

"Capacity Building and Strengthening Institutional Arrangement"

Analysis and sampling of air and air pollution

Emission monitoring

Ms. Maria Belli
APAT

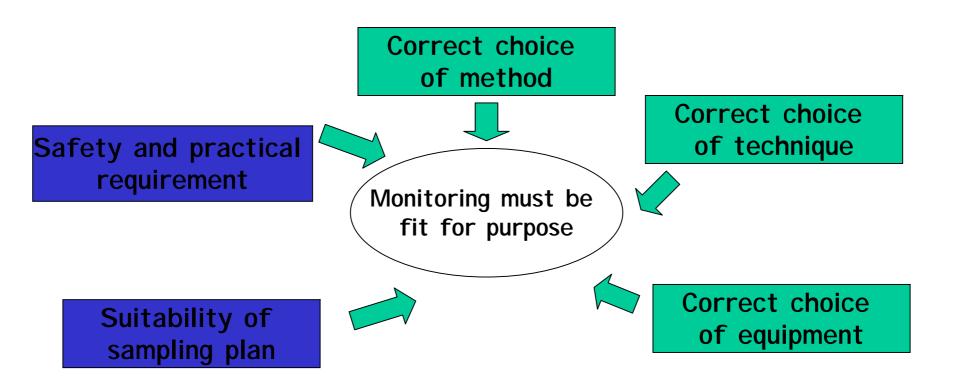
Agency for Environmental Protection and Technical Service

Reasons of stack emission monitoring

- compliance with environmental legislation
- emission-inventory compilation
- environmental impact assessements
- process efficiency and process control
- performance of a pollution-control device
- calibration of continuous emission monitoring systems

Stack emission monitoring

- Periodic measurements campaign
 - Samples are withdrawn from the stack (sample analysed after in the lab)
 - Instrumental or automated technique are used (sample fed in an on line analyser)
- Sample can be obtained on several hours or may be on "spot" or "grab" collected over a period of second or several minutes



Stack emission monitoring

- Continuous emissions monitoring systems
 - Continuous measurements carried out with automated equipment
 - measurements may be carried out in situ in the stack
 - extractive sampling fed in an instrument placed permanently at or near the stack

Monitoring fit for purpose

From UK environment agency Technical guidance note M2 version 3.1 June 2005

Stack emission monitoring (harmonization of sampling and measurements methods among ARPA/APPA)

- Technical guidance contents
 - Elements for site specific protocol
 - Site review to understand the physical and logistical situation on-site
 - Type of plant
 - State of authorizations
 - Technical elements to specify what, where and when to sample

Manuale operativo per il controllo delle emissioni in atmosfera (legge 93/01 ARPAT, ARPA-Lombardia, ARPA-Liguria

Stack emission monitoring (harmonization of sampling and measurements methods among ARPA/APPA)

- Technical guidance contents
 - Choice of monitoring methods
 - Sampling and measurements equipment
 - Guidance for call for tender (equipment acquisition)

Manuale operativo per il controllo delle emissioni in atmosfera (legge 93/01 ARPAT, ARPA-Lombardia, ARPA-Liguria

Stack emission monitoring (harmonization of sampling and measurements methods among ARPA/APPA-choice of methods)

- Standards developed by different organization vary in the degree of validation work carried out as part of their development (CEN, ISO)
- The choice of method could be also dictated by the requirement of national legislation or EU directives
- If the standard is not dictated by mandatory requirements should be used the following order of priority (European IPCC Bureau's Reference Document on the general Principles of monitoring)

Manuale operativo per il controllo delle emissioni in atmosfera (legge 93/01 ARPAT, ARPA-Lombardia, ARPA-Liguria

Stack emission monitoring (harmonization of sampling and measurements methods among ARPA/APPA-choice of methods)

- Comité Européen de Normalisation (CEN)
- International Standardization Organization (ISO)
- American Society for testing and materials (ASTM)
- Association Francaise de Normalisation (AFNOR)
- British Standard Institution (BSI)
- Deutsches Institut fur Normung (DIN)
- United States Environmental Protection Agency (US EPA)
- Verein Deustcher Ingenieure (VDI)

Particulate matter

Total

Pm10

Supplementary parameters (physical)

Gas velocity and temperature

Supplementary parameters (chemical)

Oxygen

Carbon dioxide

Moisture

Speciated particulates and phase partitioned species (inorganic)

Speciated particulates and phase partitioned species (inorganic)

heavy metals

hydrogen chloride

asbestos, man made fibres and ceramic fibres

Speciated particulates and phase partitioned species (organic)

dioxin and furan

PHAs

PCBs

Tar and bitume fume

Oil mist

Gaseous substances (inorganic)

sulphur dioxide, sulphur trioxide and total

sulphur

nitrogen oxide

carbon monoxide

ammonia

hydrogen cyanide, total cynide

hydrogen sulphyde, TRS, carbon disulphide,

carbonil sulphide

halogens and halides

phosphorous and its inorganic compound

Gaseous substances (organic)

Total VOCs

Speciated VOCs

Mercaptans (thiols)

Diisocyanates

Amines and amides

Aldehydes

phenols and creosols

carboxylic acids

Odour

Stack emission monitoring (choice of analytical method-total particulate matter)

Monitoring approach	Type of monitoring	Technique/ principle	Standard / method	Strengths' applications	Limitations
CEMt	In satu/ cross- ducs CEMs	Opacity meter or transmissionselec	BS ISO 10153	In widespread use. Opacity or mode denuity measurements can be related to Ringelmann chart. Some instruments can be calibrated to give dost concentration, ong m ³ Later opacimeters have LOD down to I ong m ³ .	Concentration calibration factor dependent on particle sine, composition, shape, colour and refractive index. Gives a measure of dust concentration, but after ralibration against SRM. Typical range about 10 to 2000 mg m th Not suitable for low concentration emissions.
		Tribo-electric probe	BS ISO 10155	Can be used simply as an alarm indicator or as quantitative monitor. Claimed to be suitable for low dust concentrations (LOD less than 1 mg m ⁻¹).	Tribo-electric response dependent on particle size, composition and moisture. Gives a measure of dust concentration, but after calibration against SRM.
		Light teattering	BS 15O 10153	Reported to be unitable for low dust concentrations (LOD flows to 1 mg m *).	Gives a measure of dust concentration, but only after calibration with SRM.
	Estractive CEM:	Beta attenuation monitor	BS ISO 10155	Can be calibrated to give dust concentration mg m ³ directly. Gives successive average readings over set sampling periods. Absorption coefficient is independent of dust composition.	Typical range about 2 to 2,000 mg m ⁻¹ depending on sampling rate, frequency and integrating time
		TEOM	BS 25O 10155	Equipment can be installed permanently, as a CEM. Gives continuous gravimetric results but is limited by filter life.	Manufacturer's data: LOD 0.2 mg m ³ (2 min tample); typical range 0-50 mg m ³ (depending on filter change frequency); precision 22.5%
		Extractive light- scattering system	BS ISO 10155	Suitable for low dust concentrations. Extractive part of the system may retain dust.	Manufacturer's data: range 0-1000 mg m ³ ; LOD 0.02 mg m ³ ; reproductivility 0.5% FSD.

From UK environment agency Technical guidance note M2 version 3.1 June 2005

Stack emission monitoring (choice of analytical method-particulate)

Monitoring approach	Type of monitoring	Technique/ principle	Standard/ method	Strengths/applications	Limitations
Periodic	Periodic manual sechniques	Isokmetic sampling and gravimetry	BS EX 13284-1	Developed for low dust concentrations (450 mg m ³), however the scope states that it can be used for a wide range of concentrations. Primarily developed for hazardous waste incinerators (HWIs), however the scope also indicates that it can be applied more widely.	Reproducibility (worst quoted) ±5.7 mg m ⁻³ at 6.4 mg m ⁻³ and 30 min sample. Validated at concentrations around 5 mg m ⁻³ and 30-masses sampling duration (usually used for concentrations below 50 mg m ⁻³). The overall uncertainty of the method complies with the uncertainty of ±30% required by HWID and WID sites.
			BS ISO 9096	This standard is a reference method for the measurement of particulates in stack gases of commutations between 20 mg m ³ to 1000 mg m ³ . It was developed by close co-operation between 150 and CEN. It is similar to EN 13284-1 with additional emphasis given on the use of high-volume sampling techniques.	The overall uncertainty of the method complies with the uncertainty of ±30% required by HWID and WID sites.
	Periodic instrumental recliniques	TEOM	BS 750 10155*	Gives continuous gravimente results. Technique intended by manufacturers for calibration of CEMs.	Manufacturer's data: LOD 0.2 mg m ⁻³ (2 min tample); typical range 0-50 mg m ⁻³ (depending on filter change frequency); precision 22.5%.

From UK environment agency Technical guidance note M2 version 3.1 June 2005

Stack emission monitoring (choice of analytical method-pm10)

Monitoring approach	Type of monitoring	Technique/ principle	Standard/ method	Strengths/applications	Limitations
CEMs	In titu/erott- duet CEMs	Light scattering	BS ISO 10155	Light costlering systems can be configured to classify particulate numbers into size ranges.	Givet a measure of dust concentration, but after ealibration with the SRM.
	Extractive CEMs	Photometric analyses	B\$ ISO 10155	Low range. Suitable for low-range, large, wet processes.	Range 0 - 40 mg m ⁻³ .
Periodic	Periodic manual secliniques	Sampled using case ade impactor or in-stack cyclene and gravametry	US EPA method 201A	Cancade impactor gives particle-size distribution over 10-size ranges.	Must be operated at constant flow and at one tampling point
	Ferrodic instrumental techniques	TEOM when used with PM10 nampling head or cyclone	B\$ ISO 10155"	Givet communing graviments results. Technique intended for calibration of CEMs.	Manufacturer's data: LOD 0.2 mg m ⁻³ (2 min tample); typical range 0-50 mg m ⁻³ (depending on filter change frequency); precision ±2.5%.

From UK environment agency Technical guidance note M2 version 3.1 June 2005

Stack emission monitoring (choice of analytical method-gas velocity and temperature)

Monitoring approach	Type of monitoring	Technique/ principle	Standard/ method	Strengths' applications	Limitations
CEMs (gas velocity)	duct CEMs	Dynamic pressure technique	B5 ISO 14164 1999	Uses probe with series of openings and pressure- senting device.	
(0.01010)4/E		Ultrasonic sensors and receivers	BS ISO 14164: 1999	One velocity related to speed of pulsed soundwaves.	Interference from vibrations and turbulence
		Balance technique	None published	Force exerted by flow on probe element measured by main gauge.	7
	In situ CEMs	Triboslactric	None published	Cond agreement with Point title demonstrated in condition plants	Interference from morenire
		Thermal mass	2/age published	Ges velocity related to energy required to keep a probe at temperature (wind chill effect). Good for low velocities.	Lumited temperature range
Periodic (gas velocity and temperature)	Persodic manual techniques	Traverse of sample plane using Pitot prope with manuscrieter and thermocouple	85 EN 13264-1**	An integral part of the standard method for garticulates measurement	The lowest gas velocity that can be measured is about 2-3 m s ⁻¹ since the smallest pressure difference that can be practically measured under field conditions is about 5 Pa. Upper temperature limit is about 400°C, unless constructed with high-temperature-resistant material However, due to the effects of temperature on gas debuty, the repeatability of Pitol measurements varies with increasing temperature. Type K thermocouple cannot be used above about 1370°C.
	Periodic instrumental	As above, but using digital measurement	BS ISO 9096: 2003	An integral part of the standard method for particulates measurement.	Digital manumeter may sometimes allow better LOD to be achieved.
	techniques	Vane крегоошеект	None published	Gas velocity related to number of sevolutions of vans. Good for velocities from 0.5 to 5 m s ⁻¹	Limited temperature range. Probe diameter can interfere with reading at small duct diameters.
		Thermal community	None published	Gas selective related to energy required in Keep a grobe at temperature (wind shill effect). Good for low velocities, 0.7 to 0.5 m s ⁻¹	Limited temperature range. May out be able to confirm flow direction.

From UK environment agency Technical guidance note M2 version 3.1 June 2005

Stack emission monitoring (choice of analytical method-oxygen)

Monitoring approach	Type of monitoring	Technique/ principle	Standard / method	Strengths/ applications	Limitations
CEMs	la sata CEMs	Zurcommum oxide	150 12039	U	Main interferences: hydrocarbons, CO,
	Expansive CEMs	Paramagnetic analyses	ISO 12039	Range 0-100% with typical resolution of 0.1%	Interferences from high concentrations of NO ₂ . NO and certain hydrocarbons.
		Electrochemical cell	150 12039	Electrochemical cell can also be mounted in the gas stream for an in-cits CEMs measurement.	Interference from SO ₃ , NO ₆ and and gases. Requires appropriate conditioning and purging with clean air for tensor recovery.
Periodic	Periodie instrumental techniques	Zeromium cells	150 12039		Interference from CO and hydrorarbons if their commentrations are in the same order at oxygen. Intended for use in the range of up to 25% volume fraction.
		Paramagnetic analyser	150 12039	Range 0-100% with typical resolution of 0.1% Typical response time (T _{pt}) about 45:	Interference from high concentrations of NO ₂ . NO and certain hydrocarbons.
		Electrochemical cell	150 12039		As above for CEMs.

From UK environment agency Technical guidance note M2 version 3.1 June 2005

Stack emission monitoring (choice of analytical method-carbon dioxide)

Monstoring approach	Type of monitoring	Technique/ principle	Standard / method	Strengths/applications	Limitations
CEM ₃	In situ/ cross- duct CEMs	Cross-duct NDIR	150 12039		CO is a positive cross interferent. Methane also interferes.
) (2 C C C C C C C C C C C C C C C C C C	DOA5	150 12039	Simultaneous munitoring of CO ₂ along with many other pollutants.	Range up to 100%, LOD appear 0.1% by volume
	Extractive CEM1	NDIR analytes	ISO 12039		Interferences from CO, water, methane and ethane
	CENT	FTIR analyses	ISO 12039 ASTM D6348- 03 USEPA- Method 320	Simultaneous ministering of CO ₂ along with many other pollutants. Fastes response than NDIK.	Typical range 0 to 35%.
Periodic	Persodic instrumental secliniques	NDIR analyser	ISO 12039*	As above for CEMs.	As above for CEMs.
		FTIR analyses	ISO 12039 ASTM D6348- 03 USEPA- Method 320	As above for CEMs.	As above for CEMs.

From UK environment agency Technical guidance note M2 version 3.1 June 2005

Stack emission monitoring (choice of analytical method-moisture)

Monitoring approach	Type of monitoring	Technique' principle	Standard/ method	Strengths/applications	Limitations	
CEMs	In tits' crests duce CEM1	NDIR	None published	In widequead use	Interference from other IR absorbing species, e.g. CO, CO ₂ hydrocarbons	
	1707842277	DOAS	None published	Simultaneous monitoring of H ₂ O and other pollutants	Typical range 0-30%, LOD approx. 0.1% volume	
	Extractive	NDIE analyser	None published	il III at a service VIV	Interference: from CO, CO ₃ , hydrocarbons.	
	CEM ₁	FTIR analyses	ASTM D6348-03 US EPA Method 320	Simultaneous monitoring of H ₂ O and other species. Faster response than NDIR	Typical range 0 to 35%.	
		Paramagnetic analysers	None for H ₂ O, but exygen to ISO 12039*	Range 0-100%, typical resolution 0.1%, H ₂ O calculated from the difference between two analysers, one measuring O ₂ wet and other dry.	Not a direct measurement of mosture. Interferences from high cones, of NO ₂ , NO and hydrocurbons.	
Periodic	Periodic manual techniques	Gravimetric or volumetric (unpungers)	US EPA Method 4	US EPA method 4 is incorporated into several other periodic manual methods, therefore allowing mounture to be measured as part of another campling method.	Requires a balance to be taken on tite	
	Periodic untrumental	Paramagnetic analysers	None published	As above for CEMs.	As above for CEMs.	
	technoques.	NDIR analyses	None published	At above for CEMs	As above for CEMs.	
		0.0100	FTIR analyser	ASTM D6348-03 US EPA Method 320	As above for CEMs	As above for CEMs.

From UK environment agency Technical guidance note M2 version 3.1 June 2005

Stack emission monitoring (choice of analytical method-speciated particulate and phase partitioned species-heavy metal)

Monitoring approach	Type of monitoring	Technique/ principle	Standard/method	Strengths/ applications	Limitations
CEMs	In situ' eross-duet CEMs	DOAS	None published	Will measure many other pollutants simultaneously.	For mercury vapour only. Range up to 1000 µg m ³ , LOD <3 µg m ³ .
	Entractive CEMs	Thermocatalytic reduction then UV absorption	None published	Good LOD (<1 jig m³).	For mercury vapour only, Range up to 1000 µg m ¹⁹
Periodic	Periodic manual techniques	Inchinetic sampling and impongement. Analysis by ICPMS	BS EN 13211" (covers both sampling and analysis. The analysis refers to EN 14835).	Method for the determination of mercury and its compounds in all phases.	The method was validated on the momeration of waste at a concentration range 0.001 to 0.5 mg m ² of mercury.
		Inchinetic compling and impingement, Analysis by ICPMS, ICP OES or AAS.	BS EN 14385	Method for the determination of total emissions of As, Cd, Cr, Co, Cu, Mn, Ni, Pb, Sb, Tl, V, and other metals as specified in MID 14385**	
	Periodic instrumental techniques	NDUV	None	Portable mercury vapour analyzers available.	Does not measure mercury present in particulate phase.

From UK environment agency Technical guidance note M2 version 3.1 June 2005

Stack emission monitoring (choice of analytical method-speciated particulate and phase partitioned species-hydrogen chloride)

Monitoring approach	Type of monitoring	Technique' principle	Standard/ method	Strengths/ applications	Limitations
CEMs	In situ erest- duct CEMs	DOAS	None published	Measures HCl, specifically, rather than total chlorides. Simultaneous mountaining of HCl along with many other pollutants.	Measures gas phase HCl only. Range up to 5000 mg m ³ , LOD «1 mg m ³ . Not mitable for the measurement of chlorides
		Tuneable diode	None published		
		NDIR analyses	None published		
	Extractive CEMs	NDIR analyter	VDI 3480 Blan 2*	Measurer HCl, specifically, rather than total chlorides.	Measures gas phase HCl only. Interferences from particulates, H ₂ O, CO, CO ₂ and any other IR-absorbing components.
		FTIR	ASTM-D6348- 03 US EPA- Method 320	Measure: HCl, specifically, rather than total chlorides Simultaneous monitoring of HCl along with many other pollutants. Faster susponse and fewer interferences than NDIR.	Typical range up to 1000 mg m ⁻⁸ . Measures gas phase HCl mily
		Iou mobility spectrometry	None published	LOD down to ppb levels	
		Continuous flew analyzers, based on IC, ISE, etc	None published	Simultaneous monitoring of chloride expressed as HCI along with many other habdes.	Measures gas phase only. Not specific to HCl (also responds to chlorades). Interferences from particulates, H ₂ O, CO ₂ , Cl ₃ , SO ₃ , SO ₃ , NO ₂ and NH ₃ . Slow response time, require consumable reagents.

From UK environment agency Technical guidance note M2 version 3.1 June 2005

Stack emission monitoring (choice of analytical method-speciated particulate and phase partitioned species-hydrogen chloride)

Monitoring approach	Type of monitoring	Technique/ principle	Standard/ method	Strengths/applications	Limitations
Periodic	Periodic manual sechniques	Inchinetic From- itokinetic sampling and impurgement. Analysis by sinusion, spectrometry or IC	BS EN 1911 1998 Parts 1 to 3	Method for particulate and gat-phase chloride:	Measures total gateous chlorides, reported as HCl. Typical range 0-1000 mg m ⁻¹ (can be varied with volume). "External uncertainty" (reproducibility) at 5 mg m ⁻² approx. 230% Interferents depend on analytical end-method belected".
	Feriodic instrumental techniques	Extractive tampling and NDIR analyses	VDI 3480 Blatt 2	As above for CEMs.	As above for CEMs.
	D-55.5800.044-527	Extractive sampling and FIIR analyses	ASTM D6348-03 US EPA-Method 320	As above for CEMs.	As above for CEMs.

From UK environment agency Technical guidance note M2 version 3.1 June 2005

Stack emission monitoring (choice of analytical method-asbestos, man made mineral fibres and ceramic fibres)

Monitoring approach	Type of monitoring	Technique/ principle	Standard/ method	Strengths/applications	Limitations
Periodic Periodic manual techniques	Periodic manual techniques	Isokinetic tampling, followed by counting of fibres on filter using phase contract macroscopy	B\$ 6069 Section 4.2: 1991	Method intended for enhants of asbestos plant and accestment equipment. Method may also be applied to man made mineral fibres and ceramic fibres. Gives a quantitative concentration in units of fibres per ml or per m."	Other fibrous material interferes: all fibres assumed to be asbertos. Typical uncertainties are 220% for a count of 100 fibres, and around 35% for a count of 140 fibres, in 100 graticule areas. Typical range 0.05 to 10 fibres mi.* (varies with nample volume). LOD 0.01 fibres mi.* (10,000 fibres m.*)
		Isokinetic tampling, followed by counting of fibres on filter using teaming electron microscope (SEM)	None covering whole technique. Sampling to BS 6069: Section 4.2: 1991; analysis by custom and practice method	Can distinguish asbestos from other fibres.	Useful for investigative weak, but not for soutine work

From UK environment agency Technical guidance note M2 version 3.1 June 2005

Stack emission monitoring (choice of analytical method- dioxin and furan)

Monitoring approach	Type of monitoring	Technique/ principle	Standard/ method	Strengths/applications	Limitations
Continuous sampling	Extisctive	Continuous, automatic isokinetic batch sampler	None published	Installed on some processes in Europe. Integrated samples obtained over averaging periods ranging from 1h to 30 days.	Though sample is obtained continuously, sesults are not instantaneous: the filter and obsorption media used to be sent off the analysis.
Periodic	Periodic manual techniques	Isokinetic sampling extraction then GC-MS analysis	BS EN 1948: 1997: Parts 1,2 and 3*	A standard reference method, validated on HWIs	Validated at concentrations around 0.1 mg m ⁻¹ in total particulate concentration range 1-15mg m ⁻³

From UK environment agency Technical guidance note M2 version 3.1 June 2005

Stack emission monitoring (choice of analytical method-PHA)

Monitoring approach	Type of monitoring	Technique' principle Continuous, automatic indinetic batch tample: Isokinetic sampling extraction, then HPLC or OC-MS analysis	Standard/ method	Strengths/applications	Limitations Though sample is obtained continuously, results are not instantaneous: the filter and PUF cartridge will need to be sent off for analysis.		
Continuous sampling	Extractive		None published BS ISO 11333- 1,2	Installed on some processes in Europe. Integrated samples obtained over averaging periods ranging from 1 h to 36 days.			
Periodic	Periodic manual techniques			Will measure 16 main PAH:	Range dependent on spectrometer tettings. Range 0.1-1000 ng m ³ . A method LOD of less than 1 ng m ³ can be obtained from a sample of 8 m ³ . Uncertainty 225%.		

From UK environment agency Technical guidance note M2 version 3.1 June 2005

Techniques for continuous or semi-continuous monitoring of gaseous and phase-partitioned species from coal, waste-fired combustion and gasification plant

Egyptian and Italian Cooperation Programme on Environment Analysis and sampling of air and air pollution

Analysis Technique	Pollutant						
Extractive Systems	SO ₂	NO,	co	Voc	HCI	HF	
Simple non-dispersive infrared (NDIR)		9	1	1	1		
Luft detector NDIR	1	1	1	1			
Photoacoustic detector	1	1	1	1			
Gas filter correlation (GFC) NDIR		1	1	1	1	1	
Differential optical absorption spectroscopy (DOAS)		1	1.	Ø.	1	1	
Fourier transform infrared spectroscopy (FTIR)		1	1	1		1	
Non-dispersive ultraviolet (NDUV)	1	1					
Ultraviolet fluorescence	1						
Electrochemical cells	1	/	1	1			
Flame photometric	1						
Conductivity (conductometric) analyser	1				1		
Chemiluminescence analysers		1					
Flame ionisation detectors				✓ (Total VOC)			
Photo ionisation detectors				✓ (Total VOC)			
Gas chromatography				1			
Mass spectroscopy				1			
lon-mobility spectrometry				1	V	1	
Potentiometric analysis					1	1	
In situ systems	SO ₂	NO.	CO	VOC	HCI	HF	
Differential optical absorption spectroscopy (DOAS)		1	1	1	1	1	
Derivative spectroscopy	1	1	1		1	1	
Gas filter correlation (GFC) NDIR		1	1	1	100	- 7	
High temperature electrochemical cells	1	1					