

"Capacity Building and Strengthening Institutional Arrangement"

Workshop: "Hazardous Substances and Wastes"

Management Options and Strategies

Ms. Francesca Quercia

APAT

Agency for Environmental Protection and Technical Services

Ms. Francesca Quercia

Index

- 1. Introduction
- 2. In-situ technologies
- 3. Ex-situ technologies
- 4. Technologies and contaminants
- 5. References

Key factors in remediation technology selection

- Driving forces to remediate and goals for the remediation:
 - to protect human health and the environment
 - to enable redevelopment
 - to repair problems at newly developed sites
 - to limit potential liabilities
- Risk management
- Sustainable development
- Stakeholders' views
- Cost effectiveness
- Technical feasibility

Risk management

The management of land contamination risks involves three main components:

- The source of contamination (e.g. metal polluted soils, a leaking oil drum);
- The receptor (i.e. the entity that could be adversely affected by the contamination e.g. humans, groundwater, ecosystems etc.); and
- The pathway (the route by which a receptor could come into contact with the contaminating substances).

The pollutant linkage (including source, pathway and receptor) analysis needs to be addressed when considering the risk of a contaminated site. Remediation includes any action taken to break the linkage.

Sustainable development

Remediation processes will achieve sustainable development goals, by:

- helping to conserve land as a resource
- preventing the spread of pollution to air and water
- reducing the pressure for development on green field sites by redeveloping brownfield sites

Sustainability of remedial regime is assessed by:

evaluation of wider environmental impacts:

•Traffic and emissions (e.g. volatile organic compounds), Noise, dust, odour, Loss of soil and groundwater function, Use of material resources (e.g. Aggregates) and energy, Use of landfill resources, waste production, Accidents on personell and machinery, Physical surroundings,

- cost/benefit analysis
- evaluation of wider economic/social impacts
- evaluation of after care commitments

Stakeholder views

Depending on the size and prominence of the site, stakeholders will include several of the following:

- Land owners,
- Problem holders,
- Regulatory authorities,
- Planning authorities,
- Site users, workers, visitors,
- Financial community (banks, founders, lenders, insurers),
- Site neighbours (tenants, dwellers, visitors),
- Campaigning organisations and local pressure groups,
- Consultants, contractors, and possibly researchers

1. Introduction Indicative Costs of Remediation, UK experience (year 2000)

Remediation technology	Indicative unit price						
Engineering capping	£15-£30/ m ²						
Excavation and disposal to landfill	£50/m ³						
Encapsulation (shallow cut-off wall)	£40-£60/ m ²						
Encapsulation (deep cut-off wall)	£70-£120/ m²						
'Typical' landfill gas control system	£200,000? per site						
'Typical' grout curtain/ vent trench	£220,000? per site						
Bioremediation	£35-£45/ tonne						
Vitrification	£40/ tonne						
In-situ vitrification (5t/hr)	£150 - £215/ tonne						
Incineration (special wastes)	£750 - £1,000+/ tonne						
Dechlorination	£100 - £300/ tonne						
Soil vapour extraction	£40-60/m ³ vadose zone						
Soil washing	£30 - £35/ tonne						
Enhanced Thermal Conduction	£35-45/m ³						
Six phase heating	£20-30/m ³						
In situ chemical oxidation	£40-80/m ³						
Pump and treat	£20-30/m ³						
Free product recovery	£10-20/m ³ vadose zone						
Air sparging	£45-55/m ³ groundwater						
Oxidation of cyanide	£400/ tonne						
Solvent extraction and incineration	£400/ tonne						
Thermal desorption (including excavation and pre treatment)	£35 – 150/ tonne						

Technical feasibility

A suitable technology is one that meets the technical and environmental criteria for dealing with a particular remediation problem. However, it is also possible that a proposed solution may appear suitable, but is still not considered feasible, because of concerns about:

- Previous performance of the technology in dealing with a particular risk management problem;
- Ability to offer validated performance information from previous projects;
- Expertise of the purveyor (service provider);
- Ability to verify the effectiveness of the solution when it is applied;
- Confidence of stakeholders in the solution;
- Cost; and
- Acceptability of the solution to stakeholders who may have expressed preferences for a favoured solution or have different perceptions and expertise.

Risk Management actions

Classification of Risk Management actions taken at contaminated sites

- Safety actions (in situ source containment)
 - emergency/temporary
 - permanent
- Clean-up actions (source reduction)
 - in situ (contaminated material is left in place)
 - ex situ (material is excavated)
 - on-site (material is treated on the site)
 - off-site (material is treated outside of the site)
- Monitoring (in and post-operam)
- Land use control

In the following, clean-up technologies are classified as in situ and ex situ.

Egyptian and Italian Cooperation Programme on Environment Hazardous Substances and Wastes

Technology	Description	Туре					
Bioremediation	Remediation by altering <i>in situ</i> conditions, typically by <i>in situ</i> flushing (see below) to optimise biodegradation rate. Examples include the addition of nutrients, oxygen, etc.						
Biosparging / Air sparging	Injecting air (or other gases) into the saturated zone to strip volatile contaminants and/or stimulate biodegradation. The latter process is often termed "biosparging".						
Bioslurping	Multiphase extraction of groundwater, free-phase contamination and soil gas to achieve bulk contaminant removal and supply oxygen for enhanced biodegradation.						
Bioventing	Movement of air or other gas through soil to stimulate biological destruction of contaminants, possibly in combination with their removal in the gas phase (c.f., soil vapour extraction)						
Chemical destruction	Use of highly reactive reagents to convert contamination to environmentally acceptable end-products in situ. An example is the use of Fenton's reagent (iron-catalysed hydrogen peroxide).	Chem					
Electroremediation	Use of electric fields to move or contain contaminants.	Phys-chem					
Flushing	Enhanced pump and treat to remove contaminants, for example addition of surfactants or solvents to re-circulated water.	Phys-chem					
Hydrofracture	Hydraulic or pneumatic techniques to induce fracturing of subsurface zones to increase permeability for other treatments.	<u>Phys</u>					
In situ heating	Use of steam or microwaves (radio-frequency heating) to heat the soil, for example to increase the range of contaminants recoverable by soil vapour extraction.	Thermal					
Landfarming	Cultivation of surface soils (typically the top 50cm) to stimulate biodegradation. Usually includes the addition of various amendments (e.g., fertiliser).	Bio					
Natural attenuation	Monitored use of naturally occurring <i>in situ</i> processes to remediate contamination without enhancement. Often, and more accurately, called monitored natural attenuation (MNA).	Bio, phys & chem					
Permeable reactive barriers	A single or combination of biological, chemical or physical process(es) in a specific portion of the subsurface that treats a carrier as it passes through but does not unacceptably impede flow.	Bio / chem / phys					
Phytoremediation	Use of plants to recover contaminants and/or stimulate in situ biodegradation/stabilisation.	Bio					
Pump and treat	Treatment mediated by the pumping of groundwater. The term "P & T" is sometimes used to mean technologies where groundwater is treated above ground. The term is also used to refer to true <i>in situ</i> processes involving groundwater pumping.	Phys					
Soil vapour extraction (SVE)	Movement of air or other gas through unsaturated soil to remove contaminants through enhanced volatilisation. Sometimes called "venting " or "stripping".	Phys					
Stabilisation/ Solidification	In situ mixing (e.g., by augering) of chemical agents into the soil to solidify the ground or otherwise reduce mobility of contaminants.	S/S					
Vitrification	Use of high temperature to melt subsurface minerals. Organic contaminants are thermally destroyed; inorganic contaminants are immobilised in the glassy residue.	S/S & thermal					

example – Soil treatment

Soil-flushing

Ms. Francesca Quercia

(Enhanced) bioremediation

The activity of naturally occurring microbes is stimulated by circulating water-based solutions through contaminated soils to enhance in situ biological degradation of organic contaminants or immobilization of inorganic contaminants. Nutrients, oxygen, or other amendments may be used to enhance bioremediation and contaminant desorption from subsurface materials.

Soil treatment

Landfarming

Treatment of aerobically degradable contaminants

Groundwater treatment

Permeable reactive barrier

Egyptian and Italian Cooperation Programme on Environment Hazardous Substances and Wastes

Technology	Description						
Biopiles	Excavated soil is built into a heap within which is a network of perforated pipes to aerate the soil.						
Bioreactors	Soil (dry or slurried) is treated in a enclosed reaction vessel to which nutrients, air water and microbes are added as necessary. Bioreactors are also used to treat groundwater.						
Biological treatment beds	shallow cultivation, where contaminated soil is cultivated in a contained treatment bed on a specially prepared area of a contaminated site						
Chemically enhanced soil washing	Physical processes are integrated with chemical processes such as leaching or extraction.						
Chemical Leaching/ Chemical extraction	Transfer of contaminants from the soil into an aqueous solution. The soil is dewatered and the aqueous solution plus contaminants is further processed.						
Groundwater treatments (non-biological)	Various including: airstripping, carbon adsorption, chemical oxidation, filtration, ion exchange, neutralisation, precipitation, reverse osmosis, steam stripping,	Chem/ph ys					
Incineration	High temperature destruction of contaminants (eg in rotary kiln incinerators or fluidised bed systems). Pre- treatment is to obtain suitable particle size. Thermal desorption occurs during incineration. An <i>ex situ</i> process.	Thermal					
Soil washing	Primarily a physical technique involving size separation and washing of contaminants using aqueous based solutions.	Phys					
Solvent extraction	Uses non-aqueous solvent to transfer contaminants from soil into solution.	Chem					
Stabilisation/ Solidification	Mixing of chemical agents into the soil to solidify the ground or otherwise reduce mobility of contaminants.	S/S					
Thermal desorption by combustion of organics in vapour phase	Two stage process comprising low temperature transfer of contaminants from soil to vapour phase via volatilisation followed by destruction or removal of contaminants from gas stream. <i>Ex situ</i> process needs extensive pre-treatment e.g. screening, de-watering, neutralisation, blending. Partial combustion often occurs during process.	Thermal					
Thermal desorption by condensation	Heating of soil to volatilise volatile metals (so far principally mercury), which is then condensed from exhaust gases downstream.	Thermal					
Vitrification	Excavation of soil, transport to (usually off site) facility. Soil plus other materials used for glass making (silica, fusing agents) are placed in a smelter, which heats to about 1500°C. Molten material is continuously removed and cooled to produce granular solids or monolithic mass.	S/S & Thermal					
Windrow turning	Piles of contaminated soil often mixed with organic materials such as bark are turned on a regular basis to aerate the soil and improve the soil structure.	Bio					

example – Biopile

example – Soil washing

Primarily a physical technique involving size separation and washing of contaminants using aqueous based solutions. Applicabile to SVOC, fuels and inorganic compounds

4. Technologies and contaminants

Contaminants treated	Suitable Remediation Technologies								
Soil, sediments and sludge									
VOCs SVOCs Inorganic compounds Petroleum Fuel Oil Explosives	 <i>Ex situ</i> bioremediation; <i>In situ</i> bioremediation; <i>In situ</i> soil flushing, SVE, Thermal Desorption, <i>In situ</i> Vitrification Thermally Enhanced SVE; Soil washing; Solvent Extraction; Thermal Desorption Soil flushing; Soil washing; Electrokinetic Separation; Solvent Extraction; Chemical treatment and Phytoremediation. <i>Ex situ</i> bioremediation; In situ bioremediation; Soil washing; SVE; Thermal Desorption <i>Ex situ</i> bioremediation; In situ bioremediation; Soil washing; Solvent Extraction; Thermal Desorption 								
Groundwater, surface water and leachate									
VOCs SVOCs Inorganic compounds Fuels Explosives	Air sparging; Dual-Phase Extractiom; Fluid/Vapor Extraction; <i>In Situ</i> Bioremediation; Bioreactors; Permeable Reactive Barriers <i>In situ</i> bioremediation; Bioslusping; Permeable Reactive Barriers; Phyto Remediation Adsorption; Permeable Reactive Barriers; Phytoremediation Air sparging; Dual-Phase Extraction; <i>In Situ</i> Bioremediation, Bioreactor; Bioslurping; Fluid /Vapor Extraction Bioreactor; Permeable Reactive Barriers; Phytoremediation								

VOC= Volatile Organic Compounds; SVOC= Semi-Volatile Organic Compounds;

SVE= Soil Vapor Extraction

Demonstrated effectiveness of biological Effectiveness of technologies

treatment technologies for soil, sediment, sludge

	In Situ Treatment Technologies							Ex Situ Treatment Technologies ¹							
	Intrinsic	Enhanced											and a		
Contaminant Type	Soil / Ground Water	oil / Vadose ound Zone		Surficial Soil		Ground Water / Saturated Soil			Solids			Liquid Mixtures	Liquids		
	Monitored Natural Attanuation	AerobicBiowerting	Comstato ic Bioventing	Amenobic Bloventing	Land freatment	Compositing	Amerobic Reductive Dechlorinstien	A orobic Treatment	Biological Reactive Barriers	Bicsparg hrg/ Bicstarping	Land Treatment	Composiing	Biopiles	Starry Biones ctors	Constructed Wetlands
Non-halogenated VOCs		+			4'	4'		+	+	+	4 ²	4	4'	4 '	4 ²
Halogonated VOCs	+		٠		m ²		٠		+	٠	B ²		2	=	B ²
Non-halogenated SVOCs		+			+	٠		+			+	٠	٠		٠
Halogenated SVOCs									٠						
Fuels	•	+			4'	¢ ²		٠	•	•	4 ²	4	ŧř.	- 4 °	•°
Inorganics		•	•						+						+
Radionuclidea									+						
Explosives					+	٠			٠			٠		•	

Not generally applicable to moke and bedrock.

¹ Volatilization must be controlled.

- Designstrated Effectiveness: Successfully treated at plot or full scale and verified by an independent agency.
- Potential Effectiveness: Successfully treated at laboratory or bench scale, or similar contaminant types have been successfully demonstrated at pilot or full scale.
- No Expected Effectiveness: No successful treatments documented at any scale, and expert opinion notes that the contaminant in question is not likely to be effectively treated by the technology.
- Potential Adverse Effects: Adverse effects are documented at any scale, or expert opinion notes that the treatment technology may result in adverse effects to the environment.

Adapted from internation in EPA (1998), 2000, 2004c), 2004c), FRTH (2003, 2004), ESTCP (2001, 2004a, 2004b), ITRC (2004), and AFCEE (1995).

Site characteritation and long term menitoring ere necessary to support cyclice design and sizing as well as to verify continued performance. There are also regulatory requirements to be addressed regarding system design, implementation, operation, and performance, including the disposition of liquid effluents and other wastes resulting from the treatment process.

Egyptian and Italian Cooperation Programme on Environment Hazardous Substances and Wastes

5. References

http://www.frtr.gov/

Federal Re	mediation T	echnologies	Roundtable
	What's Hot? 1	Mhat's New?	•
About FRTR	Site Map	Home	Comments

http://www.clu-in.org/

• http:/www.clarinet.at

