

"Capacity Building and Strengthening Institutional Arrangement"

Workshop: "Environmental Impact Assessment (EIA) (for Assessors)"

Environmental Impact Assessment Models: Introduction

Mr. Vincenzo Cammarata

APAT

Agency for Environmental Protection and Technical Services

Qualitative vs quantitative evaluations

Independent Evaluations

The need of using model for a better understanding of the impacts effect

Importance of data used to run the models

It is important the use of best available analytic and forecasting techniques

Use of models must take into account the following consideration:

- •Justify their use: it often requests a specific expertise and is time consuming (except for expeditive models)
- •Priority is to be given to well known and recognized models
- Models have to be tested prior to its use in the EIA
- •Reference to the developer and documentation must be available
- •Specification of the application field, assumptions and limitations must be provided for.

An example of characterization form of a model

RILIEVO MODELLI DI VALIDAZIONE: AGENTI FISICI

Caratteristiche generali

Name madello

Acronimo

Componente a cui si riferisce

Oggetto principale

Scopo modello Tipo modello Parola chiave

Indirizzo dove reperire il modello

Costo eventuale

SoundPLAN 5.00

SoundPLAN 5.00

Rumpre:

Rumore da traffico stradale, rumore ferroviario, rumore

peroportuale rumore industriale.

Usato per: traffice stradale, rumore ferroviario, rumore aeroportuale, rumore industriale, rumore industriale internorumore facciata, calcolo barriere acustiche con ottimizzazione,

presenza di parcheggi, inquinamento atmosferico.

ARPA Lombardia (MI,PV,VA)

BRAUNSTEIN UND BERNDT D-71397 LEUTENBACH GERMANIA - Distribuito in Italia da SPECTRA SRL- Vio.

Magallano 48 - 20047 Brughario - Milano

Usato per traffico stradale, rumore ferroviario, rumore percoortuale, rumore industriale, rumore industriale internorumore facciata, calcolo barriere acustiche con ottimizzazione. presenza di parcheggi, inquinamento atmosferico. Applicabile a qualunque prografia del territorio senza limitazioni.

Descrizione del modello Riferimento bibliografico

An example of characterization form of a model

Caratteristiche tecniche

Sistema operativo Codice sorgente (Linguaggio di programmazione) Dimensione (compressa e installata) WINDOWS 95/98/NT

Requisiti HW esistenza manuali Librerie presenti

Dati di Input

Dati di Output

Validazione Ente Data dell'ultima validazione Casi di applicazione Sorgente da traffico stradale, con immissione direta dei valori caratteristici, sorgente da traffico ferroviario, con immissione diretta dei valori caratteristici, sorgenti sonore lineari caratterizzate da densità di potenza lineare o da livello di potenza

Livetti di pressione sonora in bande di frequenza, livetti di presisone sonora in dB(A), tutte le ponderazioni (ABCDLin). Per i singoli ricevitori fomisce il deltaglio direzionale e l'entità dell'energia diretta e dell'energia riflessa.

A.R.P.A. Lombardia, luglio 2002

Prof. Giulio De Leo, Ing. Roberto Serra pag. 54 di 107

Type of models (I)

Atmoshere

- Diffusion models of punctual source atmospheric pollutants
- Parametric models for traffic emission estimation
- •Diffusion models of mobile source atmospheric pollutants
- Ground fallout models of pollutants emitted into atmosphere
- Local microclimate alteration models

Type of models (II)

Hydrology

- Water stream flow alteration models
- Flood flow estimation models
- Global water balance estimation models
- System hydrodynamic alteration models
- •Parametric models for estimation of expected pollutant loads in water
- Estimation models of water stream minimum vital flow

Type of models (III)

Hydrology

- Dilution models of pollutants in groundwater bodies
- Diffusion models of thermal discharges in groundwater bodies
- Abatement models of microbiological load in groundwater bodies
- Diffusion models of pollutants in underground waters

Type of models (IV)

Geology

- Global geomorphological configuration evolution models
- Slope stability alteration models
- Land subsidence alteration models

Natural environment

- Estimation models of eutrophication expected levels
- •Estimation models of habitat variation for concerned animal species
- Estimation models of ecological value variation
- Ecomosaic configuration evolution models

Type of models (V)

Others

- Noise diffusion models
- Ecotoxicological models of contaminant allocation
- Virtual reality models simulating internal part of new project works
- Multi-criteria analysis

Egyptian and Italian Cooperation Programme on Environment Environmental Impact Assessment (EIA) (for Assessors)

List of models

SOIL	WATER	PHYSICAL AGENTS	ATMOSPHERE
ACCESS-I	MIKE 11	ARTEMIS	BPIP
ACCESS II	QUAL2E	Cadna A 2.00	ADAM
CRITERIA	WEST	CARTOBRUIT 03/199 - 8	ADMS-3
CrcpSyst	WODA	CRTN	AFTOX
ELBA		DISIA - 2.0	ASPEN
EPIC		ELITRA 1992	AVACTA II
GLEAMS		ENM 3.06	BLP
LEACHM		IMMI for Windows - 5.0	CAL3GHC/CAL3GHCR
MACRO DB 1.0 MACRO 4.0		IMPACT 1080	CVTINE3
MASQUE 1.D		INM - 6.0	CALMPRO
FELMO 3.00		ISO 9813-1/2	CAMx
PERSIST		LIMA 3.86	CDM2
FESTLA 3.3		LIMA Light 3.86	CHAVG
FESTRAS 3.1		Makarewicz 1997	CMAQ
FLM3		MAPB - H, -F, -D 1997	COMPLEX1
RUSLE		Metodo C.N.R.	CONCOR
SHIELD 1.0		MITHTRA 4.0	CRSTER
SIMULAT		Modello a reti neurali 1993	CTDMPLUS
SOILFUG 1.2		NFA	CTSCREEN
SOILN 8.0		NMPB - Routes 96	DEGADIS
SuSAP		Fredictor mod. 7310 2.0	EKMA
VARLEACH		FL3 90	ERT
WAVE 2.0		SAIL II LIMA 3.96	HGSYSTEM
WEPP 95.7		SimNoise 2.0	HOTMAC/RAPTAD HOTMAC
		SoundPLAN 5.00	ISC3
		SPM9613 2.0	LCNGZ
	-		

Mr. Vincenzo Cammarata

Egyptian and Italian Cooperation Programme on Environment Environmental Impact Assessment (EIA) (for Assessors)

List of models

SOIL	WATER	PHYSICAL AGENTS	ATMOSPHERE
		TNM 2.0	MESOPUFF II
			MIDDIS
			оворм
			OCD
			OZIFR
			PAL-DS
			Panache an Eulerian
			PLUVUEII
			PFSP
			RAM
			REMS∧C
			RPM-IV
			RTDM3.2
			SCIPUFF
			SCREEN3
			SCSTER
			SDM
			SHORTZ
			Simple Line Source Model
			SLAB
			TSCREEN
			UAM-IV
			UAM-V
			VALLEY
			VISCREEN
			WYNDVALLEY
	ı		