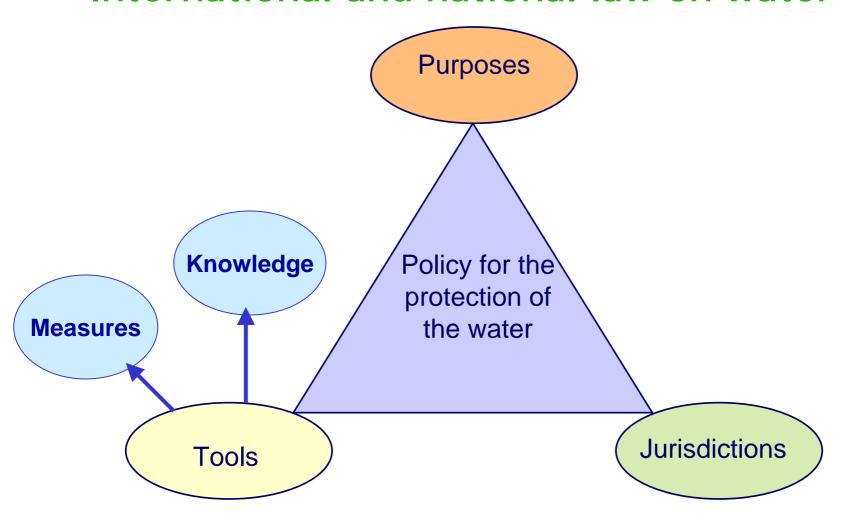


"Capacity Building and Strengthening Institutional Arrangement"

Analysis and sampling of water and water pollution

Elaboration of guidelines regarding how to respect the national and international law about water, and development of planning systems to assess the water monitoring systems

Part 1


Ms. Maria Giuseppina Farrace

APAT

Agency for Environmental Protection and Technical Services

International and national law on water

Purposes

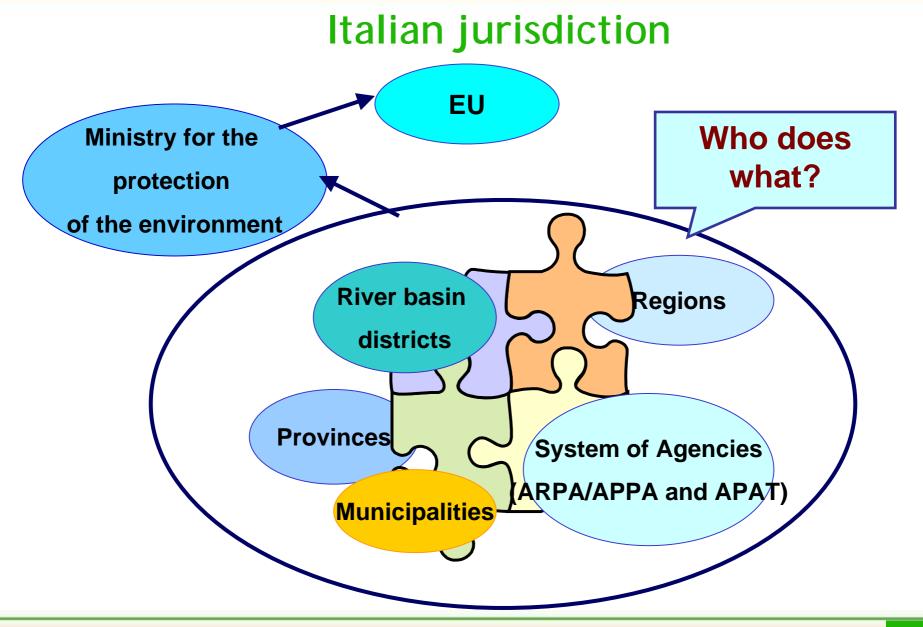
According to the 2000/60/CE Directive

- •<u>Prevents further deterioration and protects and enhances the status of aquatic ecosystems</u> and, with regard to their water needs, terrestrial ecosystems and wetlands directly depending on the aquatic ecosystems;
- •<u>Promotes sustainable water use</u> based on a long-term protection of available water resources;
- •Aims at enhanced protection and <u>improvement of the aquatic environment</u>, inter alia, through specific measures for the <u>progressive reduction of discharges</u>, <u>emissions and losses of priority substances</u> and the <u>cessation or phasing-out of discharges</u>, <u>emissions and losses of the priority hazardous substances</u>;
- •Ensure the <u>progressive reduction of pollution of groundwater</u> and prevents its further pollution, and

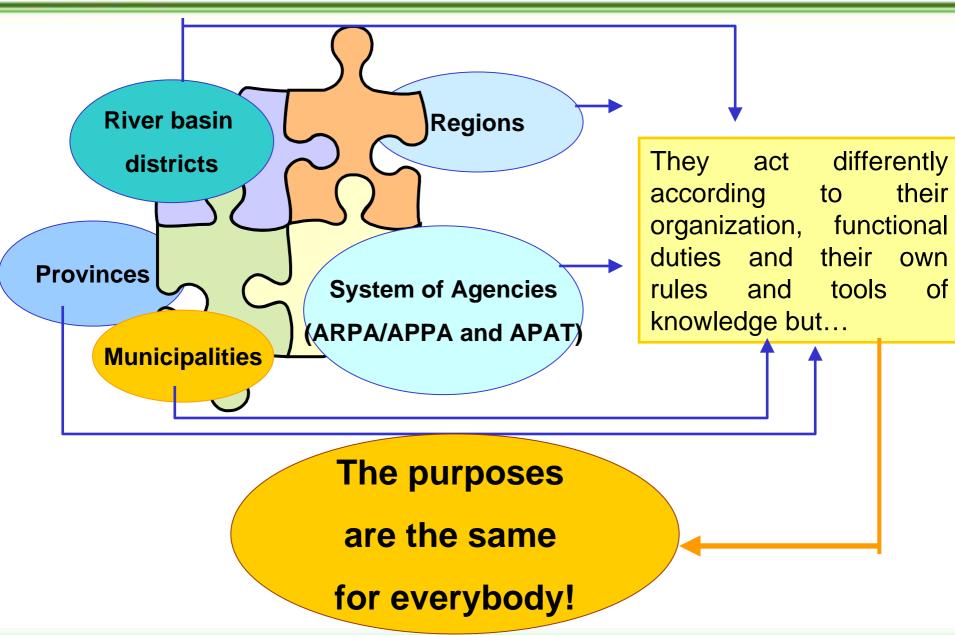
Purposes

- Contributes to mitigating the effects of floods and droughts;
- •Contributes to the <u>provision of a sufficient supply of good quality</u> <u>surface water</u> and groundwater as needed for sustainable, balanced and equitable water use;
- Contributes to a significant reduction in pollution in groundwater;
- •Contributes to the protection of territorial and marine waters, and
- •Achieving the objectives of relevant international agreements, including those which aim to prevent and eliminate pollution of the marine environment, to cease or phase out discharges, emissions and losses of priority hazardous substances, with the ultimate aim of achieving concentrations in the marine environment near background values for naturally occurring substances and close to zero for manmade synthetic substances.

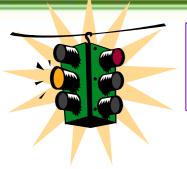
Purposes

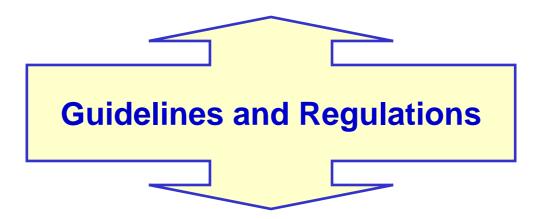

According to the Barcelona Convention

• The Contracting Parties shall....take appropriate measuresto prevent, abate, combat and to the fullest possible extent eliminate pollution of the Mediterranean Sea Area and to protect and enhance the marine environment in that Area so as to contribute towards its sustainable development.


According to the Italian law the purposes are

- To prevent and reduce pollution and make concrete the restoration of the polluted water bodies;
- To achieve the improvement of water status and right protection of the water devoted to specific uses;
- To pursue long term sustainable uses of the water resource, giving priority to water for human consumption;
- To maintain the natural capacity of the water bodies to selfrecovery and the capacity of supporting wide and well structured animal and vegetable communities.

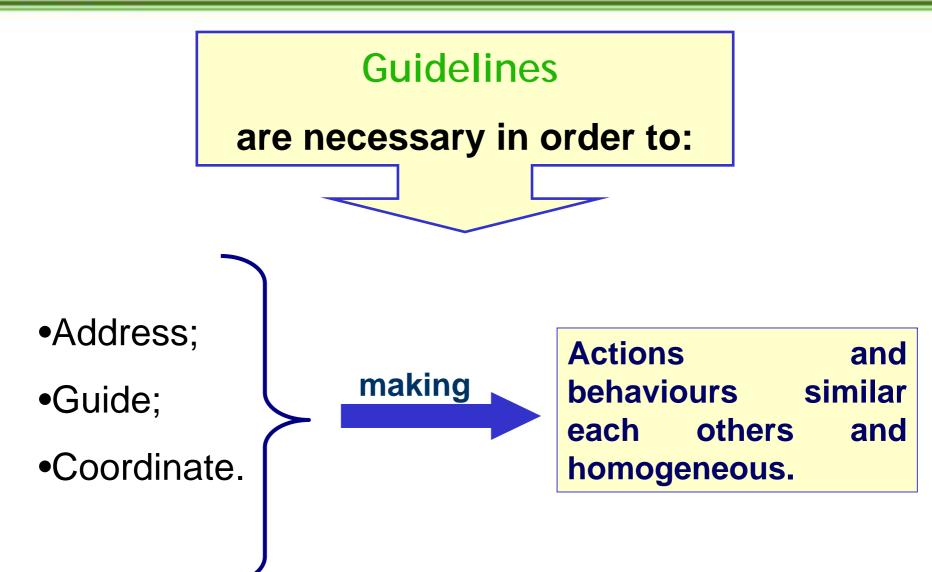




A majority of actors and tools make an ingrated and complex system of application!

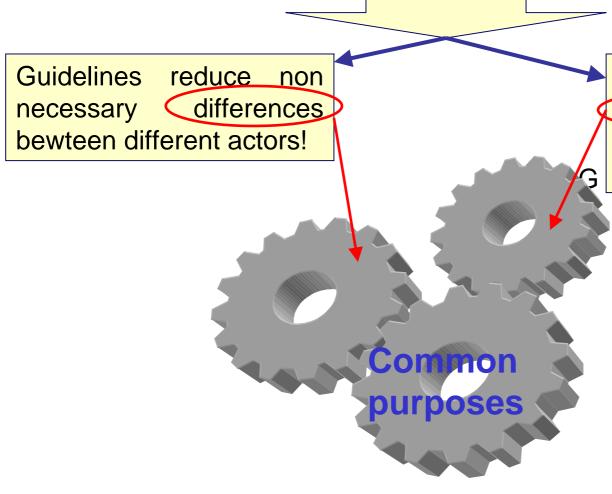
In order to build the integrated system up and to keep over the time, all the actors and tools which compone it, must adopt and respect rules, standards, common protocols, by:

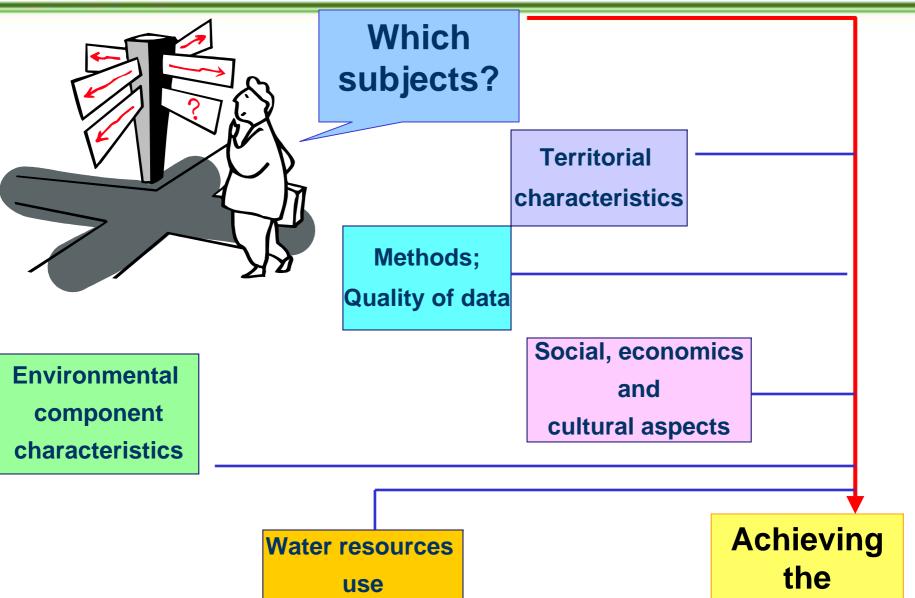
Sharing tools and working instructions



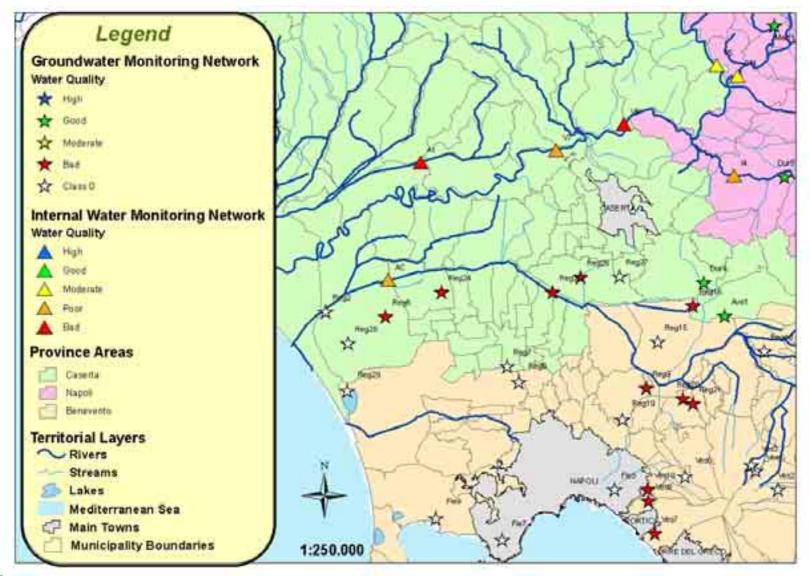
Italian law on water management plans a Technical Table (see the art.21 Directive 2000/60/EC – Regulatory Committee), set up by representatives from Ministry of Environment, Ministry of Health, National Environmental Protection Agency and Basin Authorities, Regions and Regional Environmental Protection Agencies.

The aim of the Technical Table is:


- •To fix up shared guidelines and regulations for putting into practice the purposes of the law;
- •To coordinate activities finalized to collect water data flow.



Guidelines widen the common components among different actors!



purposes!

Territorial characteristics

Territorial characteristics

Lagoon of Venice

APAT

monitoring station

APAT monitoring network
of the Lagoon of Venice
basin

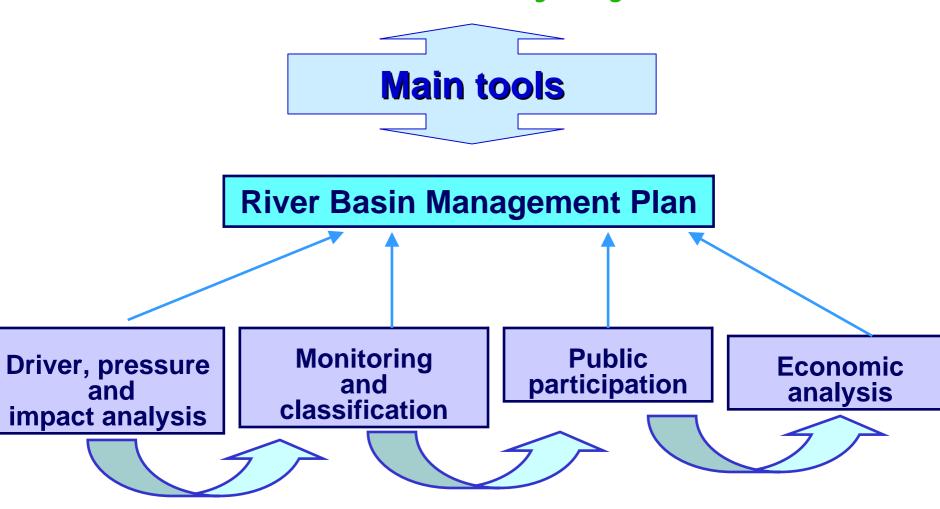
Examples of social, economic, environmental and cultural aspects represented as territorial objects


- Identification and classification of water bodies (status of quality);
- Monitoring network;
- Urban waste water/ domestic waste water/industrial waste water;
- Urban waste water treatment plants;
- Urban waste water treatment plant network;
- •Land use;
- Bathing areas;
- Water works (sewage network);
- Protected areas;
- Vulnerable zones;
- Administrative borders (town, province, municipalities, etc.);
- Digital elevation model (D.E.M.).

Represent all of them by GIS!!!!

Summarizing purposes

- Protection of the waters and of the aquatic ecosystems;
- Sustainable use of the water resource;
- Prevention from flooding and drought.


Using as tools

GUIDELINES ON:

- Driver, pressure and impact analysis;
- WB identification, monitoring and classification;
- Economic analysis;
- River basin management planning;
- Public participation.

Environmental Policy Objectives

Drivers and pressures

DIFFUSE SOURCE	urban drainage (including runoff) agriculture diffuse forestry other diffuse
POINT SOURCE	waste water industry mining contaminated land agriculture point waste management aquaculture
ACTIVITIES USING SPECIFIC	manufacture, use and emissions from all
SUBSTANCES	industrial/agricultural sectors
ABSTRACTION	reduction in flow
ARTIFICIAL RECHARGE	groundwater recharge
MORPHOLOGICAL	flow regulation
(Refer also to WFD CIS Guidance Document	river management
No 4 on HMWB)	transitional and coastal management
	other morphological
OTHER ANTHROPOGENIC	miscellaneous

Diffuse source pressure and impacts examples

Activity or Driving force	Pathway causing Pressure	Possible change in state or impact
Agriculture	Nutrient loss from agriculture by surface runoff soil erosion artificial drainage flow leaching (i.c. interflow, spring water and groundwater) (includes excess fertilisers and manures and mineralization of residues)	Nutrients modify ecosystem
	Pesticide loss by pathways mentioned above	Toxicity, contamination of potable water supplies
	Sediment loss by soil, bank and riverbed erosion	Smothering of bed, alteration of invertebrate assemblage, loss of spawning grounds
Industry discharges to the atmosphere	Deposition of compounds of nitrogen and sulphur.	Acidification of surface and groundwater bodies. Eutrophication
Transportation	Pollutant spillages	Gross pollution of water bodies
	Use of salt as de-icer	Elevated chloride concentration
	Use of herbicides	
	Engine exhausts	Increase in acidifying chemicals in atmosphere and hence deposition

Point source pressure and impact examples

Pressure	Possible change in state or impact
Effluent disposal to surface and	Toxic substances have direct effect,
groundwaters	increased suspended solids, organic
	matter alters oxygen regime, nutrients
	modify ecosystem
Effluent disposal to surface and	As above
groundwaters	
Chemical fluxes in leachate	As above
Contaminated leachate	As above
Contaminated land	Various
Return of cooling waters cause	Elevated temperatures, reduced
alteration to thermal regime	dissolved oxygen, changes in
	biogeochemical process rates
Biocides in cooling water	Direct toxic effect on aquatic fauna.
Sediment disposal	Smothering of bed, alteration of
	invertebrate assemblage
Removal of substrate	Loss of habitat
Feeding, medication, escaping	Nutrients, diseases, veterinary
	products, artificial fish population,
	modified food web
	Effluent disposal to surface and groundwaters Effluent disposal to surface and groundwaters Chemical fluxes in leachate Contaminated leachate Contaminated land Return of cooling waters cause alteration to thermal regime Biocides in cooling water Sediment disposal Removal of substrate

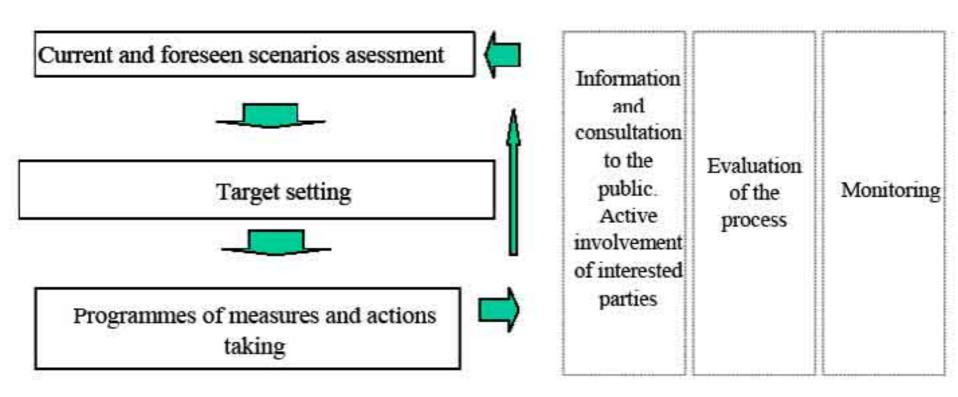
Quantitative pressure and impact examples

Activity or Driving force	Pressure	Possible change in state or impact
Agriculture and land use	Modified water use by	Altered recharge of groundwater body
change	vegetation.	
	Land sealing	
Abstraction for irrigation,	Reduction in flow or aquifer	Reduced dilution of chemical fluxes.
public & private supply	storage	Reduced storage.
		Modified flow and ecological regimes.
		Saline intrusion.
		Modified dependent terrestrial
		ecosystem.
Artificial recharge	Increased storage	Increased outflow.
	_	Contamination of groundwater.
Water transfer	Increased flow in receiving	Modified thermal, flow and ecological
	water	regimes

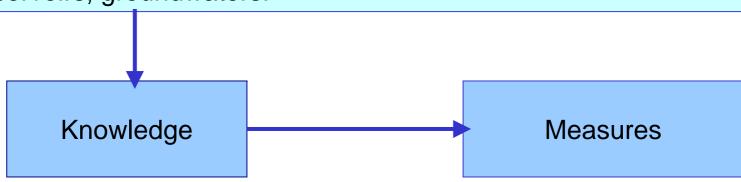
Hydromorphological pressure and impact examples

Activity or Driving force	Pressure	Possible change in state or impact
Dredging	Sediment disposal	Smothering of bed, alteration of
		invertebrate assemblage
	Removal of substrate	Loss of habitat
	Change in water level	Change in water table, loss of wetlands,
		loss of spawning areas.
Physical barriers (dams,	Variation in flow characteristics	Altered flow regime and habitat.
weirs etc.)	(e.g. volume, velocity, depth)	
	both up and downstream of	
	barrier.	
Channel modification (e.g.	Variation in flow characteristics	Altered flow regime and habitat.
straightening)	(e.g. volume, velocity, depth)	

Biological pressure and impact examples


Activity or Driving force	Pressure	Possible change in state or impact
Fisheries	Fishing	Reduced fish fauna, especially on
		migratory and amphibiotic fish
	Fish stocking	Genetic contamination of wild populations
Introduction of alien	Competition with indigenous	Substitution of populations, destruction of
species	species	habitats, food competition

Assessing water bodies at risk of failing environmental objectives



Environmental component characteristics

They represent the environmental objectives of the law!

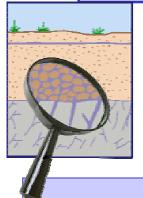
First of all, **identification** of the territorial characteristics for all water bodies: rivers, lakes, transitional and marine-coastal waters, reservoirs, groundwaters!

Identification of monitoring network

Criteria for selecting number and position of monitoring sites

- Hydro-geomorphological elements;
- •Impact elements.

River


- •Basin size;
- •Right distance from water discharge;
- Protected areas.

Lakes and reservoirs

- •Size;
- •Depth;
- Protected areas;
- •If supplied by impacted basins.

Criteria for selecting number and position of monitoring sites

- Hydro-geomorphological elements;
- •Impact elements.

Groundwaters

- •Most representative aquifers;
- •Water points (spring, well);
- Different use of waters (drinking water, agriculture, etc.);
- •Exchange bewteen groundwater and surface waters;
- •Different chemical characterization.

Marine-coastal waters

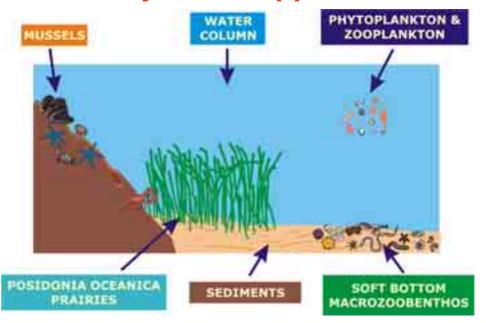
- Distance from the coast;
- •Depth;
- •Impacted and control sites.

Criteria for selecting number and position of monitoring sites

- Hydro-geomorphological elements;
- •Impact elements.

Transitional waters

- •Bodies of surface water in the vicinity of river mouths which are partly saline in character as a result of their proximity to coastal waters but which are substantially influenced by freshwater flows;
- Protected areas.



Identification of sampling matrix

According to the purposes of the law, the objective of the monitoring is to establish a coherent and comprehensive overview of water body status as a whole.

The more suitable approach has to be planned in order to evaluate the effectiveness of the measure programmes.

Ecosystemic approach

Identification of monitored parameters and/or monitored indicators (elements of quality)

- •Biological;
- •Physico-chemical;
- •Hydromorphological.

 According to general criteria for selecting environmental indicators:

Policy relevance and utility for users
Analytical soundness
Measurability

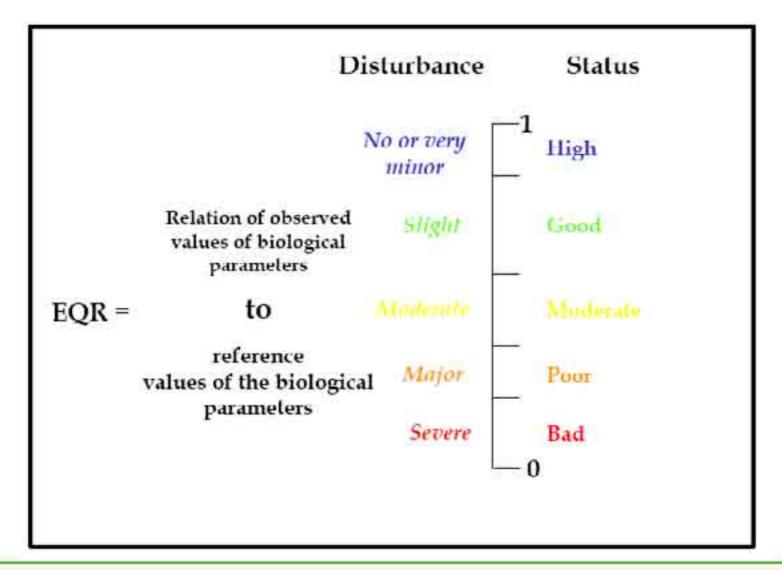
 According to official methods (data and technical operational units quality: from sampling to data storage).

Quality elements for rivers and lakes

RIVERS	LAKES
Biologi	cal elements
Composition and abundance of aquatic	Composition, abundance and biomass of
flora	phytoplankton
Composition and abundance of benthic	Composition and abundance of other aquatic
invertebrate fauna	flora
Composition, abundance and age structure	Composition and abundance of benthic
of fish fauna	invertebrate fauna
	Composition, abundance and age structure of
	fish fauna
	supporting the biological elements
Quantity and dynamics of water flow	Quantity and dynamics of water flow
Connection to groundwater bodies	Residence time
River continuity	Connection to the groundwater body
River depth and width variation	Lake depth variation
Structure and substrate of the river bed	Quantity, structure and substrate of the lake
	bed
Structure of the riparian zone	Structure of the lake shore
Chemical and physical element	s supporting the biological elements
Therm al conditions	Transparency
Oxigenation conditions	Therm al conditions
Salinity	Oxigenation conditions
Acidification status	Salinity
Nutrient conditions	Nutrient conditions
Specific pollutants	Specific pollutants

Quality elements for transitional an coastal waters

TRANSITIONAL WATERS	COASTAL WATERS			
Biological elements				
Composition, abundance and biomass Composition, abundance and biomass of				
of phytoplankton	phytoplankton			
Composition and abundance of other	Composition and abundance of other			
aquatic flora	aquatic flora			
Composition and abundance of benthic	Composition and abundance of benthic			
invertebrate fauna	invertebrate fauna			
Composition and abundance of fish				
fauna				
Hydrom orphological elements	Hydromorphological elements supporting the biological elements			
M orphological conditions:	M orphological conditions:			
 Depth variation; 	o Depth variation;			
 Quantity, structure and 	 Structure and substrate of the coastal 			
substrate of the bed;	bed;			
o Structure of the inter-tidal zone	 Structure of the inter-tidal zone 			
Tidal regim e:	Tidal regime:			
o Freshwater flow;	 Direction of dominant currents; 			
o Wave exposure	o Wave exposure			
Chemical and physical element	s supporting the biological elements			
Transparency	Transparency			
Therm al conditions	Thermal conditions			
Salinity	Salinity			
Oxigenation conditions	O xigenation conditions			
Nutrient conditions	Nutrient conditions			
Specific pollutants	Specific pollutants			



Quality and quantitative elements for groundwater

GROUNDWATER	
Chemical elements	
Oxigen content	
pH value	
Conductivity	
Nitrate	
Ammonium	
Specific pollutants	
Quantitative status	
Groundwater level regime	

Classification scheme

Reference conditions

Without any specific ranking of the methods the main options for establishing reference conditions are:

- Spatially based reference conditions using data from monitoring sites;
- Reference conditions based on predictive modelling;
- Temporally based reference conditions using either historical data or paleoreconstruction or a combination of both;
- A combination of the above approaches.

EQR = ecological quality ratio

Ratio representing the relationship between the values of the biological parameters observed for a given body of surface water and values for these parameters in the reference conditions applicable to that body. The ratio shall be represented as a numerical value between zero and one, with high ecological status represented by values close to one and bad ecological status by values close to zero.

Normative definitions of ecological status classifications

High status

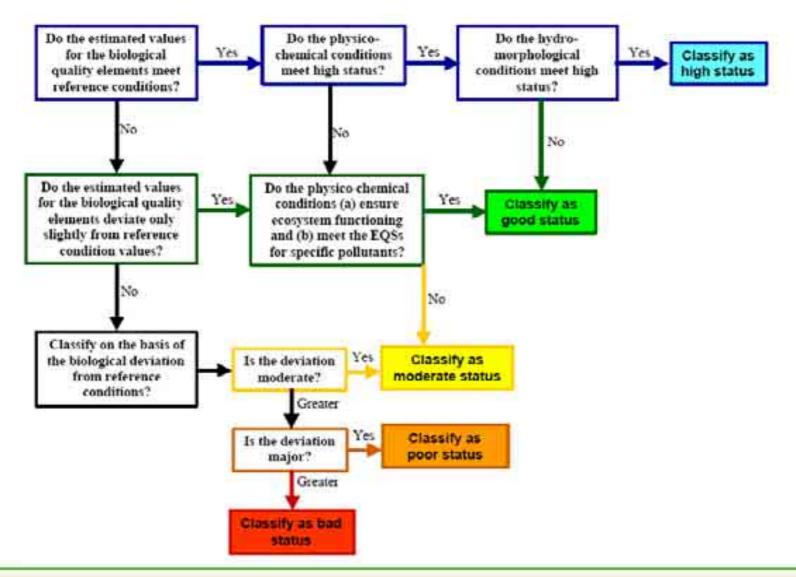
There are no, or only very minor, anthropogenic alterations to the value of the physico-chemical and hydromorphological quality elements for the surface water body type from those normally associated with that type under indisturbed conditions.

The value of the biological quality elements for the surface water body reflect those normally associated with that type under undisturbed conditions, and show no, or only minor, evidence distortion.

There are the type specific condition and communities.

Normative definitions of ecological status classifications

Good status


The value of the biological quality elements for the surface body type show low levels of distortion resulting from human activity, but deviate only slightly from those normally associated with the surface body type under undisturbed conditions.

Moderate status

The value of the biological quality elements for the surface water body type deviate moderately from those normally associated with the surface water body under undisturbed conditions. The value show moderate signs of distortion resulting from human activity and are significantly more disturbed than under conditions of good status.

Classification: conceptual pathway

