.2.1. - Acquiferi dei depositi clastici ed evaporitici

I depositi clastici sono ben rappresentati, principalmente sul versante settentrionale dei Monti Peloritani (formazione di S. Pier Niceto), lungo le fasce collinari che bordano i rilievi costituiti da rocce cristalline. Si tratta di acquiferi complessi per la spiccata variabilità litologica che li caratterizza; ciò comporta l’esistenza al loro interno di una circolazione discontinua. La struttura è data da livelli permeabili per porosità e/o per fessurazione, parzialmente separati da livelli semipermeabili di limitata estensione. Le falde in essi contenute sono in parte libere ed in parte confinate, con potenzialità da discreta a media.

Gli acquiferi arenaceo-argillosi con livelli conglomeratici di età supramioce- nica (formazione di S. Pier Niceto) presentano apprezzabile estensione e spessore, oltre che discreta continuità; sono limitati alla base da termini sia metamorfici sia sedimentari scarsamente permeabili e parzialmente al tetto da termini prevalentemente pelitici appartenenti alla stessa successione. Hanno permeabilità media per fessurazione, variabile in relazione alla frequenza delle discontinuità, localmente maggiore per tettonizzazione.

Gli acquiferi costituiti dalle calcareniti organogene plio-pleistoceniche e mio- ceniche mostrano condizioni strutturali analoghe a quelle dei depositi supramio- cenici, risultando limitati al tetto e al letto da sedimenti prevalentemente pelitici. La permeabilità più elevata, sia per porosità che per fessurazione, favorisce una circolazione idrica più attiva, che si traduce nell’esistenza di falde di potenziali-
tà non trascurabile, anche se talora limitata dalle dimensioni degli affioramenti. Condizioni più favorevoli si riscontrano laddove questi acquiferi ricevono alimentazione dai soprastanti depositi alluvionali o da scambi con i corsi d’acqua.

I depositi evaporitici, scarsamente rappresentati nel territorio, assumono il ruolo di acquiferi limitatamente al litotipo calcarea brecciato presente localmente con spessore ed estensione apprezzabile. Pertanto può essere sede di falde di limitata potenzialità che alimentano piccole sorgenti.

2.2.2.2. - Acquiferi dei depositi continentali e di transizione

I depositi alluvionali presenti sul fondovalle dei numerosi corsi d’acqua ed in corrispondenza della fascia costiera rappresentano gli acquiferi di maggiore interesse, essendo sede di apprezzabili risorse idriche nel quadro idrogeologico del territorio. Essi sono infatti caratterizzati da elevata permeabilità per porosità, seppure variabile in relazione alla granulometria, la quale favorisce un’alta percentuale di infiltrazione delle acque di precipitazione meteorica e di deflusso superficiale. Sono pertanto sede di un’attiva circolazione idrica che comporta un rapido trasferimento di queste acque verso la costa, dove i più consistenti depositi contengono falde di potenzialità che alimentano piccole sorgenti.

La ricarica annuale di questi acquiferi dipende principalmente dalle più abbondanti piogge dei mesi autunnali e invernali, oltre che dal ruscellamento lungo i versanti dei bacini imbriferi, costituiti in prevalenza da terreni meno permeabili, e dal deflusso superficiale lungo gli alvei.

L’importanza delle risorse idriche contenute in questi acquiferi dipende, oltre che dal regime delle precipitazioni meteoriche, dall’estensione dei bacini idrografici dei corsi d’acqua e dal volume dei depositi alluvionali di fondovalle.

Fra i depositi continentali, le ghiaie e sabbie di Messina hanno caratteristiche granulometriche più eterogenee rispetto ai precedenti depositi, con prevalenza comunque della frazione sabbiosa fine. La permeabilità è pertanto media, con presenza di falde di potenzialità limitata.

Un contributo alla ricostruzione della geometria dei predetti depositi deriva da precedenti prospezioni geofisiche eseguite in corrispondenza di diverse sezioni trasversali alle valli e di tratti della fascia costiera; in base a tali dati si individua l’andamento del substrato impermeabile che permette di valutare lo spessore dei depositi (Ferrara, 1999). Lungo le aste torrentizie questo è mediamente dell’ordine di 10-15 m nei tratti montani e di 40-60 m in prossimità del mare.

Le falde contenute in tali depositi sono di tipo libero, con comportamento idrodinamico influenzato dalle variazioni granulometriche e dalle modalità di alimentazione. La piezometrica, ricostruita in base a misure di livello nei pozzi, mostra mediamente variazioni stagionali di diversi metri (fino a 6 m) in corrispondenza dei tratti montani e più contenute (2-3 m) nei tratti prossimi alla costa.

Le valori del gradiente idraulico sono generalmente alti a monte (2-4%) e tendono a diminuire procedendo verso valle.
I valori di permeabilità e di trasmissività, derivanti da prove di emungimento in pozzi, sono così sintetizzabili:

<table>
<thead>
<tr>
<th>Permeabilità m/s</th>
<th>Trasmissività m²/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1.2 \times 10^{-3} + 3.1 \times 10^{-4}$</td>
<td>$1.8 \times 10^{-2} + 5.6 \times 10^{-4}$</td>
</tr>
<tr>
<td>$1.5 \times 10^{-3} + 2.8 \times 10^{-4}$</td>
<td>$3.7 \times 10^{-2} + 8.4 \times 10^{-4}$</td>
</tr>
</tbody>
</table>

Da tali dati emerge una certa variabilità nei diversi settori, imputabile alle modalità di deposizione dei materiali ed in parte alla litologia prevalente nelle aree di provenienza di questi ultimi.

Nella zona di Messina la falda contenuta nei depositi alluvionali della stretta fascia costiera è generalmente di tipo libero, anche se localmente il comportamento dei livelli d’acqua misurati nei pozzi è tale da far presumere condizioni di semiconfinamento, peraltro giustificate dalla variabilità litologica dei depositi e dai complessi rapporti con i terreni del substrato.

I prelievi dagli acquiferi alluvionali per scopi irrigui e idropotabili sono effettuati mediante numerose opere di captazione, rappresentate da pozzi sia scavati che perforati e da gallerie drenanti localizzate nel subalveo dei maggiori corsi d’acqua e lungo la fascia costiera. In alcuni settori questi prelievi determinano forti depressioni del livello delle falde, con conseguente richiamo di acque marine e locali fenomeni di insalinamento (FERRARA, 1999).

Il chimismo delle acque sotterranee è riferibile in generale alla facies cloruro-solfato-alcalino-terrosa, con marcata tendenza verso il tipo misto, ma si riscontrano anche acque di facies bicarbonato-alcalino-terrosa, analoghe alle acque sorgentizie scaturenti a monte.

Le caratteristiche chimiche delle acque sono spesso chiaramente influenzate da fattori antropici, quali l’alta densità degli insediamenti abitativi e la presenza di attività produttive fin sulle basse colline dell’entroterra e all’interno delle valli dei corsi d’acqua, dai quali derivano consistenti scarichi di rifiuti liquidi. L’alto contenuto di alcuni componenti è evidenziato da elevati valori della conducibilità delle acque, che raggiungono un massimo di 1400 µS.cm⁻¹ lungo estesi tratti della fascia costiera, mentre sono sull’ordine dei 600-800 µS.cm⁻¹ al margine delle retrostanti colline.

A determinare gli alti valori di conducibilità concorre principalmente il contenuto di cloruri e di sodio, derivanti da scarichi di acque reflue non trattate, unitamente a commistione di acque marine con quelle di falda e localmente anche il contenuto di nitrati riferibili all’uso di prodotti chimici in agricoltura.

2.2.3. - Vulnerabilità all’inquinamento

2.2.3.1. - Vulnerabilità naturale

La notevole variabilità litologica che caratterizza il territorio analizzato comporta sostanziali differenze nella distribuzione delle risorse idriche sotterranee,
essendo diverso il ruolo rivestito dagli acquiferi presenti in relazione alla loro capacità di immagazzinare e trasmettere le acque di infiltrazione.

Nel territorio in questione si distinguono tre principali settori, caratterizzati ognuno da condizioni morfologiche, litostruutturali ed ambientali, che influenzano gli aspetti idrogeologici e di vulnerabilità all’inquinamento degli acquiferi. Questi possono essere così schematizzati:

1) settore montano, con accentuata pendenza dei versanti, prevalenza di terreni metamorfici generalmente molto tettonizzati, assenza di falde, circolazione idrica sotterranea molto frazionata, frequente presenza di sorgenti con portata generalmente modesta e spesso a carattere stagionale, assenza quasi completa di antropizzazione;

2) settore collinare, con pendenza dei versanti variabile da luogo a luogo ma nell’insieme più blanda rispetto al settore montano, presenza di terreni sia metamorfici sia silico-clastici e pelitici, talora in alternanza, cui si accompagnano in maniera del tutto subordinata depositi evaporitici, circolazione idrica sotterranea localizzata in livelli o reti acquifere di estensione generalmente limitata, grado di antropizzazione variabile ma nell’insieme contenuto;

3) settore costiero, con prevalente morfologia blanda e a tratti pianeggiante, prevalenza di depositi clastici di tipo alluvionale, circolazione idrica sotterranea attiva con locale presenza di falde relativamente estese, grado di antropizzazione localmente elevato.

Complessivamente, l’incidenza percentuale delle diverse litologie rappresentate nel territorio vede una decisa prevalenza dei terreni metamorfici, mentre quella dei depositi clastici recenti, che costituiscono gli acquiferi più significativi, è decisamente subordinata e generalmente limitata a tratti della fascia costiera.

In tale contesto, la definizione della vulnerabilità naturale o intrinseca degli acquiferi, basata sui dati geologici e idrogeologici in precedenza illustrati, permette di distinguere le seguenti condizioni (FERRARA, 1996, 1999):

- Falda libera senza alcuna protezione in depositi alluvionali

La vulnerabilità è decisamente elevata in relazione all’alta permeabilità dei depositi ed alla limitata soggiacenza delle falde in corrispondenza sia del fondo valle dei corsi d’acqua, sia della zona costiera.

- Rete acquifera in calcari e calcareniti

La vulnerabilità è elevata nelle aree di affioramento delle calcareniti organogene e dei calcari evaporitici, permeabili sia per fessurazione che per porosità, con soggiacenza delle falde generalmente limitata a poche decine di metri. Il grado di vulnerabilità si attenua laddove gli acquiferi soggiacciono a terreni scarsamente permeabili.

- Livelli acquiferi in alternanze arenaceo-sabbiose

Le modalità di circolazione idrica limitano generalmente il grado di vulnerabilità degli orizzonti acquiferi presenti in tali alternanze; questo può elevarsi laddove è più frequente la fessurazione, che consente una più rapida diffusione degli inquinanti.

- Metamorfiti di medio-alto grado

La vulnerabilità è più alta in presenza di una maggiore fratturazione della roccia e di coperture detritiche e di alterazione, dove spesso si realizza una circolazione...
idrica molto superficiale. A maggiore profondità dal piano di campagna l’esistenza nell’ammasso roccioso di fratture serrate riduce notevolmente la circolazione idrica e abbassa il grado di vulnerabilità, che nell’insieme può quindi definirsi medio.

- Corpi idrici multifalda
 Il tipo di circolazione idrica, discontinua e variabile in relazione alla diversa permeabilità dei componenti i complessi eterogenei di tipo flischoide o a questi assimilabili, comporta un grado di vulnerabilità medio-basso, tenuto conto della protezione esercitata dagli strati impermeabili nei confronti dei livelli acquiferi contenuti negli orizzonti arenacei più permeabili.

- Complesso metamorfico di grado medio-basso
 La limitata circolazione idrica in seno a questo complesso comporta condizioni di bassa vulnerabilità dei modesti e discontinui livelli acquiferi presenti.

- Complessi marnosi e argillosi
 Essendo questi complessi litologici praticamente privi di circolazione idrica sotterranea per le loro caratteristiche di permeabilità, gli eventuali inquinanti interessano esclusivamente le acque di deflusso superficiale.

2.2.3.2. - Fattori antropici

Alla vulnerabilità naturale degli acquiferi, dipendente dalle caratteristiche idrogeologiche, vanno associati gli elementi antropici, identificabili come “centri di pericolo”, per definire le condizioni di pericolosità cui sono soggette le risorse idriche sotterranee. Tra questi si riconoscono attività industriali con scarichi e/o rifiuti inorganici, attività manifatturiere in generale, discariche di rifiuti solidi urbani e misti, punti di recapito di collettori fognari, allevamenti, strade di grande traffico, autostrade, metanodotti.

Dall’analisi del territorio risulta evidente come lungo la fascia costiera siano concentrati gli insedamenti abitativi e le attività produttive da cui deriva la maggiore produzione di inquinanti. Contestualmente si osserva come in queste aree siano condizioni di vulnerabilità particolarmente elevate, connessa alla presenza di acquiferi privi di protezione superficiale e con modesta soggiacenza delle falde.

Per quanto riguarda l’influenza esercitata dai predetti fattori antropici su tali acquiferi, essa è principalmente determinata dalle aree urbanizzate in cui si hanno alti consumi idrici e la conseguente produzione di consistenti volumi di acque reflue, che sono immesse nell’ambiente spesso senza un preventivo trattamento. Nell’ambito della fascia costiera, condizioni più critiche si hanno in corrispondenza dell’area in cui si estende la città di Messina. Qui si registra infatti una densità antropica particolarmente elevata rispetto all’intero territorio, favorita dalla morfologia dei luoghi a ridosso del litorale.

Oltre alla produzione di reflui potenzialmente inquinanti, un altro fenomeno connesso alla presenza antropica è rappresentato, come precedentemente accennato, dall’ingressione di acqua marina negli acquiferi, principalmente quelli alluvionali, dovuto agli eccessivi prelievi delle falde, che ne hanno causato l’abbassaa-
Fig. 32 - Andamento dell’intrusione salina nell’acquifero lungo la fascia costiera di Messina (settembre 1991). Limite definito dall’isolinea di valore 150mg/l di cloruri.

Dai valori della conducibilità e del contenuto di cloruri delle acque, rilevati nella stagione asciutta del 1991, ricadente in un periodo di accentuata siccità protrattosi per un triennio (1989-91) in tutta l’Isola, si è riscontrato l’andamento dell’intrusione salina negli acquiferi della fascia costiera messinese riportato in Fig. 32. Il limite dell’intrusione fa riferimento ad un contenuto di cloruri nelle acque superiore a 150 mg/l. Da tale andamento si osserva che le zone più sensibili nei confronti del fenomeno si localizzano principalmente allo sbocco delle valli dei torrenti S. Filippo, Gazzi e Zaera, dove si concentrano gli eccessivi prelievi di acque sotterranee.

2.2.3.3. - Valutazione della vulnerabilità

Una valutazione della vulnerabilità intrinseca mediante il sistema parametrico a punteggi e pesi SINTACS (Civita & De Maio, 1997), conferma l’esistenza delle condizioni precedentemente illustrate nel tratto costiero su cui si estende la città di Messina (Ferrara, 1999).

La distribuzione di classi di vulnerabilità, caratterizzate da un indice derivante dalla sommatoria dei prodotti dei punteggi attribuiti ai diversi parametri che concorrono a definire la vulnerabilità per i pesi proposti dal metodo, individua, su una base cartografica discretizzata, uno scenario di suscettibilità degli acquiferi all’inquinamento. Quest’ultima risulta estremamente elevata o elevata nelle zone a ridosso del litorale e da alta a media nell’immediato entroterra (Fig. 33). Considerando i fattori prima indicati come centri di pericolo, presenti nell’area, si desume che in essa sussistono condizioni di rischio molto probabili di degrado della qualità delle acque sotterranee, che peraltro è già in atto in una larga parte del territorio.

2.3. - Settore Calabro

2.3.1. - Acquiferi delle successioni clastiche mioceniche

Sono rappresentati sostanzialmente da limitati affioramenti di arenarie e sabbie alternate ad argille marnose in sottili livelli (formazione di S. Pier Niceto), presenti con maggiore estensione nella parte meridionale del territorio lungo la valle della Fiumarella di Lume ed in corrispondenza dell’abitato di S. Filippo. In vicinanza delle predette località affiora anche un piccolo lembo di biocalcareniti alternate a sottili livelli argillosi (calcareniti di Floresta).

Si tratta di acquiferi caratterizzati da permeabilità media, ma con accentuata variabilità in relazione alla frequenza dei livelli arenacei ed alla distribuzione e
Fig. 33 - Grado di vulnerabilità all’inquinamento determinato con il metodo SINTACS (CIVITA, 1994, 1997).
natura delle discontinuità che li interessano. La presenza di interstrati argillosi limita la circolazione idrica laddove la formazione è priva di disturbi tettonici. Le risorse idriche in essi contenute sono limitate e di scarso interesse.

2.3.2. - Acquiferi dei depositi continentali e di transizione

Gli acquiferi presenti nella stretta fascia costiera sono costituiti principalmente da estesi depositi alluvionali, originati dal notevole trasporto solido dei corsi d’acqua a causa della forte pendenza degli alvei e dello stato di degrado dei terreni attraversati. Questi presentano spessori consistenti dell’ordine di 20–50 m nel tratto mediano delle fiumare e sempre maggiori man mano che ci si avvicina alla fascia costiera dove raggiungono gli 80–100 m, come nel tratto terminale delle fiumare Catona e Gallico, a nord di Reggio, e delle fiumare Calopinace e Sant’Agata a sud dell’abitato. La morfologia prevalentemente montagnosa e scoscesa dell’entroterra è infatti caratterizzata da profonde vallate che trovano sbocco nella fascia costiera pianeggiante larga 1–1,5 Km, orlata da terrazzi che si spingono fino a quote di 200 – 300 m s.l.m.

Nei tratti vallivi delle fiumare i depositi alluvionali sono sede di consistenti deflussi in subalveo, che da tempo hanno rappresentato la principale fonte di approvvigionamento idrico per scopi civili, irrigui e industriali. Le acque sotterranee sono captate mediante opere singole o collettive (pozzi e gallerie drenanti) realizzate nel corso del tempo senza controllo e razionalità.

Tali depositi, costituiti da ghiaie, ciottoli e blocchi in abbondante matrice sabbiosa con sporadiche lenti argilloso-limose, hanno permeabilità elevata (0,2 - 0,5 x 10^{-3} m/s) e alta trasmissività (1,0 – 6,0 x 10^{-2} m²/s), che consentono una produttività dei pozzi variabile da 10 a 50 l/s. Il substrato delle alluvioni è generalmente costituito da sedimenti argillosi, arenacei e conglomeratici mio-pliocenici; questo si pone alla profondità di 50–100 m al di sotto del livello del mare, come risulta da stratigrafie di pozzi e da prospezioni geofisiche eseguite nel corso del tempo.

Le falde contenute in questi acquiferi sono abbondantemente ricaricate dalle fiumare, con deflussi in mare localmente anche consistenti. Il deflusso delle falde ha direzione da est verso ovest, ossia verso la costa, con gradiente idraulico medio dello 0,5–0,8 %. In corrispondenza della fascia costiera le falde si unificano e la loro continuità laterale è interrotta solo in corrispondenza del settore tra l’abitato di Archi e la periferia settentrionale di Reggio da un rilievo del substrato che separa il tratto di pianura a nord, dove sfociano le fiumare Catona, Gallico e Scacciotti, da quello a sud, dove sfociano le fiumare dell’Annunziata, Calopinace, di Sant’Agata, di Valanidi e altre minori fino alla Fiumarella di Lume. A queste falde attinge un elevato numero di pozzi, principalmente in alcuni settori come quello in cui ricadono le opere di captazione del comune di Reggio, mediante le quali viene prelevato un notevole volume di acque sotterranee. L’intenso sfruttamento ha causato e causa tuttora una forte depressione della piezometrica, con il conseguente richiamo di acqua marina nell’entroterra.
VIII - ANALISI DELLA SISMICITÀ E PERICOLOSITÀ SISMICA

1. - SISMICITÀ E ZONE SISMOGENETICHE

L’area del Foglio Messina-Reggio di Calabria è una delle zone a più alta pericolosità dell’Italia essendo stata colpita nel passato da molti terremoti distruttivi (magnitudo $M = 6.4-7.3$).

Per considerare l’influenza dei terremoti capaci di dare un contributo significativo alla pericolosità sismica del settore in studio, occorre considerare i terremoti locali e regionali e quindi le zone sismogenetiche di un’area più vasta. A grande scala sono state individuate in Sicilia orientale e in Calabria alcune ampie zone sismogenetiche (ZS) caratterizzate da sismicità omogenea (Meletti et alii, 2000a), i cui terremoti sono stati avvertiti o hanno danneggiato l’area (Fig. 34).

La ZS 65 segna il probabile limite settentrionale dell’Arco Calabro-Peloritano (Fig.1). Alcuni degli eventi più importanti, che hanno caratterizzato la sismicità di quest’area, sono stati quelli del 3 dicembre 1887 ($I_{\text{max}} = \text{VIII/IX MCS}$) e del 28 giugno 1913 ($I_{\text{max}} = \text{IX MCS}$), oltre alla riattivazione probabile della zona in occasione del terremoto Crotonese del 9 giugno 1638 ($I_{\text{max}} = \text{X MCS};$ Guerra et alii, 2000).

La ZS 66 comprende la valle del Crati, quella del Savuto fino a Falerna. La porzione meridionale della ZS è stata interessata da un unico evento sismico importante, cioè quello del 27 marzo 1638 ($I_{\text{max}} = \text{XI MCS}$), mentre la parte settentrionale è stata caratterizzata da eventi più frequenti ma di minore entità. La cinematica recente è controllata da almeno quattro segmenti di faglia principali, attivi dopo il Pleistocene e con evidenze di riattivazione in occasione dell’evento del 1638 (Guerra et alii, 2000).

La ZS 67 si estende dal versante orientale del bacino crotonese all’offshore ionico (Guerra et alii, 2000). La sismicità della ZS è caratterizzata da due eventi importanti: 9 giugno 1638 ($I_{\text{max}} = \text{X MCS}$) e 8 marzo 1832 ($I_{\text{max}} = \text{X MCS}$). Le
strutture che caratterizzano l’area fanno capo al sistema di faglie normali del Marchesato a direzione N-S (Moretti, 1999).

Nella ZS 68 ricadono alcuni dei segmenti di faglia attivatesi il 28 marzo 1783 ($I_{\text{max}} = \text{XI MCS}$) e l’8 settembre 1905 ($I_{\text{max}} = \text{X/XI MCS}$). Gli epicentri sono maggiormente concentrati tra 30 e 40 km di profondità (Guerre et alii, 2000).

Per quanto riguarda le zone sismogenetiche della Calabria meridionale (ZS 69 e 70), le strutture qui certamente più attive sono le faglie del bacino del Mèsima, di Serre, di Gioia Tauro e di Cittanova, la cui attività si è protratta per il Pleistocene superiore e l’Olocene (Valensise & D’Addezio, 1994; Monaco & Tortorici, 1995, 2000; Tortorici et alii, 1995; Jacques et alii, 2001). E’ ancora vivo il problema riguardante quali strutture siano state responsabili dei grandi terremoti calabresi. Jacques et alii (2001), sulla base delle principali fonti storiche relative ai terremoti intercorsi tra il 5 febbraio ed il 28 marzo 1783 (Hamilton; 1783; Vivenzio, 1788; De Dolomieu, 1784; Baratta, 1901) e del modello strutturale prescelto dagli Autori (the Rift zone), riconoscono nei sistemi di faglie normali di Cittanova-Sant’Eufemia, Palmi-Scilla e Serre, le strutture sismogenetiches responsabili degli eventi rispettivamente del 5, 6 e 7 febbraio e del 1º marzo del 1783; tali faglie hanno direzione NE-SO, inclinazione di circa 60º- 70º ed
immersione ad ovest.

In Sicilia sud-orientale la sismicità è distribuita soprattutto lungo la costa ionica, in cui gli eventi hanno raggiunto $M \approx 7.0$ (AZZARO & BARBANO, 2000). La struttura probabilmente responsabile dei terremoti maggiori di quest'area (1169, $I_{\text{max}} = X$ MCS; 1693, $I_{\text{max}} = XI$ MCS; 1818, $I_{\text{max}} = IX/X$ MCS) è la Scarpata Ibleo-Maltese; tale struttura, costituita da un sistema di faglie prevalentemente normali, caratterizza la sismicità della ZS 79.

La ZS 73 corrisponde all’area etnea, in cui la sismicità è caratterizzata da eventi di bassa magnitudo e profondità ipocentrale superficiale (MONACO et alii, 1995, 1997; GRESTA et alii, 1997), per cui gli eventi di quest’area sono capaci di produrre effetti distruttivi ma vengono appena avvertiti al di fuori dell’area stessa.

Al confine tra i Nebrodi e i Peloritani occidentali (SZ 74), i terremoti sono localizzati lungo il versante tirrenico, in particolare lungo l’allineamento Patti-Vulcano-Salina (AZZARO et alii, 2000). Questa sismicità è associabile alle strutture trascorrenti destre NO-SE presenti nell’area (es. il terremoto di Patti del 1978, BARBANO et alii, 1979). Altre strutture presenti nell’area sono quelle connesse ai terremoti di Naso, i quali potrebbero essere dovuti all’attivazione di faglie normali orientate NE-SO responsabili del sollevamento della Catena. Le strutture peri-tirreniche (circa E-O) presenti in mare potrebbero costituire la sorgente del terremoto del 1823 ($M = 5.9$) (AZZARO et alii, 2000).

Infine la ZS 71 comprende l’area in studio. In questo settore, l’unico terremoto storico che può dare informazioni di carattere sismogenetico è il terremoto del 28 dicembre 1908 ($M \approx 7.1$; $I_{\text{max}} = XI$, MCS) (GHISSETTI & GRESTA, 1990), ampiamente descritto da BARATTA (1910). Poiché non vengono descritte evidenze di fagliazione superficiale e i dati strumentali non sono molto precisi, vari Autori hanno proposto modelli diversi riguardo la collocazione spaziale, la geometria e le dimensioni della sorgente (GHISSETTI, 1992; BOSCHI et alii, 1994; VALENSISE & PANTOSTI, 1992, 2001).

2. - STORIE SISMICHE E PERICOLOSITÀ

E’ stata eseguita l’analisi di dettaglio dei terremoti che hanno interessato alcune località che ricadono nell’area in studio (Messina, Rometta, Saponara, Torregrotta, Ali Terme, Monforte S. Giorgio, Reggio di Calabria, Catona e Pellaro) al fine di ricostruirne la storia sismica e definirne la pericolosità del sito. La storia sismica di un sito, che è l’elenco cronologico degli effetti causati dai terremoti vicini e lontani al sito stesso, valutati in intensità macrosismica, rappresenta la base essenziale per stabilire l’impatto del terremoto con il territorio nel tempo e può anche essere utilizzata per valutare la pericolosità direttamente dai dati di intensità al sito con un metodo recentemente sviluppato (MAGRI et alii, 1994).

Per la definizione delle storie sismiche dei siti considerati sono stati utilizzati come dati di partenza studi disponibili in letteratura, quali il database GNDT DOM4.1 (MONACHESI & STUCCHI, 1997) e il Catalogo dei Forti Terremoti Italiani
La rilettura delle fonti storiche citate in questi lavori ha permesso di compilare i cataloghi di sito e, ove possibile, di migliorarli, aggiungendo nuove informazioni, specialmente per i terremoti più forti che

(BOSCHI et alii, 1995, 1997, 2000). La rilettura delle fonti storiche citate in questi lavori ha permesso di compilare i cataloghi di sito e, ove possibile, di migliorarli, aggiungendo nuove informazioni, specialmente per i terremoti più forti che
hanno provocato danni.

Gli effetti maggiori in tutte le località analizzate sono legati all’attività delle faglie regionali che si sviluppano dalla Calabria meridionale alla costa ionica siciliana; danni minori sono legati ai terremoti ubicati nel Golfo di Patti e in Calabria.
In generale, se si escludono Reggio di Calabria e Messina per le quali si ha una storia sismica ben definita, per le altre località, soprattutto sul versante calabrese, si hanno poche informazioni sui terremoti che le hanno interessate (Fig. 35). La prima osservazione per queste località si riferisce ai terremoti del 1783 o...
addirittura al 1908. Messina è il sito che ha la storia sismica più completa (Fig. 35a). Per questa località il primo terremoto di cui si ha informazione è dell’853, quando la città sarebbe stata gravemente danneggiata (Boschi et alii, 2000). La prima notizia di danni a Reggio di Calabria (Fig. 35g) viene riferita al terremoto siciliano del 1169.

I dati più gravi subiti dalle località analizzate ($I = X-XI$ MCS e $I = VIII-IX$ MCS) sono legati alla sequenza dei terremoti del 1783 e al terremoto del 28 dicembre 1908, danni minori sono stati provocati dagli eventi del novembre 1499, del febbraio 1509, del marzo 1638, dell’11 gennaio 1693, del novembre 1894 e del 1978.

La maggior parte delle osservazioni di bassa intensità presenti nelle storie sismiche (Fig. 35) sono comuni a tutte le località e si riferiscono ad alcuni forti terremoti con epicentro in Sicilia orientale ed in Calabria centro-settentrionale. I valori di I_{cal} (intensità calcolata) che compaiono nelle storie sismiche sono stati ottenuti riportando al sito, mediante una legge cubica di attenuazione (Magri et alii, 1994), le intensità epicentrali dei terremoti tratti dal catalogo parametrico dei terremoti italiani (Gruppo di Lavoro CPTI, 1999).

Questa integrazione di dati è stata necessaria data l’incompletezza dell’informazione storica.

I cataloghi di sito così ottenuti sono stati adoperati per calcolare i periodi di ritorno medi mediante il metodo di Magri et alii (1994). L’approccio è basato sull’uso di una funzione di distribuzione discreta che, per ciascun terremoto, descrive la probabilità che gli effetti macroisismici siano più grandi o uguali a ciascun valore di intensità della scala adottata. La probabilità è calcolata utilizzando i valori osservati al sito e per ogni classe d’intensità, trattata indipendentemente dalle altre, è stata calcolata la soglia di completezza (Tab. 12).

L’analisi dei periodi di ritorno relativi alla maggior parte dei siti considerati, tra cui le città di Messina e di Reggio di Calabria, mostra valori compresi tra 650 e 840 anni per intensità X (Fig. 36). Le località di Torregrotta, Ali Terme e Monforte S. Giorgio, invece, non hanno mai subito terremoti di tale intensità (Fig. 35d, e, f) e hanno periodi di ritorno compresi tra 360 e 380 anni per la classe d’intensità IX, la più alta qui osservata (Fig. 36).

D’altro canto, l’analisi delle storie sismiche mette in evidenza che i terremoti di magnitudo più elevata che hanno colpito le località in studio sono stati i medesimi (1783, 1908): i siti più vicini alle sorgenti di tali eventi sono stati distrutti totalmente, gli altri, più lontani, solo gravemente danneggiati.

Confrontando inoltre le storie sismiche dei principali centri abitati dell’area con i dati relativi ad alcune località della Sicilia sud-orientale (Barbanò & Rigano, 2001), risulta che le città di Messina e di Reggio di Calabria presentano periodicità sismica maggiore, data la notevole frequenza di eventi di media intensità. Infatti, l’analisi della sismicità di località quali Lentini e Siracusa ad esempio, compiuta utilizzando il metodo Magri et alii (1998), ha condotto ai seguenti risultati: effetti di intensità VII hanno un periodo di ritorno medio di 70 anni e quelli di intensità VIII di 115 anni. Le città di Messina e di Reggio di Calabria, invece,
Tab. 12 - Soglia di completezza per le varie intensità e periodi di ritorno medio (anni) per alcuni comuni del Foglio Messina - Reggio di Calabria.

<table>
<thead>
<tr>
<th>Intensità</th>
<th>Messina</th>
<th>Saponara</th>
<th>Rometta</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Anno di completezza</td>
<td>Periodo di ritorno</td>
<td>Anno di completezza</td>
</tr>
<tr>
<td>IV</td>
<td>1818</td>
<td>2.4 ± 0.3</td>
<td>1818</td>
</tr>
<tr>
<td>V</td>
<td>1693</td>
<td>5.3 ± 0.9</td>
<td>1770</td>
</tr>
<tr>
<td>VI</td>
<td>1599</td>
<td>10.9 ± 1.9</td>
<td>1599</td>
</tr>
<tr>
<td>VII</td>
<td>1494</td>
<td>29 ± 7</td>
<td>1494</td>
</tr>
<tr>
<td>VIII</td>
<td>1494</td>
<td>74 ± 24</td>
<td>1494</td>
</tr>
<tr>
<td>IX</td>
<td>1169</td>
<td>275 ± 50</td>
<td>1169</td>
</tr>
<tr>
<td>X</td>
<td>853</td>
<td>650 ± 177</td>
<td>853</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Intensità</th>
<th>Torregrotta</th>
<th>Ali Terme</th>
<th>Monforte</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Anno di completezza</td>
<td>Periodo di ritorno</td>
<td>Anno di completezza</td>
</tr>
<tr>
<td>IV</td>
<td>1818</td>
<td>3.3 ± 0.5</td>
<td>1818</td>
</tr>
<tr>
<td>V</td>
<td>1780</td>
<td>5.4 ± 1</td>
<td>1818</td>
</tr>
<tr>
<td>VI</td>
<td>1637</td>
<td>15.4 ± 3.8</td>
<td>1783</td>
</tr>
<tr>
<td>VII</td>
<td>1599</td>
<td>36 ± 9</td>
<td>1693</td>
</tr>
<tr>
<td>VIII</td>
<td>1494</td>
<td>103 ± 28</td>
<td>1494</td>
</tr>
<tr>
<td>IX</td>
<td>1169</td>
<td>360 ± 82</td>
<td>1169</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Intensità</th>
<th>Reggio di Calabria</th>
<th>Catona</th>
<th>Pellaro</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Anno di completezza</td>
<td>Periodo di ritorno</td>
<td>Anno di completezza</td>
</tr>
<tr>
<td>IV</td>
<td>1818</td>
<td>3.2 ± 0.5</td>
<td>1818</td>
</tr>
<tr>
<td>V</td>
<td>1770</td>
<td>4.5 ± 0.8</td>
<td>1693</td>
</tr>
<tr>
<td>VI</td>
<td>1599</td>
<td>11.1 ± 2.1</td>
<td>1634</td>
</tr>
<tr>
<td>VII</td>
<td>1494</td>
<td>28 ± 7</td>
<td>1494</td>
</tr>
<tr>
<td>VIII</td>
<td>1494</td>
<td>80 ± 30</td>
<td>1494</td>
</tr>
<tr>
<td>IX</td>
<td>1169</td>
<td>281 ± 55</td>
<td>1169</td>
</tr>
<tr>
<td>X</td>
<td>853</td>
<td>699 ± 217</td>
<td>853</td>
</tr>
</tbody>
</table>
Fig. 36 - Periodi di ritorno medio (anni) con errore associato calcolati con il metodo di Magri et alii (1994).
presentano periodi di ritorno pari a 28 e 75 anni per le medesime classi d’intensi-
tà, valori decisamente più bassi rispetto ai precedenti.

La maggior parte delle località analizzate hanno periodi di ritorno confron-
tabili con quelli di Catania per valori di intensità IX e X (Barbano & Rigano, 2001). Le stime di pericolosità eseguite in ambito GNDT (Meletti et alii, 2000b) evidenziano, invece, valori di pericolosità più alti per l’area dello Stretto di Mes-
sina rispetto a quelli ottenuti per l’area catanese.

Infine, i periodi di ritorno medi ottenuti per le località in studio tramite il metodo Magri et alii (1994) sono più brevi rispetto ai valori ricavati da Slejko et alii (1998) utilizzando il metodo Cornell, con il quale per esempio risulta che la massima intensità attesa nella zona dello Stretto di Messina e nella Calabria meridionale (intensità IX) corrisponde ad un periodo di ritorno di 475 anni. Que-
ste diverse valutazioni possono essere spiegate considerando che il metodo di Cornell assume zone sismogenetiche estese caratterizzate da tasso di sismicità omogeneo.

3. - CONSIDERAZIONI CONCLUSIVE

I principali risultati di questo studio possono essere così sintetizzati:

- I cataloghi di sito mostrano che solo il terremoto del 1908 ha provocato effetti
distruttivi nelle località oggetto di studio, mentre invece sono molto frequenti
i terremoti che hanno provocato danni gravi.
- La metodologia utilizzata ci ha permesso di discriminare una variabilità
spaziale nei valori della pericolosità sismica. Queste variazioni, infatti, non
sarebbero state evidenziate con gli approcci classici, perché essi tendono ad
uniformare la pericolosità su vaste aree. Il metodo utilizzato in questo lavoro
tratta prevalentemente le intensità osservate ed inoltre non risente né della
legge di distribuzione dei terremoti, né della forma delle zone sismogeneti-
che. Una moderata influenza nella valutazione della pericolosità può avere,
invece, la scelta della legge di attenuazione.
- La più alta probabilità di ricorrenza di terremoti distruttivi (I = X) è stata
stimata per i siti di Messina, Reggio di Calabria, Catona, Pellaro, Saponara
e Rometta. I periodi di ritorno medi sono più brevi di quelli che si ottengono
con metodi classici tipo Cornell.
Nell’area del Foglio sono state misurate e studiate 10 sezioni stratigrafiche per un totale di 134 campioni raccolti ed esaminati, che vengono descritte di seguito.

Flysch di Capo D’Orlando

Formazione di S. Pier Niceto

A sud dell’abitato di S. Pier Niceto, sono stati campionati i depositi terrigeni del Miocene medio-superiore (Fig. 26). La sezione, suddivisa in due parti, inizia a sud di Vignareddu, dove su lembi residui di calcareniti di Floresta, costituite da biolititi algali, poggiano in netta discordanza 60 metri di marne argilloso-siltose sottilmente stratificate con rare intercalazioni arenacee. Al di sopra poggia, con contatto erosivo, un intervallo conglomeratico, la cui potenza è di circa 40 metri. Seguono una decina di metri di arenarie alternate a strati centimetrici di argille marnose. La sezione riprende poco a nord, a Vignareddu, con un’alternanza di strati arenacei e livelletti marnoso-argillosi che si infittiscono verso l’alto, dello
spessore di circa 150 metri. I campioni raccolti contengono associazioni a nanofossili variabili sia per abbondanza che per qualità, in dipendenza delle litologie interessate; nel tratto marnoso basale i nanofossili calcarei sono comuni e mostrano condizioni di conservazione da mediocre a buone. I campioni raccolti nella porzione conglomeratica sono totalmente sterili. Nel tratto superiore le associazioni sono generalmente poco abbondanti, sparse o addirittura assenti, e sono generalmente mal conservate. Tutti i campioni contengono una certa percentuale di specie rimaneggiate, maggiore o addirittura esclusiva in alcuni campioni dell’alternanza arenaceo-pelitica. Nella parte bassa dell’intervallo pelitico l’associazione è caratterizzata da \textit{Helicosphaera carteri}, \textit{H. walbersdorferensis} (Müller), \textit{Coccolithus miopelagicus} Bukry, \textit{Geminilithella rotula} (Kamptner), \textit{Discoaster variabilis} Martini & Bramlette, \textit{Sphenolithus heteromorphus} Deflandre; quest’ultimo si estingue nella parte alta dell’intervallo argilloso, individuando il limite tra la biozone MNN5b e MNN6a. \textit{Reticulofenestra pseudoudombilicus} (Gartner) e \textit{Calcidiscus premaenarti} Theodoridis sono comuni nella porzione marnosa superiore e spesso quest’ultimo costituisce la sola specie presente del genere \textit{Calcidiscus}; la sua ultima comparsa comune è stata ubicata, in maniera approssimativa, fra il tratto inferiore della sezione e quello superiore; sono state in questo modo riconosciute le biozone MNN6b e MNN7. \textit{Coccolithus miopelagicus} è comune ed abbondante nel tratto marnoso basale e nel segmento inferiore dell’alternanza arenaceo-pelitica, per diventare discontinuo e in basse percentuali nella parte alta dell’intervallo arenaceo-pelitico, dove si registra anche l’estinzione di \textit{Helicosphaera walbersdorferensis}, orizzonte che individua la base della Biozona MNN8a.

Sulla base delle associazioni a foraminiferi, generalmente poco abbondanti, i campioni basali (1-14) sono stati riferiti alle biozono a \textit{O. universa} e \textit{G. praemenardi}/\textit{G. peripheroronda}. Non è possibile distinguere queste due biozono data la scarsa presenza di \textit{Globorotalia praemenardi} Cushman & Stainforth (solo nel campione 16), la cui prima comparsa segna il limite suddetto. L’intervallo tra i campioni 15 e 16 viene attribuito alla Biozono a \textit{D. altispira-altispira}, data l’estinzione di \textit{Globorotalia peripheroronda} Blow & Banner. La comparsa di \textit{Paragloborotalia partimlabiata} (Ruggieri & Sprovieri) nel campione successivo individua, infine la sottozona a \textit{G. subquadratus}. Tra i campioni relativi alla parte superiore della sezione, solo i campioni 36 e 38 forniscono dati biostratigrafici significativi: la presenza di \textit{Neogloboquadrina acostaensis} (Blow) consente di riferire l’intervallo sommitale alla Biozona a \textit{G. acostaensis} del Tortoniano inferiore.

A nord dell’abitato di Rometta, a Sotto Castello (Fig. 27), affiorano circa 25

Complessivamente la formazione di S. Pier Niceto copre un intervallo cronostatigrafico che va dal Langhiano superiore al Messiniano inferiore.

Depositi pliocenici e pleistocenici

Nell’area di *Pirrera* (Fig. 28), all’estremità nord-occidentale del Foglio, la successione plio-pleistocenica è costituita da circa 20 m di Trubi, che poggiano su calcare evaporitico biancastro, con contatto irregolare e marcato da un livello di brecc. Sopra i Trubi poggia un’alternanza di biocalcareniti grossolane e sabbie giallo ocra (formazione di Rometta), dello spessore di 20 m, con frammenti di macrofossili e clasti di Trubi, che passa verso l’alto a 7 metri di argille marnose di colore grigio chiaro. L’associazione a nannofossili calcarei contenuta nei campioni raccolti in corrispondenza dei Trubi è molto abbondante e ben conservata. Le percentuali più consistenti sono relative a *Dictyococcites* spp., *Coccolithus pelagicus, Reticulofenestra* spp. e *Sphenolithus abies* DEFLANDRE. Presenti in percentuale minore *Helicosphaera carteri, Syracosphaera* spp., *Calcidiscus leptoporus* (MURRAY & BLACKMAN), *Geminilithella rotula, Reticulofenestra pseudoumbilicus, Discostar surculus* MARTINI & BRAMLETTE, *D. pentaradiatus* TAN e *Amaurolithus* spp. Questa associazione è riferibile alla Biozona MNN12 (RIO et alii,1990) del Pliocene inferiore. I campioni relativi alla porzione superiore dei Trubi, presentano un’associazione sostanzialmente simile a quella appena descritta, ma caratterizzata dalla presenza di *Helicosphaera sellii* Bukry & Bramlette, che consente di riferire i campioni della parte alta alla successiva Biozona MNN13 del Pliocene inferiore.

Nei pressi degli abitati di Rometta e di S. Cono i depositi plio-pleistocenici (Fig. 28) poggiano in discordanza sulla formazione di S. Pier Niceto e su vari termini evaporitici messiniani (lembi di calcare evaporitico e Tripoli) e a nord-ovest direttamente sul basamento metamorfico. L’appoggio sul calcare evaporitico, rappresentato da una breccia pulverulenta, si realizza mediante una superficie di erosione articolata, su cui poggiano circa 20 metri di un’alternanza di silt marnosi massivi biancastri e sabbie fini con intercalazioni di lentiscentimetriche, più frequenti nella parte basale, date da breccie costituite da elementi del sottostante calcare evaporitico del diametro massimo di 4 cm (formazione di Massa S. Lucia). Localmente si osservano livelli a brachiopodi, (*Griphus sphenoideus* (Philips), *Ceramisia meneghiniana*, *Dallina septigera* (Lovén) e *Fallas septatus*, Gaetani & Saccà, 1984), radioli di echinidi e coralli appartenenti alla specie *Conotrochus typus* Seguenza (Vertino, com. pers.). Al tetto di questa sequenza aumenta la componente sabbiosa a scapito di quella marnosa che scompare del tutto; infatti, negli ultimi 3,5 metri si osservano strati decimetrici sabbiosi amalgamati bioturbati a stratificazione piano parallela discontinua. Segue in discordanza angolare, fino a poggiare sul basamento, una successione spessa circa 100 metri, piuttosto articolata litologicamente (formazione di Rometta); il passaggio è marcato da un sottile strato di argille rossastre spesso 5 cm cui seguono in continuità 2 metri di sabbie giallastre medio grossolane, nei cui primi 50 cm si osservano, oltre alla laminazione piano parallela discontinua ed alla bioturbazione, già riscontrata...
nello strato sottostante, una concentrazione di resti di briozoi. Seguono 20 metri circa di calcareniti cementate bioclastiche di colore rosa esternamente e biancastre al taglio, con bioturbazione e stratificazione incrociata indistinta, obliterata dalla diagenesi probabilmente per un eccesso in CaCO₃. Superiormente si passa a 14 metri di sabbie giallastre bioclastiche, da mediamente a molto grossolane, a volte gradate e bioturbate, organizzate alternativamente in strati centimetrici/decimetrici massivi e strati da centimetrici a metrici con laminazione incrociata da *ripple* e *megaripple*. Queste sabbie, spesso cementate, sono ricche in frammenti organogeni prevalentemente dati da resti di bivalvi per lo più pettinidi. Segue uno strato lentiforme, dello spessore di circa un metro, di sabbie molto grossolane non gradate interessato da fenomeni di *slump*. Al di sopra riprende l’alternanza, spessa circa 23 metri, di strati massivi e strati a laminazione incrociata da *ripple* e *megaripple*, con impronte da carico alla base. Litologicamente questo tratto della sezione è sempre dato da sabbie bioclastiche molto grossolane, i cui bioclasti sono costituiti per lo più da pettinidi, briozoi e rari coralli. Inoltre, negli ultimi 5 metri si nota una concentrazione di pettinidi negli strati massivi. L’ultima parte della successione è costituita da un’alternanza spessa circa 40 metri di strati massivi sabbiosi che verso l’alto si assottigliano, e strati biocalcarentifici cementati a stratificazione incrociata indistinta.

Dall’analisi dei residui di lavaggio, si osserva che lo stato di conservazione dei foraminiferi è discreto solo nei primi campioni, per poi peggiorare sino a diventare pessimo nei campioni sabbiosi ed in quelli calcarenitici, dove diminuisce bruscamente anche il numero di esemplari sia planctonici che bentonici. Il peggioramento dello stato di conservazione degli organismi nei campioni sabbiosi e calcarenitici è stato osservato anche tra i nannofossili calcarei che si presentano spesso totalmente ricristallizzati. La componente organogena è rappresentata anche da resti di briozoi, coralli, bivalvi, radioli di echinidi, valve di ostracodi, denti di pesce e rarissime spicole di spugne. La componente inorganica è invece data da quarzo, calcite e miche.

Dall’analisi biostratigrafica integrata si rileva che l’intervallo marnoso-sabbioso (formazione di Massa S. Lucia) ricade nella Biozona MPI5a a foraminiferi, caratterizzata dalla presenza di *Globorotalia bononiensis* Dondi e *Neogloboquadrina atlantica* Berggren sinistrogira, cui si accompagnano alcuni individui di *Globorotalia puncitculata* (Deshayes), probabilmente rimaneaggiati; sulla base dei nannofossili invece, la base della sezione ricade nella Biozona MN16, caratterizzata dalla presenza di *Discoaster tamalis* Kamptner e *D. asymmetricus*. L’età è Pliocene medio.

Il passaggio alle sabbie soprastanti (formazione di Rometta), che sul terreno è marcato da un livello argilloso rossastro, individua anche una lacuna stratigrafica, valutata in 870 ka (Di Stefano et alii, in stampa); i primi campioni dell’intervallo sabbioso contengono infatti *Globorotalia inflata* (d’Orbigny), che individua la Biozona MPL6, e nannofossili della Biozona MN19a. L’intervallo calcarenitico compreso tra m 10 e 40 non mostra litologie favorevoli allo studio delle microfaune; i campioni raccolti nei livelli sabbiosi della parte alta della
sezioni mostrano associazioni a foraminiferi poco abbondanti e mal conservate, caratterizzate dalla presenza di rari individui di *Truncorotalia truncatulinoides* (d’OرغبNy) e *G. inflata*. Anche le nannoflore, sparse, mal conservate e poco significative, non contribuiscono all’attribuzione biostratigrafica di questo tratto di sezione. Dal punto di vista cronostatigrafico, questo intervallo è compreso tra il Pliocene superiore e il Pleistocene inferiore. La successione di S. Cono è chiusa al tetto da un deposito terrazzato, mentre in corrispondenza della sommità dell’abitato di Rometta, al tetto delle calcareniti della formazione di Rometta poggiano pochi metri di argille marnose, attribuite alla formazione di Spadafora, contenenti *Hyalinea baltica* Schröter e *Globigerina cariacensis* Rögl & Bolli (Violanti, 1989) e nannoflore caratterizzate da *Pseudoemiliiana lacunosa* e *Gephyrocapsa* sp. 3 (sensu Río et alii, 1990), che individuano la Biozona MNN19f del Pleistocene medio.

Lungo il margine tirrenico si osservano vasti affioramenti di argille di color grigio azzurro, largamente utilizzate nell’attività estrattiva finalizzata alla manifattura di laterizi, che raggiungono spessori superiori al centinaio di metri; si tratta di depositi marini pleistocenici, noti in letteratura con termine di Argille di Spadafora (Seguenza, 1873). Nell’area in esame poggiano in discordanza su vari termini del substrato, dalla formazione di Rometta fino al diretto appoggio sul basamento cristallino. Tali depositi sono stati studiati nell’area di Torregrotta (Fig. 29) dove non affiora il contatto di base. La sezione è costituita da una monotonà successione di argille grigio-azzurre debolmente stratificate, sabbiose verso l’alto, per uno spessore complessivo di circa 60 metri. La successione è chiusa al tetto dalle ghiaie e sabbie di Messina.

L’analisi dei nannofossili calcarei ha rivelato la presenza di associazioni non particolarmente abbondanti, ma discretamente conservate, con una bassa percentuale di specie rimaneggiate. Tra gli Elicoliti è presente solo *Helicosphaera carteri*. Altre specie significative dal punto di vista biostratigrafico sono *Pseudoemiliiana lacunosa, Gephyrocapsa oceanica* s.l. e *Gephyrocapsa* sp. 3 presenti lungo tutta la sezione senza particolari fluttuazioni di abbondanza. Il range di distribuzione di *Gephyrocapsa* sp. 3, che ha un’età compresa tra 0.99 e 0.59 Ma (Castradori, 1995, Sprovieri et alii, 1998) individua la parte bassa della Biozona MNN19f del Pleistocene medio, intervallo cui viene dunque interamente riferita la sezione in esame. L’associazione a foraminiferi planctonici, abbondante e discretamente conservata talora con patine di pirite, è caratterizzata dalla presenza sporadica e discontinua di *Truncorotalia truncatulinoides exelsa* (Ruggieri, Sprovieri & Unti), specie che permette di riferire la sezione alla Biozona omonima. Si segnala inoltre, tra i foraminiferi bentonici, la presenza discontinua e in rarissimi individui di *Hyalinea baltica*.

Nel settore reggino, nei pressi dell’abitato di Archi, affiora una successione pleistocenica nota in letteratura (Placella, 1978; Guadagno et alii, 1979; Di Geronimo et alii, 1997). In località C.da Luparolino (Fig. 29) tali depositi sono rappresentati da calcari marnosi colore bianco crema, con intercalazioni metriche di sabbie grossolane grigio chiaro a struttura gradata, ad abbondante malacofauna
(pectinidi e ostreidi) e numerosi orizzonti di tephrà e pomici. I calcari marnosi diventano gradualmente sabbiosi verso l’alto fino a passare a delle vere e proprie sabbie contenenti livelli conglomeratici. La successione è completata dalle ghiaie e sabbie di Messina in netta discordanza. L’analisi biostratigrafica integrata indica che la microfauna planctonica è costituita da abbondante Globigerina bulloides d’Orbigny, Globorotalia scitula (Brady), Neogloboportalìa pachyderma, Turborotalita quinqueloba Natland, Globorotalia inflata. Subordinatamente sono presenti forme tipicamente pleistoceniche, quali Globorotalia truncatulinoides excelsa, Globigerina calabra, G. calida Parker, G. cariacoensis Rögl & Boll, Globigerinoides tenellus Parker. I foraminiferi bentonici, abbondanti e ben conservati, sono caratterizzati dalla presenza di Cassidulina carinata Silvestri, C. crassa d’Orbigny, Cibicidoides pseudoungerianus, Gyroidinoides laevigatus (d’Orbigny), Melonis barleanum (Williamson), Sphaeroidina bulboides d’Orbigny, Uvigerina bradyana (Fornasini). Hyalinea baltica è presente nella sezione fin dalla base.

I nannofossili calcarei sono generalmente comuni e ben conservati. Sono presenti Helicosphaera carteri, Pseudoemiliania lacunosa, Gephyrocapsa oceanica s.l., Gephyrocapsa “small”, Gephyrocapsa sp. 3, associazione che caratterizza la Biozona MNN19f del Pleistocene medio.

I caratteri litologici e il contenuto in microfossili simili a quelli riconosciuti nei depositi della formazione di Spadafora affiorante nel settore siciliano, nonché l’identico intervallo cronostatigrafico, permettono di assimilare a questa formazione i suddetti depositi del settore reggino.

Lungo il margine ionico, nei dintorni dell’abitato di Messina, sono presenti depositi calcarenitici, che mostrano spessori fino a 40 metri (calcareniti di S. Corrado, Fig. 29). Si tratta di un’alternanza di strati calcarenitici friabili e sabbie grossolane di colore giallo bruno, ad abbondante fauna rappresentata da bivalvi, gasteropodi, brachiopodi, scafopodi, echinidi, balani e coralli. Poggiano in discordanza su differenti termini del substrato plio-pleistocenico e pre-pliocenico. La stratificazione è generalmente piano-parallela e localmente incrociata, specie nei livelli sommitali. I livelli sabbiosi più fini contengono nannoflore caratterizzate da Gephyrocapsa sp. 3, Pseudoemiliania lacunosa (Biozona MNN19f del Pleistocene medio) e foraminiferi caratterizzati da Hyalinea baltica e Truncorotalia truncatulinoides excelsa. Alla base di questi depositi è possibile osservare un orizzonte conglomeratico, più potente nel settore settentrionale dell’area (tra La Montagna e Camaro e a S. Corrado) dove raggiunge i 20 metri di spessore, costituito da grossi blocchi di diametro fino a metrico di calcari marnosi bianchi (Trubi), arenarie mioceniche e rocce cristalline, immersi in una matrice argillosa contenente nannoflore della Biozona MNN19f (Pleistocene medio). Nella parte alta delle calcareniti si rinvengono canali incisi riempiti di blocchi di varia dimensione, di natura sedimentaria e cristallina.
RINGRAZIAMENTI

Si desidera ringraziare i revisori del Servizio Geologico, tutti ampiamente disponibili e proficuamente costruttivi nella lettura critica del manoscritto. Un particolare riconoscimento va al Dr. D. Greco, Funzionario delegato del Progetto CARG-Regione Siciliana e al Dr. G. Arnone responsabile del Servizio Geologico dell’Assessorato Territorio e Ambiente della Regione Siciliana, per gli incoraggiamenti e la fiducia profusa al gruppo di coordinamento ai fini della realizzazione del Foglio. Si ringraziano i Dr. M. Mandaglio e F. Amodeo per avere effettuato la caratterizzazione delle tessiture dei depositi di spiaggia lungo tutto il litorale reggino del Foglio.

BIBLIOGRAFIA

BONARDI G., DE VIVO B., GIUNTA G. & PERRONE V. (1982) - I conglomerati rossi dei Monti Peloritani...

Ghisetti F. (1992) - Fault parameters in the Messina Straits (southern Italy) and relations with the seismogenetic sources. Tectonophysics, 210: 117-133.

Guerra I., Gervasi A. & Moretti A. (2000) – Considerazioni e prospetti sulla zonazione sismogene-

Guerrera F. Wezel F.C. (1974) – Nuovi dati stratigrafici sui fylschi oligomictici siciliani e consi-

Hearty P.J., Bonfiglio L., Violanti D. & Szabo B.J. (1986) – Age of Late Quaternary marine deposits of Southern Italy determined by aminostratigraphy, faunal correlation and Uranian-series dat-

Ioppolo S., Lo Giudice A., Puglisi G. & Rottura A. (1982) – La suite granitica peraluminosa dell’Ar-

Jacobacci A., Malatesta A. & Motta S. (1961) – Piano di studi sullo Stretto di Messina per il colle-

Meletti C., Sleiko D. & Vaccum F. (2000b) - Confronti tra le stime di pericolosità sismica del

Messina A., Russo S. & Stagno F. (1996a) - The crystalline basements of the Calabrian-Peloritani

book - Annual Field Meeting of “granitologues”.

