

"Capacity Building and Strengthening Institutional Arrangement"

Workshop: "Hazardous Substances and Wastes"

Human Health Risk Assessment of Contaminated Sites Principles and Methodologies

Ms. Francesca Quercia

APAT

Agency for Environmental Protection and Technical Services

Index

- 1. Risk assessment
- 2. Conceptual Site Model
- 3. Site characterization objectives:
- 4. Exposure Assessment
- 5. Risk Assessment procedure

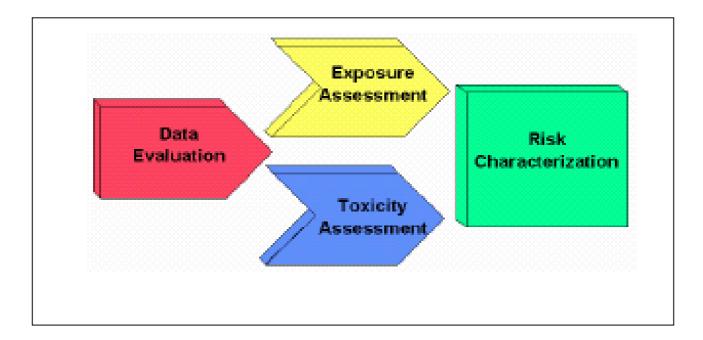
What is risk?

Webster's New World Dictionary of the American Language (1979, Simon & Schuster, New York, NY) defines risk as the chance of injury, damage, or loss. Therefore, to put oneself "at risk" means to participate either voluntarily or involuntarily in activities that could lead to injury, damage, or loss.

- Voluntary risks
 - Voluntary risks are those associated with activities that we decide to undertake (e.g., driving a car, riding a motorcycle, smoking cigarettes).
- Involuntary risks
 - Involuntary risks are those associated with activities that happen to us without our prior consent or knowledge. Acts of nature such as being struck by lightning, fires, floods, etc., and exposure to environmental contaminants are examples of involuntary risks.

Quantitative Risk Assessment Risk numbers

Risk ¹⁾	Risk of Death / Person / Year
Influenza	1 in 5,000
Leukemia	1 in 12,500
Struck by Automobile	1 in 20,000
Floods	1 in 455,000
Tornadoes (Midwest)	1 in 455,000
Earthquakes (California)	1 in 588,000
Nuclear Power Plant	1 in 10 million
Meteorite	1 in 100 billion

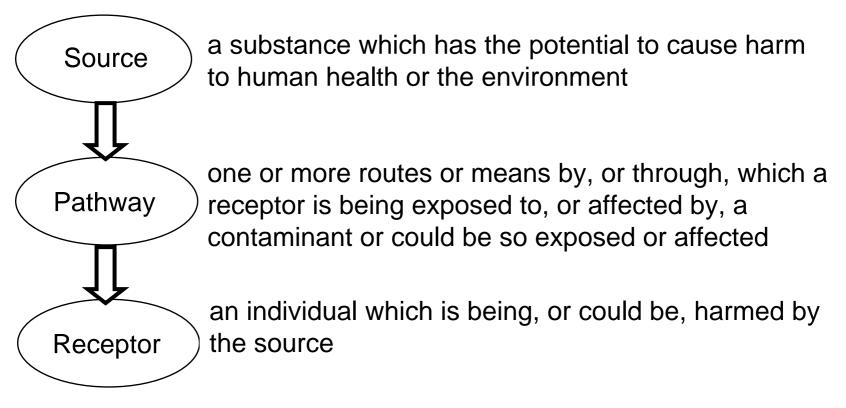

Risk of a particular activity may be expressed as chance/probability of adverse effects per person per year (or lifetime). Risk is expressed as a fraction, without units, from 0 - 1.0, where at 1.0 there is absolute certainty that an adverse effect will occur. Scientific notation is generally used to present quantitative risk information.

Risk assessment of contaminated sites

- Hazardous substances are (already) present at contaminated sites;
- Chance of exposure (y/n) to these substances is evaluated across the S-P-R pollutant linkage;
- When exposure is envisaged, then toxicological effects are evaluated;
- For cancerogenic substances toxicological effects are evaluated in a probabilistic way.

NAS paradigm (1983)

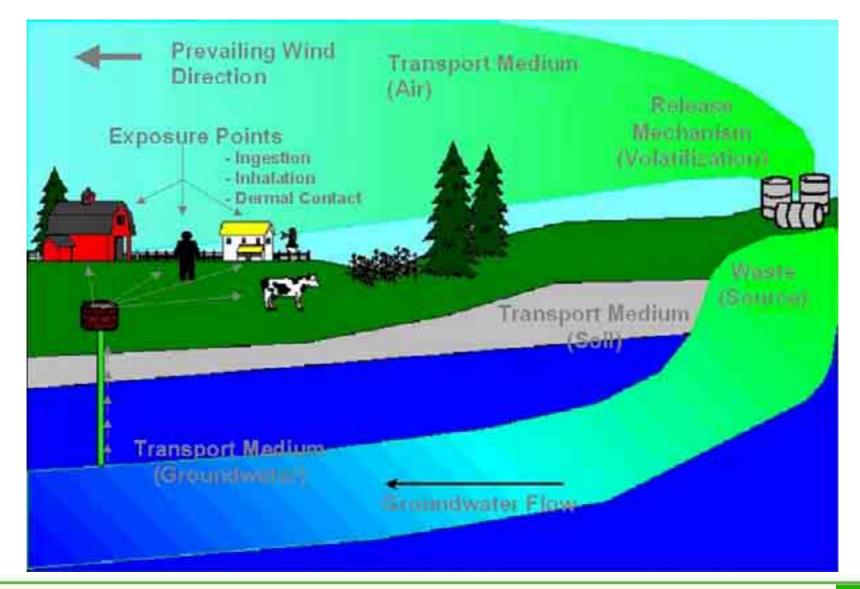
• Risk assessment is performed in 4 distinct steps:


Assessment procedure

- Step 1: Data compilation/evaluation and hazard assessment
 - Verify the location and extent of sources of chemicals of potential concern and verify that the data are appropriate and representative.
- Step 2: Exposure assessment
 - Estimate the type and magnitude of receptor's exposures to chemicals of potential concern that are present at or migrating from the source.
- Step 3: Toxicity assessment
 - Weigh available evidence regarding the potential for a chemical of concern to cause effects in exposed receptors.
- Step 4: Risk characterization and assessment
 - Quantify risks, combine risks across all pathways, present baseline risk assessment characterization results.

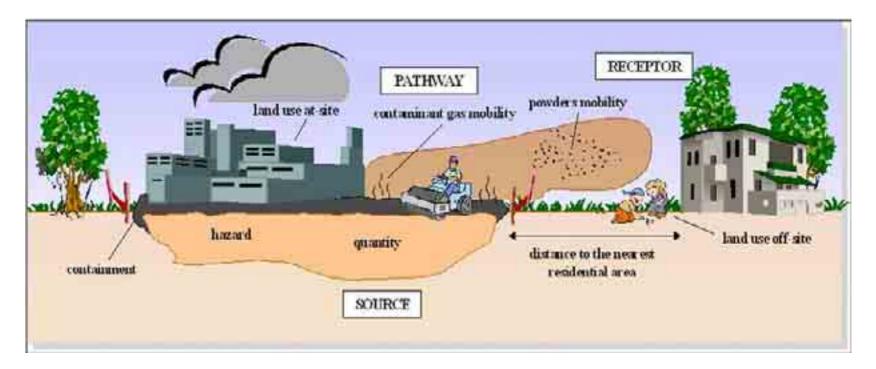
2. Conceptual Site Model

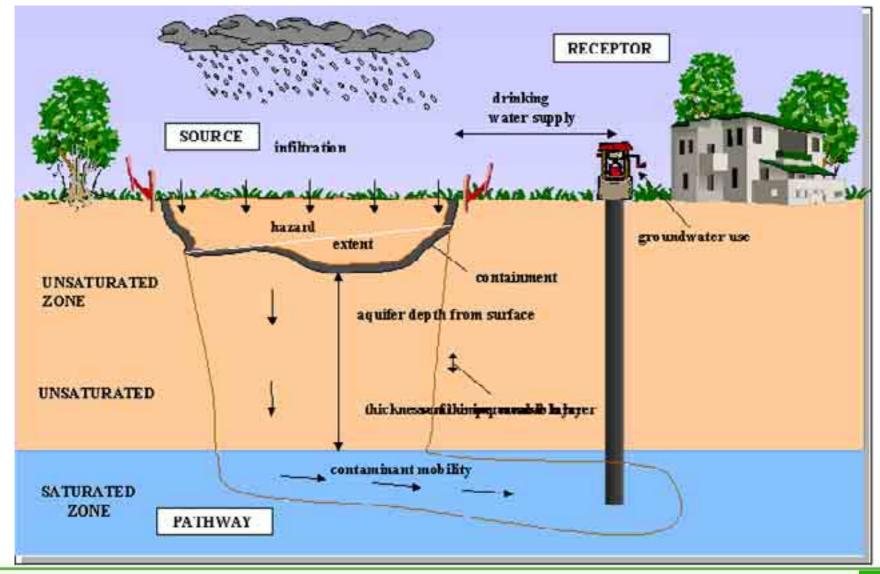
Source-Pathway-Receptor



Identify and characterize S - P - R

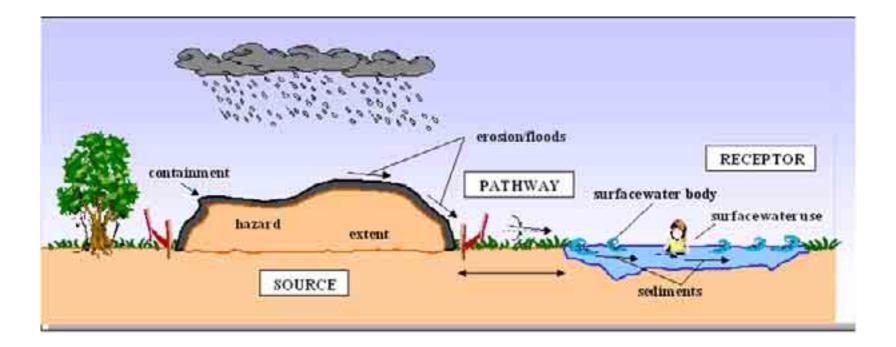
to build the CONCEPTUAL SITE MODEL


2. Conceptual Site Model


2. Conceptual Site Model

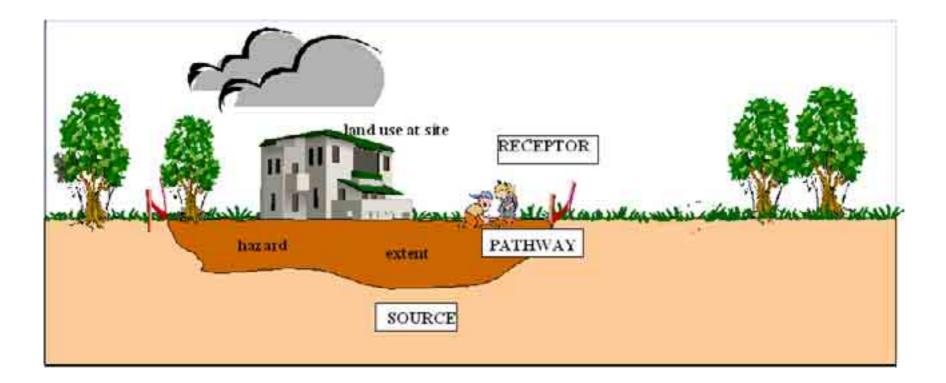
Atmospheric pathway

2. Conceptual Site Model

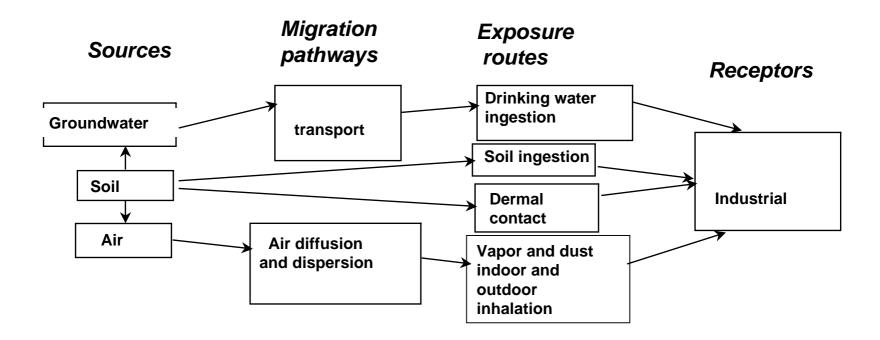


Ms. Francesca Quercia

2. Conceptual Site Model

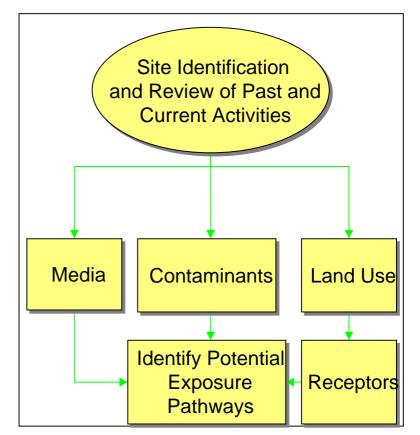

Surface water pathway

2. Conceptual Site Model

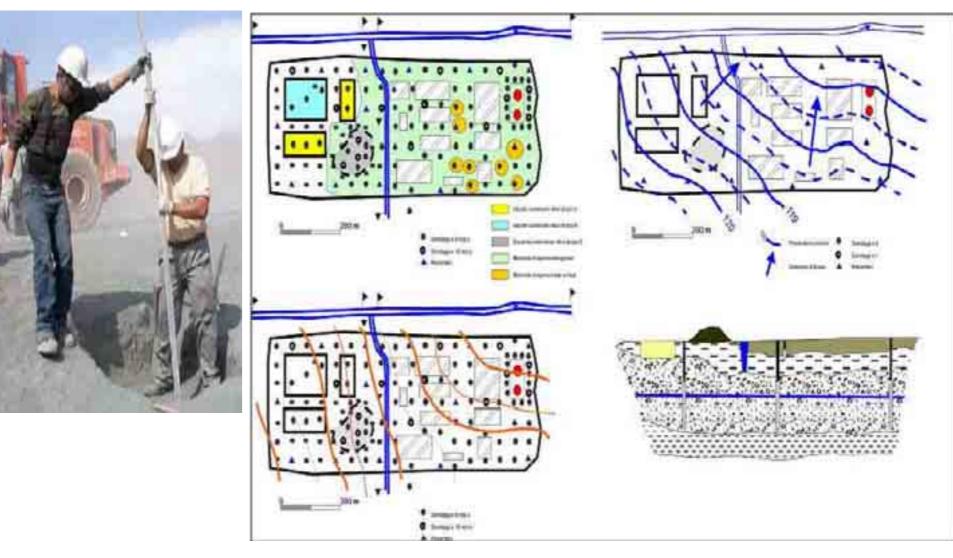

Direct contact pathways

2. Conceptual Site Model

Exposure flowchart


Build the site specific conceptual model and exposure flowchart by including all sources, active pathways, exposure routes and receptors

3. Site characterization objectives


hazard and exposure assessment

- Identify and characterize primary contaminant sources (e.g. wastes, tanks) and secondary sources in soil and groundwater
- Identify and characterize migration pathways by studying igninary environmental media (e.g. hydrogeology)
 Identify and characterize Conceptual Site Model (little or no
- Identify and characterize actual available) and potential receptors (land uses) and exposure routes onsite and off-site

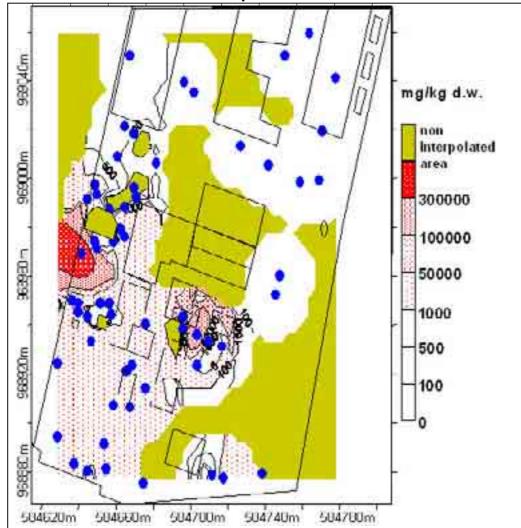
Soil and groundwater sampling

3. Site characterization objectives

Soil sources

Free / immiscible product ·

Air phase with vapours -


Solid phase with adsorbed contamination

Water phase with dissolved contamination -

3. Site characterization objectives

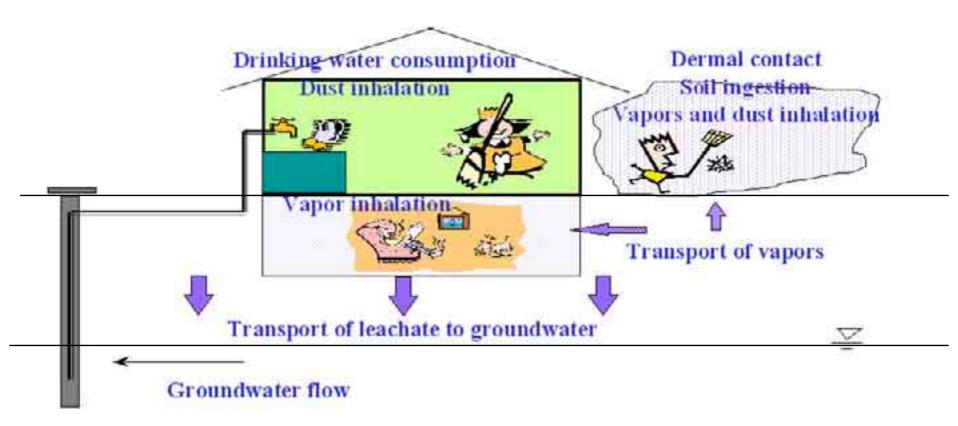
Hazard Assessment: Spot Contaminants of Concern

Characterize sources:

- Map contaminant concentrations in surface and deep soil
- Define source extent and representative contaminant concentrations

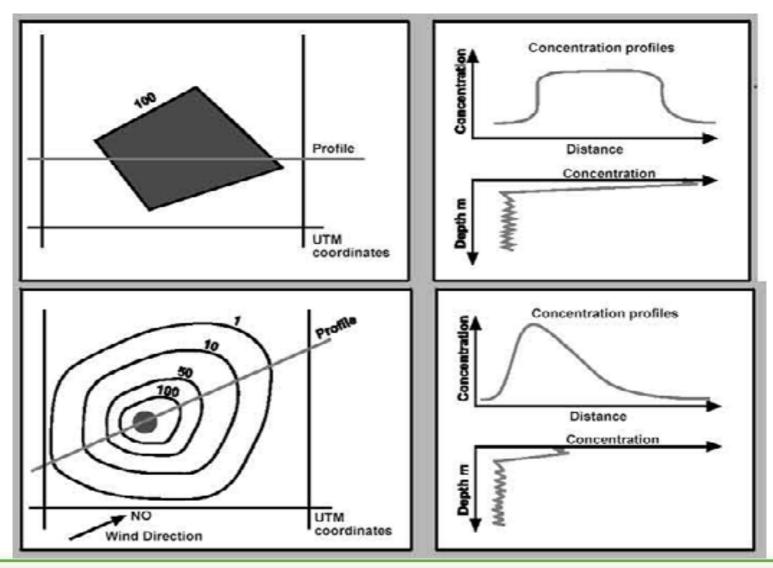
3. Site characterization objectives

CSM: answered questions

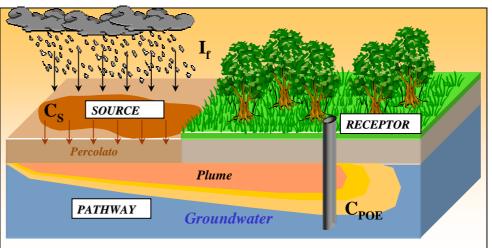

- What is the proposed reuse or current use of the site?
- Is the proposed reuse of the site politically, economically, and socially viable?
- What media are impacted and by what type of contamination?
- Are there any potentially complete source-pathway-receptor pollutant linkages present at the site?
- What exposure point concentration might represent a potential risk?
- Do the exposure assumptions used match the reuse scenario?
- What are the potential human exposure pathways?
- What are the available remedies for the site?

Additional Hints

- a CSM should not be limited to soil and groundwater contamination
- a CSM should consider all potential exposures and receptors, e.g. human health, ecological receptors


Example: exposure scenario for residential use

4. Exposure Assessment


CSM: output examples

Concentration profiles

- Concentration profiles from the contaminant source versus distance and versus time are needed in order to estimate expected concentration at the exposure/contact point (C_{POE}) where the receptor is located.
- Simulation Fate&Transport models may be needed in order to estimate expected concentrations of contaminants - with distance and time – migrating from the source across different environmental media, eg:
 - groundwater
 - surface water
 - air

$$E = \frac{C \times CR \times EF \times ED}{BW \times AT}$$

Example: Exposure to Soil ingestion

E = Exposure [mg/(kg x day)] CR = Contact (ingestion) rate [mg/day] EF = Exposure frequency [day/year] ED = Exposure duration [year] BW = Body weight [kg] AT = Averaging time [year] C = Contaminant concentration in soil at C_{POE}[mg/kg]

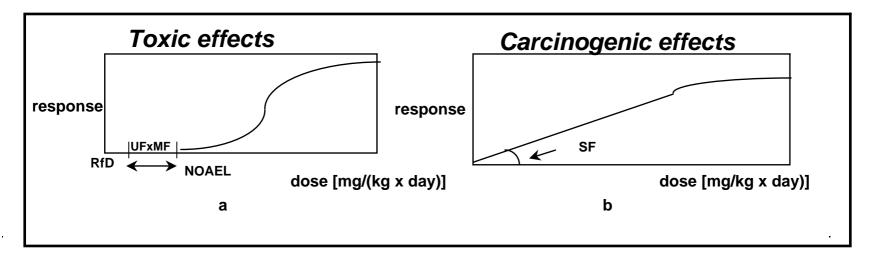
Note: long term (chronic) exposure is estimated

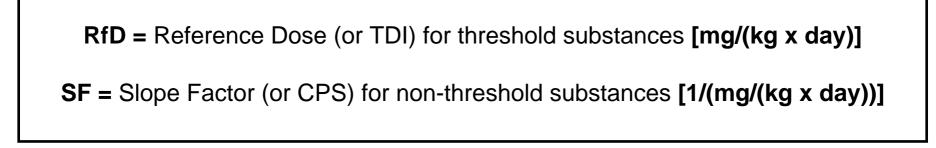
Data for Exposure Assessment

- **Chemicals:** chemical and physical parameters describing environmental mobility, persistency, volatility, bioaccumulation potential
- **Site/pathways:** physical/chemical parameters describing local soil, air and water resources conditions (from site characterization)
- **Receptors:** data describing land use and receptor exposure characteristics (exp. routes and parameters from site characterization)
 - Select contaminants of concern
 - Identify relevant pathways
 - Identify receptors and location

Chemical/physical parameters

Substances	CAS	MW	Ret.	Н	Ref.	Koc (")	Ret.	Sol	Ref.	Dair	Ref.	Dwat	Ref.
		(gintole)		(-)		(miig)		(mg/l)		(cm2/s)		(cm ² /2)	
1,1,1-Trichloroethane	71556	133.4	7	0.705	1	135	fg	1330	1	0.078	1	0.0000088	1
1,1,2,2-Tetrachioroethane	79345	167.9	7	0.0182	7	74.1	7	2960	7	0.071	10	0.0000079	10
1,1,2-Trichloroethane	79005	133.4	7	0.0374	1	75	1g	4420	1	0.078	1	0.0000088	1
1,1-Dichloroethane	75343	99	7	0.23	1	53	1g	5060	1	0.0742	t.	0.0000105	1
1,1-Dichloroethene	75354	96.9	7	1.07	1	65	19	2250	1	0.09	1	0.0000104	1
1,2,3-Trichloropropane	96184	14.4	7	0.0155	7	97.2	13	1900	7	0.0701	9	0.0000079	9
1,2,4,5-Tetrachlorobenzene	95943	215.9	7	0.0494	7	1780	7	1.27	7	0.0521	14	0.00000622	15
1,2,4-Trichlorobenzene	120821	181.5	7	0.0582	1	1660	1g	300	1	0.03	1	0.00000823	1
1,2-Ethylene dibromide	106934	187.9	7	0.0266	7	44	7	4150	7	0.0762	14	0.00000871	15
1,2-Dichlorobenzene	95501	147	8	0.0779	1	379	1g	158	1	0.069	1	0.0000079	1
1,2-Ethylere chloride	107062	59	7	0.0401	1	38	1g	8520	1	6 104	1	0.0000099	1
1.2-Dichloroethylene	540590	98.9	7	0.186	7	49	7	3500	7	0.0736	10	0.0000113	10
1,2-Dichioroprogane	78875	113	7	0.115	10	47	10	2800	10	0.0782	10	0.00000673	10
1,2-Dinibobenzene	528290	168.11	16	0.000902	9	94.3	7	1070	9	0.279	9	0.00000764	9
1.3-Dichlorobenzene	541731	147	8	0.151	2	1700	20	123	1	0.069	2	0.0000079	1
1,3-Dinitrobenzene	99650	168.11	16	0.000902	9	94.3	7	1070	9	0.279	9	0.00000764	9
1,4-Dichlorobenzene	106467	147	8	0.0996	1	616	1g	73.8	1	0.069	1	0.0000079	1
2.3.4.6-Tetrachlorophenol	58902	213.9	7	0.000105	5	1580	5	1000	2	0.1	\$	0.00001	5
2,4,8-Trichlorophenol	88062	197 5	7	0.000319	1	2000	2	800	1	0.0318	1	0.00000625	1
2.4-Dichlorophenol	120832	162.9	7	0.00013	1	380	2	4500	1	0.0346	1	0.00000877	1
2-Chlorophenol	95578	128.6	8	0.016	1	363	c	22000	1	0.0501	1	0.00000946	1
Acenaphihene	83329	154.2	7	0.00636	1	4900	19	4.24	1	0.0421	1	0.00000769	1

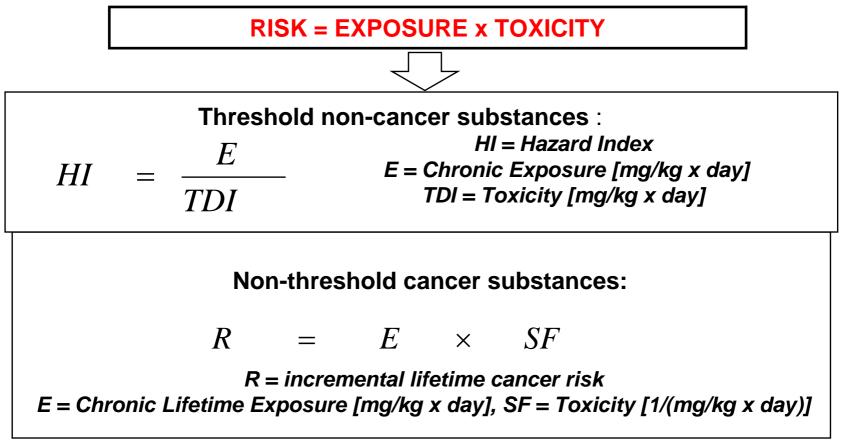



Exposure parameters

Evnosuvo novometovo	Res/ recr	Ind/comm	
Exposure parameters	children	adults	
Soil ingestion rate (mg/day)	200	50	
Body weight (kg)	15	70	
Exposure frequency (days/year)	350	240	
Exposure duration (years)	6	25	
Lifetime (years)	70	70	
Dermal surface (cm ²)	6381	17938	
Soil skin adh. factor (mg/ cm ²)	1	1	
Exposed skin fraction (%)	50	20	
Bioavailanility (%)	1	1	
Outdoor inhalation rate (m ³ /day)	3	2	
Indoor inhalation rate(m ³ /day)	6	8	
Dermal adsorption factor (%)	1-10	1-10	

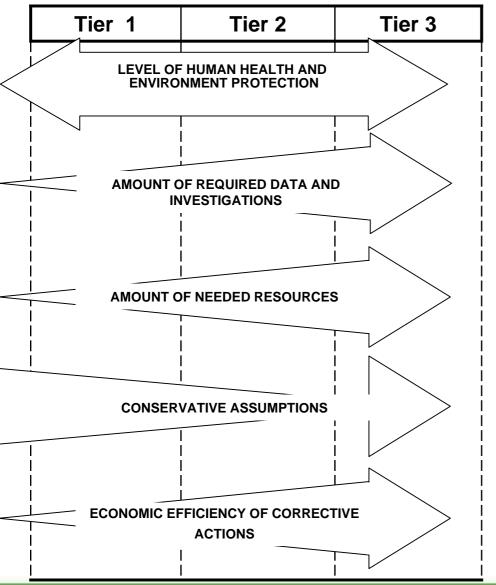


Toxicity (Dose/Response) Assessment



Risk Assessment forward procedure

Assess site risks (baseline risk assessment)



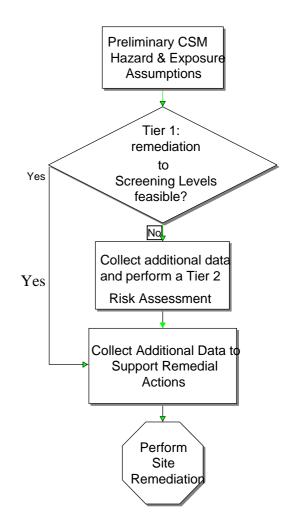
Acceptable Risk Criteria: HI = 1 $R = 1E-6 \div 1E-4$

5. Risk Assessment procedure

Risk assessment Tiers

*<u>NOTE</u>:

Tier 3 is seldom performed



Risk Assessment tiered procedure

Tier 1: Risk Assessment based on preliminary CSM. Check observed contaminant concentrations against screening values

Design and implement a dynamic work plan to verify/define the preliminary CSM

Tier 2: Risk Assessment based on a mature CSM. Assess sitespecific risks. Define site specific cleanup goals.

Tier 1

- A preliminary evaluation of risks is performed by comparing observed representative contaminant concentrations - in soil and groundwater – against pre-defined <u>screening values</u>. The Conceptual Site Model is a preliminary one.
- <u>Screening values</u> for soil and groundwater concentrations are generally established by law for different soil (and gw) uses.
- If <u>screening values</u> are exceeded, then:
 - the site (soil and gw) is remediated (cleaned up) down to screening values or
 - an in depth site characterization and Tier II risk assessment is performed by refyning the Conceptual Site Model.

SUBSTANCES

5. Risk Assessment procedure

Ex.: Dutch intervention

SOIL (mg/kg)
Intervention values

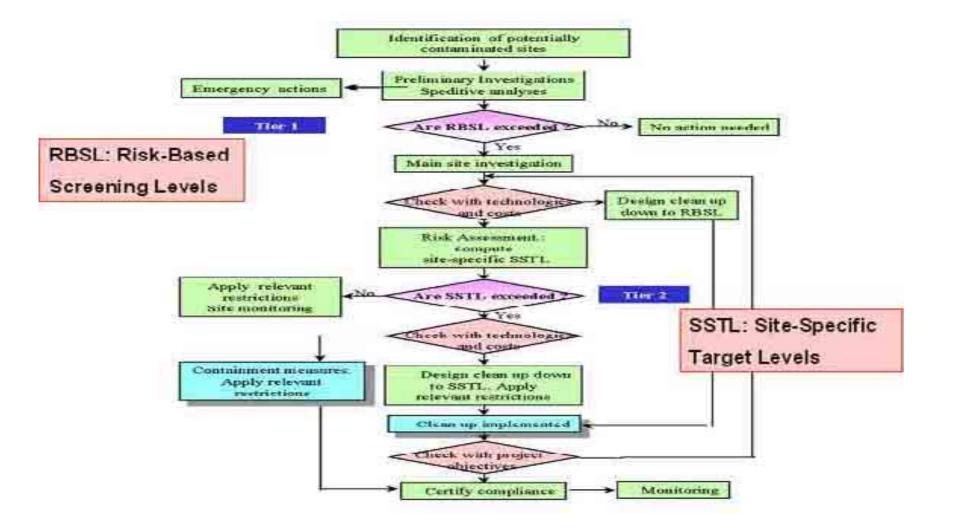
GROUND WATER (µg/l) Intervention values

I. METALS		
arsenic	.55	60
barium	625	625
cadmium	12	6
chromium	380	30
cobalt	240	100
copper	190	75
mercury	10	0.3
lead	530	75
molybdenum	200	300
nickel	210	75
zinc	720	800
II INORGANIC COMPOUNDS		
cyanides (free)	20	1500
cyanides (complex. pH<5)	650	1500
cyanides (complex_pH?5)	50	1500
thiocyanates	20	1500
III. AROMATIC COMPOUNDS		
benzene	1	30
ethylhenzene	50	150
phenol	40	2000

Tier 2

CSM required information

- Historical use of the site
- Climate
 - hydrologic budget, fauna, flora, and land use, precipitation rates
 - temperature, prevailing wind speed and direction
- Pedology/Geology
 - types of soil and geologic materials, structural geologic features, depositional environments, geomorphology
- Hydrogeology
 - Aquifer characteristics
 - a. Type (unconfined, confined, or semi-confined)
 - b. Characteristics (hydraulic conductivity, transmissivity)
 - c. Geology (materials and structure)
 - Hydrologic budget
 - a. Recharge/discharge rates (precipitation, artificial recharge, pumping)
 - Groundwater flow
 - a. Hydraulic gradient (groundwater elevations, flow direction)
 - b. Flow velocity (travel time)

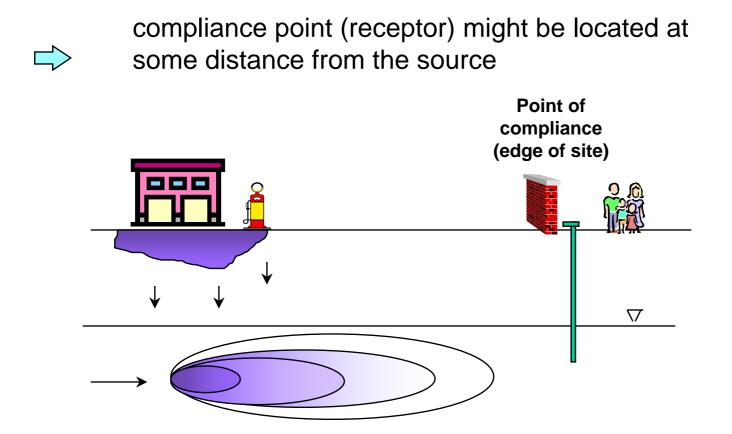

Risk Assessment backward procedure

Assess site specific cleanup goals

5. Risk Assessment procedure ASTM/RBCA Tiered procedure

ASTM/RBCA Risk-Based Corrective Actions

- Standard ASTM E1739/95 and PS104/98 for risk-based corrective actions on contaminated sites
- Streamlined tiered procedure for decision making
- Tier 1 develops RBSLs (Risk-Based Screening Levels) look-up tables for each pathway against which site concentrations are compared, according to conservative exposure scenarios and default assumptions
- Tier 2 develops SSTLs (Site specific Target Levels) as site-specific cleanup objectives
- Risk, Exposure and Fate&Transport models (equations) are included in the Standard
- Default Tier 1 parameter values are also included in the Standard



Main features of RBCA

- Risk protection level is the same at each Tier
- As data from investigation increase more focused quality objectives are defined according to site-specific conditions and exposure scenarios
- Tier 1 receptor location is on site on top or below source area according to a conservative default assumption
- Tier 2 receptor position may be at actual site-specific location (compliance point)

Groundwater protection: Tier 2 compliance point

