GRUPPO DI LAVORO "ANALISI DI RISCHIO" APAT-ARPA-ISS-ISPESL

* * *

Documento di riferimento per la valutazione della conformità dell'analisi rischio sanitario-ambientale di Livello 2 ai "Criteri Metodologici per l'applicazione dell'analisi assoluta di rischio ai siti contaminati" (Rev. 1)

* * *

Marzo 2007

Elaborato da:

Ing. Laura D'Aprile, APAT, laura.daprile@apat.it

Ing. Simona Berardi, ISPESL, simona.berardi@ispesl.it

Condiviso da:

ISS: Eleonora Beccaloni, Fabrizio Falleni, Loredana Musmeci

ARPA Basilicata: Rocco Masotti, Giampietro Summa

ARPA Campania: Federico Silvestri, Marinella Vito

ARPA Emilia Romagna: Daniela Ballardini, Annamaria Colacci, Saverio Giaquinta

ARPA Friuli Venezia-Giulia: Davide Brandolin

ARPA Liguria: Tiziana Pollero

ARPA Lombardia:.Rocco Racciatti

ARPA Marche: Manrico Marzocchini

ARPA Piemonte: Maurizio Di Tonno, Carlo Manzo

ARPA Sardegna: Sergio Pilurzu

ARPA Sicilia: Vincenzo Bartolozzi, Francesco D'Urso, Gaetano Valastro,

ARPA Toscana: Fabrizio Franceschini,, Marcello Panarese, Stefano Santi, Milo Vignali, Rossella

Francalanci

ARPA Umbria: Andrea Sconocchia

ARPA Valle d'Aosta: Fulvio Simonetto, Pietro Capodaglio

ARPA Veneto: Federico Fuin

Regione Veneto: Paolo Campaci, Giuliano Vendrame

Regione Emilia-Romagna: Claudia Ferrari

Regione Lombardia: Nicola di Nuzzo, Cosimo Brandolino

Regione Sardegna: Gianluca Sanna

INDICE

PREMESSA	4
SEZIONE 1 – CONTESTO DI APPLICAZIONE DELL'ANALISI DI RISCHIO E	
INFORMAZIONI DI CARATTERE GENERALE	4
SEZIONE 2 – MODELLO CONCETTUALE DEL SITO	6
SEZIONE 3: SORGENTE/I DI CONTAMINAZIONE	7
SEZIONE 4: MECCANISMI DI TRASPORTO	11
SEZIONE 5: BERSAGLI E PARAMETRI DI ESPOSIZIONE	12
SEZIONE 6: CALCOLO DEL RISCHIO E/O DEGLI OBIETTIVI DI BONIFICA	13
SEZIONE 7: PARAMETRI DI INPUT	14
NOMENCLATURA	15

PREMESSA

Il presente documento è stato elaborato allo scopo di fornire ai tecnici degli Enti di Controllo uno strumento utile nella valutazione delle analisi di rischio sanitario-ambientale di Livello 2 per i siti contaminati, presentate da soggetti privati e/o pubblici. Le indicazioni tecniche riportate sono basate sull'esperienza maturata in tema di valutazione di analisi di rischio e sui criteri riportati nel manuale "Criteri metodologici per l'applicazione dell'analisi assoluta di rischio ai siti contaminati", rev 1, pubblicato sul sito dell'APAT (www.apat.it).

Il documento è suddiviso in sezioni, riguardanti i singoli aspetti di cui è costituita la procedura di analisi di rischio. Ad ogni sezione corrisponde una scheda (in formato Excel), la cui compilazione è di supporto alla valutazione della rispondenza dell'analisi di rischio presentata al manuale "Criteri metodologici per l'applicazione dell'analisi assoluta di rischio ai siti contaminati", rev 1. Le schede nel loro complesso costituiscono quindi una lista di riscontro contenente una sintesi delle informazioni relative alla modalità di applicazione della specifica analisi di rischio.

SEZIONE 1 – Contesto di applicazione dell'analisi di rischio e informazioni di carattere generale

Nella valutazione di un'analisi di rischio sanitario-ambientale di livello 2, occorre in primo luogo verificare che le motivazioni che hanno condotto alla presentazione della stessa siano conformi alle indicazioni della normativa vigente in tema di bonifica dei siti contaminati.

In particolare non si ritiene tecnicamente accettabile l'applicazione dell'analisi di rischio nei seguenti casi:

- a) valutazione dell'accettabilità, dal punto di vista del rischio sanitario-ambientale, di valori di fondo o background, di situazioni di inquinamento diffuso (ad es: inquinamento di origine agricola);
- b) valutazione del rischio sanitario-ambientale in situazioni di emergenza (esplosioni, incendi, fughe di gas, ecc.);
- c) valutazione della sicurezza per i lavoratori di cantieri, per gli operatori di interventi di bonifica, ecc.

Si osserva che qualora si verifichino una o più delle condizioni di cui ai precedenti punti (a, b, c), occorre indicare al soggetto proponente altri strumenti di valutazione idonei, in conformità con le specifiche normative di settore.

Le informazioni di carattere generale sul sito per il quale è stata applicata l'analisi di rischio e le motivazioni della stessa devono essere riportate nell'allegata SCHEDA 1.

SEZIONE 2 – Modello Concettuale del Sito

L'analisi di rischio deve essere impostata sulla base del modello concettuale definitivo del sito, elaborato sulla base dei dati derivanti dalla caratterizzazione, assumendo come riferimento il modello concettuale sito-generico riportato in Figura 1. La definizione del modello concettuale comprende essenzialmente la ricostruzione dei caratteri delle tre componenti principali che costituiscono l'analisi di rischio:

SORGENTI – PERCORSI (o VIE DI MIGRAZIONE) – BERSAGLI (o RECETTORI)

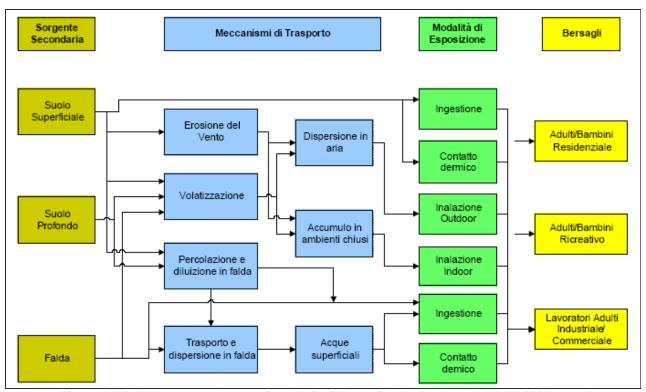


Figura 1: Modello concettuale generico del sito [Figura 3.1 del documento APAT 2006, rev. 1]

L'elaborato di analisi di rischio deve contenere in modo chiaro ed esaustivo tutte le informazioni relative alla costruzione del modello concettuale del sito oggetto di analisi. La schematizzazione del modello concettuale definito (sotto forma di flow-chart, disegni, tabelle, grafici, ecc.) deve essere fornita agli Enti di Controllo.

Le informazioni inerenti il modello concettuale del sito devono essere riportate nell'allegata SCHEDA 2 e nella Figura 2.1.

SEZIONE 3: Sorgente/i di contaminazione

L'elaborato di analisi di rischio deve contenere in modo chiaro ed esaustivo le seguenti informazioni:

- a) ubicazione (su apposita planimetria), dimensioni (parametri geometrici) e caratteristiche della/e sorgente/i (nell'elaborato devono essere chiaramente riportate anche le coordinate georeferite dei punti di campionamento e i relativi superamenti delle CSC o dei limiti suggeriti dall'ISS);
- b) indicazione della tipologia di contaminazione (omogenea, puntiforme, a macchia di leopardo);
- c) dati analitici relativi alle caratteristiche della sorgente (concentrazioni di inquinanti misurate in tutti i punti di indagine relativi alla sorgente identificata, parametri chimico-fisici relativi alla sorgente, parametri geologici ed idrogeologici relativi alla sorgente, informazioni relative alla qualità dei dati misurati, risultati di eventuali controanalisi effettuate dagli Enti di Controllo);
- d) giustificazione della eventuale suddivisione in subaree di un sito di grandi dimensioni;
- e) identificazione degli inquinanti indicatori e parametri chimico-fisici e tossicologici dei contaminanti;
- f) procedura e calcoli relativi alla determinazione della concentrazione rappresentativa della sorgente.

In merito alle informazioni di cui ai punti precedenti, in conformità con quanto riportato nei "Criteri metodologici per l'applicazione dell'analisi assoluta di rischio ai siti contaminati", occorre verificare quanto segue (vedi Figura 2):

- 1) rispetto dei criteri per la suddivisione del sito in subaree (par. 3.1.1.b)
- 2) rispetto dei criteri per la definizione della geometria della sorgente (par. 3.1.1.a,c,d; 3.1.2, 3.1.3)
- 3) rispetto dei criteri per la definizione della concentrazione rappresentativa della sorgente (par.3.1.4);
- 4) utilizzo dei parametri chimico-fisici e tossicologici della banca-dati ISS-ISPESL (par.3.1.5) <u>nella sua versione più aggiornata</u> disponibile sul sito dell'APAT (<u>www.apat.it</u>);
- 5) rispetto dei criteri per la selezione degli inquinanti indicatori (3.1.6);
- 6) indicazione di tutti i parametri di utilizzati.

In merito alla definizione della concentrazione rappresentativa e delle caratteristiche sitospecifiche della sorgente, si osserva quanto segue:

- a) il numero minimo di dati, corrispondente a 10, necessario per l'esecuzione di analisi di tipo statistico (applicazione del software proUCL dell'EPA per il calcolo dell'UCL), si riferisce ai sondaggi effettuati nell'area in cui viene applicata l'analisi di rischio e non ai campioni disponibili che, paradossalmente, potrebbero essere relativi a uno stesso sondaggio;
- b) l'UCL deve essere calcolata prendendo in considerazione tutti i dati di concentrazione disponibili, anche quelli che non superano i valori di riferimento fissati dalla normativa vigente;
- c) per il calcolo dei valori rappresentativi di concentrazione nel suolo (SS, SP) nei casi in cui siano applicabili analisi di tipo statistico devono essere applicati i seguenti criteri:
 - 1. i dati di concentrazione relativi ai terreni devono essere raggruppati per strati omogenei: top-soil, materiale di riporto, insaturo, distinguendo tra i vari litotipi presenti (es: sabbie, ghiaie, argille, etc.);
 - 2. la procedura statistica per il calcolo dell'UCL (vedi appendice H) deve essere applicata a ciascuno strato omogeneo;
 - 3. tra le UCL ottenute per ciascuno strato omogeneo devono essere selezionati i valori massimi relativi al comparto SS (0-1 m), SP (>1 m) che verranno impiegati come dati di input;
 - 4. le caratteristiche sito-specifiche da utilizzare per la sorgente saranno quelle relative allo strato omogeneo maggiormente rappresentativo della contaminazione (ad es. sulla base dei valori massimi di UCL);
 - 5. nei casi in cui non fosse possibile raggruppare i dati disponibili in strati omogenei, dovranno essere presi in considerazione i valori massimi riscontrati, in corrispondenza dello stesso sondaggio, relativamente ai comparti SS (0-1 m), SP (>1 m): tali valori verranno impiegati come dati di input per l'elaborazione statistica;
 - 6. nel caso in cui, per ciascuno strato omogeneo, fossero disponibili più campioni, potrà essere applicato il seguente criterio, elaborato dall'US EPA: se ogni intervallo di campionamento, all'interno dello strato omogeneo, è caratterizzato dalla stessa lunghezza (es. 1 metro), la concentrazione rappresentativa della contaminazione, si ottiene facendo la

semplice media aritmetica delle concentrazioni misurate per ogni intervallo. Se gli intervalli di campionamento, all'interno dello strato omogeneo, non sono della stessa lunghezza (es. alcuni sono 1 metro mentre altri sono di 20 cm), allora il calcolo della concentrazione media deve tenere in considerazione le lunghezze diverse degli intervalli. In tal caso, se la misura della concentrazione in un campione è rappresentativa di un intervallo di lunghezza l, e si considera che l'n-esimo intervallo sia l'ultimo intervallo campionato, (l'n-esimo intervallo raggiunge la massima profondità della contaminazione), allora la concentrazione media dovrebbe essere calcolata come media pesata sulla profondità, secondo la seguente formula:

$$\overline{c} = \frac{\sum_{i=1}^{n} l_i c_i}{\sum_{i=1}^{n} l_i}$$

- d) per il calcolo dei valori rappresentativi di concentrazione nel comparto acque sotterranee (GW) nei casi in cui siano applicabili analisi di tipo statistico devono essere applicati i seguenti criteri:
 - 1. i dati di concentrazione relativi alle acque sotterranee devono essere raggruppati relativamente all'acquifero di provenienza (ad es: falda freatica, prima falda, seconda falda, ecc);
 - 2. la procedura statistica per il calcolo dell'UCL (vedi appendice H) deve essere applicata a ciascun acquifero individuato;
 - tra le UCL ottenute per ciascun acquifero individuato, dovranno essere selezionati i valori massimi relativi al comparto GW che verranno impiegato come dati di input;
 - 4. le caratteristiche sito-specifiche da utilizzare per la sorgente saranno quelle relative all'acquifero maggiormente rappresentativo della contaminazione (ad es. sulla base dei valori massimi di UCL).

I dati relativi alle caratteristiche fisiche dei terreni dovranno essere determinati su almeno tre campioni rappresentativi di ciascun strato omogeneo (*top soil*, materiale di riporto, insaturo, saturo), distinguendo tra i vari litotipi presenti.

Nell'ambito dell'elaborato inerente l'analisi di rischio potrebbe risultare utile riportare una

schematizzazione della successione stratigrafica individuata (strati omogenei).

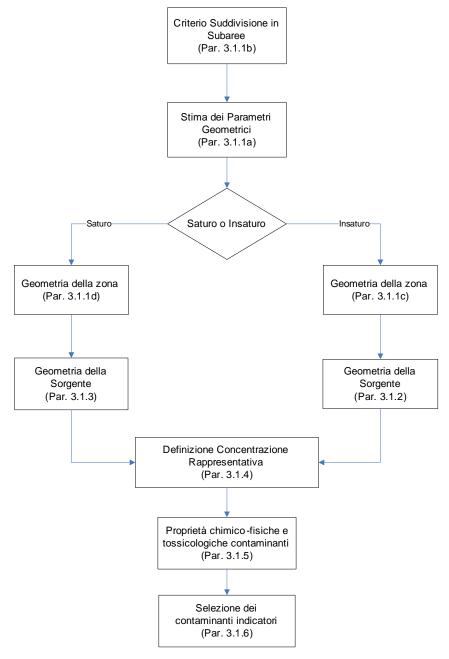


Figura 2: Flow-chart per la valutazione della definizione della sorgente di contaminazione

Le informazioni inerenti la sorgente/i di contaminazione devono essere riportate nell'allegata SCHEDA 3.

SEZIONE 4: Meccanismi di trasporto

L'elaborato di analisi di rischio deve riportare in modo chiaro ed esaustivo le seguenti informazioni:

- a) meccanismi di trasporto dei contaminanti individuati sulla base del modello concettuale selezionato. Si ricorda a tale proposito che la validità risultanze dell'analisi di rischio sitospecifica è legata al Modello Concettuale del Sito (MCS) selezionato, pertanto al variare di uno qualsiasi degli elementi di tale modello deve essere condotta una nuova analisi di rischio sito-specifica;
- b) fattori di trasporto utilizzati nel calcolo della concentrazione al punto di esposizione;
- c) parametri sito-specifici utilizzati come input per il calcolo dei fattori di trasporto.

In merito alle informazioni di cui ai punti precedenti, in conformità con quanto riportato nei "Criteri metodologici per l'applicazione dell'analisi assoluta di rischio ai siti contaminati", occorre verificare quanto segue:

- 1) rispetto dei criteri per la definizione dei parametri sito-specifici (par. 3.2.1);
- 2) valutazione dei fattori di trasporto utilizzati sulla base delle indicazioni riportate nelle appendici A-G;
- 3) valutazione dell'affidabilità parametri sito-specifici utilizzati, sulla base delle risultanze dell'analisi di sensitività (appendice N): è necessario che i valori dei parametri ad alta sensitività e di alcuni parametri caratteristici del suolo (ad es: peso specifico) vengano determinati sulla base di misure dirette (vedi Tabella 1). Per i parametri ad alta sensitività per i quali la misura diretta può risultare particolarmente difficoltosa (ad es: dispersività, frazione areale di fratture), è possibile utilizzare i valori di default proposti dall'APAT.

Le informazioni inerenti i meccanismi di trasporto devono essere riportate nell'allegata SCHEDA 4.

Fattori di trasporto	Vie di migrazione	Sensibilità
W (cm)	LF	Alta
Sw (cm)	1/DAF	Alta
dgw (cm)	LF	Alta
Ksat (cm/s)	LF, 1/DAF	Alta
i	LF, 1/DAF	Alta
θη	VFss, VFsamb, VFwamb, VFsesp, VFwesp, LF, 1/DAF	Bassa
₽ _w	VFss, VFsamb, VFwamb, VFsesp, VFwesp, LF	Medio/Bassa
θ _{wcap}	∀Fwamb, ∀Fwesp	Medio/Bassa
f _{oc}	VFss, VFsamb, VFsesp, LF, 1/DAF	Alta
δ _{sir} (cm)	VFss, Pef, VFsamb, VFwamb	Alta
W'(cm)	VFss, Pef, VFsamb, ∨Fwamb	Alta
Uair (cm/s)	VFss, Pef, VFsamb, ∨fwamb	Alta
τ (anni)	∨Fss	Bassa
L _{crack} (cm)	VFsesp, VFwesp	Media
Lb (cm)	VFsesp, VFwesp	Media
ER (1/d)	∨Fsesp, ∨Fwesp	Alta
η	∨Fsesp, ∨Fwesp	Alta
θ wcrack	∨Fsesp, ∨Fwesp	Medio/Bassa
L _{aw} (cm)	∀Fwamb, ∀Fwesp	Media
h _{cap} (cm)	∀Fwamb, ∀Fwesp	Media
ρ _s (g/cm ³)	VFss, VFsamb, VFsesp, LF	Bassa
l _{ef} (cm/anno)	LF	Medio/Alta
L _s (cm)	∨Fsamb, ∨Fsesp, ∨Fwesp	Media
ox (cm)	1/DAF	Alta

Tabella 1: Identificazione dei parametri ad alta sensibilità [Tabella N.8 del documento APAT 2006, rev. 1]

SEZIONE 5: Bersagli e parametri di esposizione

L'elaborato di analisi di rischio deve riportare in modo chiaro ed esaustivo le seguenti informazioni:

- a) descrizione dei bersagli individuati sulla base del modello concettuale prescelto; si ricorda a tale proposito che la validità risultanze dell'analisi di rischio sito-specifica è legata al Modello Concettuale del Sito (MCS) selezionato, pertanto al variare di uno qualsiasi degli elementi di tale modello (ad es. nei seguenti casi: siti industriali convertiti ad usi residenziali, modificazioni delle caratteristiche chimico-fisiche delle matrici ambientali con conseguente mobilizzazione di contaminanti, realizzazione di capannoni o edifici su aree libere, ecc.). deve essere condotta una nuova analisi di rischio sito-specifica;
- b) parametri di esposizione relativi ai bersagli individuati sulla base del modello concettuale

prescelto;

c) ubicazione del punto di esposizione e/o del punto di conformità (per le acque).

In merito alle informazioni di cui ai punti precedenti, in conformità con quanto riportato nei "Criteri metodologici per l'applicazione dell'analisi assoluta di rischio ai siti contaminati", occorre verificare quanto segue:

- 1) rispetto dei parametri di esposizione indicati nel par. 3.4.2
- 2) valutazione dell'affidabilità parametri di input utilizzati, se diversi da quelli indicati nel par. 3.4.2. per scenari particolari di esposizione.

Le informazioni inerenti i bersagli e i parametri di esposizione devono essere riportate nell'allegata SCHEDA 5.

SEZIONE 6: Calcolo del rischio e/o degli obiettivi di bonifica

L'elaborato di analisi di rischio deve riportare in modo chiaro ed esaustivo le seguenti informazioni:

- a) modalità di calcolo del rischio (*forward*) e/o delle concentrazioni ammissibili per ciascuna matrice ambientale (*backward*);
- b) informazioni relative al software utilizzato per i calcoli;
- c) tutti risultati intermedi e finali della procedura di calcolo, le schermate relative a ciascun passaggio eseguito dal software utilizzato, i fogli riepilogativi di tutti gli input e output, i files di calcolo in formato editabile.

In merito alle informazioni di cui ai punti precedenti, in conformità con quanto riportato nei "Criteri metodologici per l'applicazione dell'analisi assoluta di rischio ai siti contaminati", occorre verificare quanto segue:

- confronto delle modalità di calcolo del rischio e/o delle concentrazioni ammissibili
 con quanto riportato nel cap. 4 e nell'appendice L, con particolare riferimento alle
 modalità di sommatoria dei rischi derivanti da più sostanze e da più percorsi; tale
 confronto deve essere effettuato considerando anche le modalità di sommatoria dei
 rischi e/o di calcolo degli obiettivi di bonifica dei diversi software di calcolo;
- 2) valutazione dei risultati del calcolo, sulla base dei livelli di rischio tollerabile indicati da APAT, ISS, ISPESL, ICRAM (per le sostanze cancerogene, 10⁻⁶ per la singola sostanza, 10⁻⁵ per la sommatoria di più sostanze) e conseguenti misure di mitigazione del rischio intraprese;

- 3) valutazione delle concentrazioni ammissibili calcolate, confronto delle stesse con le concentrazioni misurate sul sito (tenendo presente che le concentrazioni ammissibili calcolate dai software sono espresse come tal quale) e interventi proposti.
- 4) Verifica delle CSR uguali alle rispettive concentrazioni di saturazione (Csat) mediante applicazione dell'analisi di rischio in modalità diretta.

Le informazioni inerenti il calcolo del rischio o degli obiettivi di bonifica sito-specifici (CSR) devono essere riportate nell'allegata SCHEDA 6.

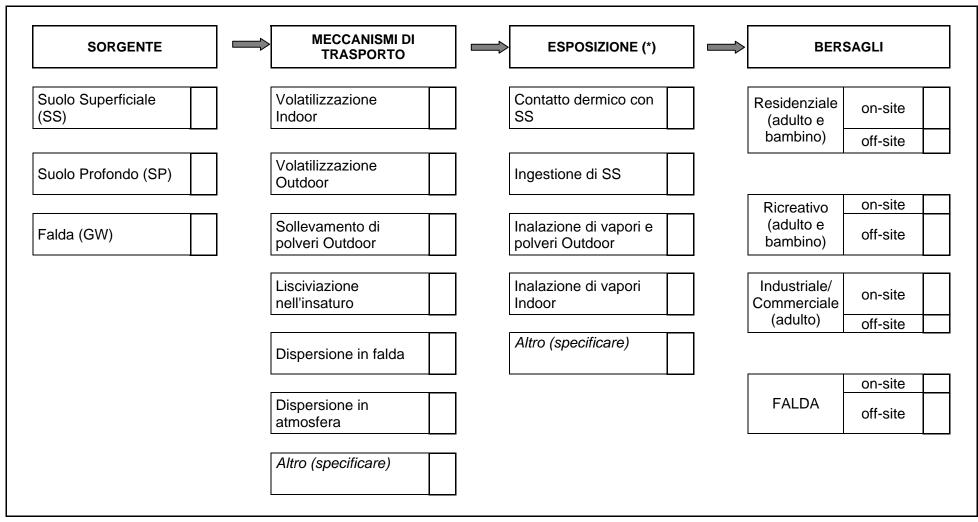
SEZIONE 7: Parametri di input

Allo scopo di facilitare la valutazione dei parametri di input, riportati dal proponente, di cui alle precedenti sezioni, si suggerisce di compilare le tabelle 3.1 e 5.1.

NOMENCLATURA

Simbolo	Parametro	Unità
Α	Area della sorgente (rispetto alla direzione del flusso di falda)	cm²
A'	Area della sorgente (rispetto alla direzione prevalente del vento)	cm ²
A _b	Superficie totale coinvolta nell'infiltrazione	cm²
$\alpha_{\mathbf{x}}$	Dispersività longitudinale	cm
α_{y}	Dispersività trasversale	cm
α_z	Dispersività verticale	cm
b _{sw}	Altezza idrometrica	m
D	Spessore di suolo superficiale	cm
d	Spessore della sorgente nel suolo superficiale (insaturo)	cm
$d_{\mathbf{a}}$	Spessore della falda	cm
D_a	Coefficiente di diffusione in aria	cm²/s
D_s^{eff}	Coefficiente di diffusione effettiva nella zona vadosa	cm²/s
D_{crack}^{eff}	Coefficiente di diffusione effettiva nelle fenditure fondazioni	cm²/s
D_{cap}^{eff}	Coefficiente di diffusione effettiva nella zona capillare	cm²/s
δ_{air}	Altezza della zona di miscelazione in aria	cm
δ_{gw}	Spessore della zona di miscelazione in falda	cm
Δp	Differenza di pressione tra indoor e outdoor	g/(cm*s²)
d _s	Spessore della sorgente nel suolo profondo (insaturo)	cm
$d_{\rm sw}$	Spessore della falda	cm
D_{w}	Coefficiente di diffusione in acqua	cm²/s
D_{ysw}	Coefficiente di dispersione laterale	m/s
ER	Tasso di ricambio di aria indoor	1/giomo
foo	Frazione di carbonio organico nel suolo insaturo e saturi	adim.
focs	Contenuto di carbonio organico nei sedimenti	adim
Frac	Frazione di volume di controllo per la miscelazione	adim
η	Frazione areale di fratture	adim.
η_{out}	Frazione areale di fratture nel pavimento outdoor (*)	adim.
Н	Costante di Henry	adim.
h_{cap}	Spessore frangia capillare	cm
h_{gw}	Potenziale idraulico della falda	cm
$h_{\rm sw}$	Potenziale idraulico del corpo idrico	cm
$h_{\rm v}$	Spessore della zona insatura	cm
i	Gradiente idraulico	adim.
I_{of}	Infiltrazione efficace	cm/anno
İsw	Cadente piezometrica tra falda e pelo libero del c.i.s.	adim

Simbolo	Parametro	Unità
$k_{\circ \circ}$	Coefficiente di ripartizione carbonio-acqua	I/kg
K_{ow}	Coefficiente di ripartizione ottanolo-acqua	I/kg
K_{sat}	Conducibilità idraulica del terreno saturo	cm/annc
K_{v}	Permeabilità del suolo al flusso di vapore	cm ²
1	Coefficiente di degradazione del primo ordine in acque sott.	1/giorno
l_{sw}	Coefficiente di degradazione del primo ordine in acque sup.	1/giorno
L _b	Rapporto tra volume indoor ed area di infiltrazione	cm
L_{GW}	Profondità del piano di falda	cm
L_{crack}	Spessore delle fondazioni/muri	cm
$L_{\rm f}$	Profondità della base della sorgente rispetto al p.c.	cm
L_{F}	Soggiacenza della falda rispetto al top della sorgente	cm
L_p	Distanza fra sorgente in falda e corpo idrico	cm
L_{reach}	Larghezza del plume contaminato	cm
Ls	Profondità del top della sorgente rispetto al p.c.	cm
L_{T}	Distanza tra il top della sorgente e la base delle fondazioni	cm
Даіг	Viscosità del vapore	g/(cm*s)
Pv	tensione di vapore	mmHg
P _e	Portata di particolato per unità di superficie	g/(cm ² -s
Q_{sw}	Portata del corpo idrico superficiale	m³/s
Q_{gw}	Portata della falda	m³/d
$\theta_{\mathbf{a}}$	Contenuto volumetrico di aria	adim.
θ_{acap}	Contenuto volumetrico di aria nella frangia capillare	adim.
θ_{acrack}	Contenuto volumetrico di aria nelle fratture	adim.
$\theta_{\textbf{e}}$	Porosità effettiva del terreno in zona insatura o satura	adim.
$\theta_{\boldsymbol{p}}$	Volume dei pori non interconnessi	adim.
$\theta_{\textbf{r}}$	Contenuto volumetrico di acqua residua	adim.
θ_{T}	Porosità totale del terreno in zona insatura o satura	adim.
$\theta_{\mathbf{w}}$	Contenuto volumetrico di acqua	adim.
θ_{weap}	Contenuto volumetrico di acqua nella frangia capillare	adim.
θ_{wcrack}	Contenuto volumetrico di acqua nelle fratture	adim.
ρ_s	Densità del suolo	g/cm ³


Simbolo	Parametro	Unità
S	Solubilità in acqua	mg/l
$S_d = \delta_{gw}$	Spessore della zona di miscelazione in falda	cm
S_{sw}	Sezione trasversale del corso idrico superificiale	m²
$S_{\rm w}$	Estensione della sorgente nella direzione ortogonale al flusso di falda	cm
S _w '	Estensione della sorgente di contaminazione nella direzione ortogonale a quella principale del vento	cm
σ_{y}	Coefficiente di dispersione trasversale	cm
σ_{z}	Coefficiente di dispersione verticale	cm
τ	Tempo medio di durata del flusso di vapore	anno
τ	Tempo medio di durata del flusso di vapore	anno
U_{air}	Velocità del vento	cm/s
V	Volume del corpo idrico per la miscelazione	m³
Ve	Velocità media effettiva nella falda	cm/anno
v_{gw}	Velocità di Darcy	cm/anno
V_{sw}	Velocità dell'acqua del corso idrico superficiale	m/s
W	Estensione della sorgente nella direzione del flusso di falda	cm
w.	Estensione della sorgente di contaminazione nella direzione principale del vento	cm
W_{sw}	Larghezza del corso idrico superficiale	m
X_{crack}	Perimetro delle fondazioni	cm
Z_{crack}	Profondità delle fondazioni	cm

SCHEDE DI RISCONTRO PER L'ANALISI DI RISCHIO SANITARIO-AMBIENTALE

SCI	HEDA 1: CONTESTO DI A	APPLICAZIONE DELL	L'ANALISI D	I RISC	CHIO	E INFORM	AZIONI DI CARATI	ERE GENERALE	
ldei	ntificativo Area								
Pro	prietà								
Ubi	cazione (Indirizzo)								
CO	MUNE (Provincia)								
Si r	ichiede di indicare:							NOTE (1)	
1.1	Destinazione d'uso de da certificato di destina:	el sito in esame (come zione urbanistica)	residenziale	ind/co	omm	ricreativa			
1.2	Livello di AdR applica	ata al caso specifico	livello 2	(2)	li	vello 3			
1.3	Modalità di applicazio	one dell'AdR	Diretta (calcolo del r		(Ca	nversa Icolo delle CSR)			
1.4	Motivazione dell'appl rischio	licazione dell'analisi di			•				
1.5	Software utilizzate (specificare nome, produttrice)	versione e casa							
1.6	Accreditamento e software utilizzato	la validazione del	SI			NO			

Si ric	hiede di verificare che siano state identificate:		NOTE (1)	
2.1	Tutte le sorgenti di contaminazione	SI	NO	
2.2	Tutti i potenziali meccanismi di trasporto	SI	NO	
2.3	Tutte le potenziali modalità di esposizione	SI	NO	
2.4	Tutti i possibili recettori	SI	NO	

Figura 2.1 - Selezionare (con una croce) sorgenti, trasporto, esposizione e bersagli considerati

^(*) Tra le modalità di esposizione non è compresa l'ingestione di acqua di falda poiché ,nel caso di contaminazione potenziale diretta o indiretta della falda, l'analisi di rischio, applicata secondo il doc. APAT (rev. 1), prevede la stima del rischio per la falda e non per l'uomo

SCH	SCHEDA 3: SORGENTE/I DI CONTAMINAZIONE					
Si ric	chiede di verificare:	NOTE (1)				
3.1	Ubicazione delle sorgenti su apposita planimetria	SI	NO			
3.2	Qualità dei dati misurati relativi alle caratteristiche della sorgente (concentrazione, estensione, risultati di eventuali controanalisi effettuate da Enti di Controllo)	SI	NO			
3.3	Corretta applicazione dei criteri di stima dei parametri geometrici caratteristici del sito (vedi tabella 3.1)		NON conformità doc. APAT			
3.4	Corretta applicazione dei criteri di stima dei parametri geometrici caratteristici delle sorgenti (vedi tabella 3.1)	Conformità doc. APAT (rif. fig. 3.4)	NON conformità doc. APAT			
3.5	Validità dei criteri di suddivisione in subaree del sito (nel caso in cui si sia proceduto ad essa)	Conformità doc.	NON conformità doc. APAT			
3.5.1	Disomogeneità delle caratteristiche geologiche ed idrogeologiche all'interno dell'area perimetrata		NO			

3.5.2	Differenziazione di tipologia ed origine della contaminazione all'interno dell'area perimetrata		NO	
3.5.3	nella tipologia dei ricettori esposti.	SI	NO	
3.6	Validità dei criteri di stima della concentrazione rappresentativa alla sorgente (CRS)	Conformità doc. APAT (rif. fig. 3.5)	NON conformità doc. APAT	
3.6.1	Suddivisione dei dati in relazione ad ogni sorgente di contaminazione (SS, SP, GW)	SI	NO	
3.6.2	Campionamento uniformemente distribuito (per ogni sorgente di contaminazione)	SI	NO	
3.6.3	CRS pari alla Cmax se N<10, oppure CRS derivata da analisi statistica se N>10	CRS=C _{max}	Analisi statistica	
3.6.4	Calcolo dell'UCL tramite l'utilizzo del software ProUCL ver. 3.0 (nel caso di CRS derivata da analisi statistica)		NO	
3.7	Utilizzo banca-dati ISS-ISPESL	SI	NO	
3.8	Corretta selezione degli inquinanti indicatori	SI	NO	

SCHE	SCHEDA 4: MECCANISMI DI TRASPORTO						
Si rich	niede di verificare:				NOTE (1)		
4.1	Corretta identificazione di tutte le tipologie di terreno costituenti lo strato insaturo di suolo			NO			
4.2	Corretta identificazione della tessitura per	Determinaz	ione	Stima			
7.2	ogni tipologia di terreno	analitica	a	qualitativa	а		
4.2.1	Corretta selezione della tessitura selezionata come rappresentativa per il SS	SI		NO	(riportare il tipo di tessitura)		
4.2.2	Corretta selezione della tessitura selezionata come rappresentativa per il SP	SI		NO	(riportare il tipo di tessitura)		
4.2.3	Corretta selezione della tessitura selezionata come rappresentativa per la GW	SI		NO	(riportare il tipo di tessitura)		
4.3	Corretta individuazione dei parametri caratteristici del sito (vedi tabella 3.1)	Conformità APAT (rif. 3.7)		NON conformità c APAT	doc.		
4.4	Corretta applicazione dei criteri di stima dei parametri del terreno in zona insatura	Conformità doc. APAT (rif. fig. 3.8)		NON conformità c APAT	doc.		
4.5	Adeguatezza del modello (analitico e/o numerico) utilizzato per la stima dei fattori di trasporto:	Conformità	Livello 2 Conformità		o 3		

4.5.1	LF = fattore di lisciviazione in falda da suolo superficiale e/o profondo		
4.5.2	DAF = fattore di attenuazione in falda		
4.5.3	VFss = fattore di volatilizzazione di vapori outdoor da suolo superficiale		
4.5.4	VFsamb = fattore di volatilizzazione di vapori outdoor da suolo profondo		
4.5.5	VFwamb = fattore di volatilizzazione di vapori outdoor da falda		
4.5.6	PEF = emissione di particolato outdoor da suolo superficiale		
4.5.7	PEFin = emissione di particolato indoor da suolo superficiale		
4.5.8	VFsesp = fattore di volatilizzazione di vapori indoor da suolo		
4.5.9	VFwesp = fattore di volatilizzazione di vapori indoor da falda		
4.5.10	RDF = fattore di migrazione dall'acqua di falda all'acqua superficiale		
4.5.11	ADF = = fattore di dispersione in aria outdoor		

S	SCHEDA 5: BERSAGLI E PARAMETRI DI ESPOSIZIONE						
S	Si richiede di verificare:					NOTE (1)	
5	5.1 Corretta selezione dei valori da attribuire ai fattori di esposizione (vedi tabella 5.1)		ziale	assente			
5	5.2	Corretta identificazione del punto di conformità per la falda	Conformita APAT (pa 4.3)		NON (conformità c. APAT	

SCH	SCHEDA 6: CALCOLO DEL RISCHIO O DEGLI OBIETTIVI DI BONIFICA SITO-SPECIFICI											
Si ri	chiede di verificare:		NOTE (1)									
6.1	Conformità dei valori di accettabilità assunti in relazione al Documento APAT rev 1 (Luglio 2006)		parzia	ale assente								
6.2	Correttezza del criterio di calcolo del rischio individuale dovuto a più vie di esposizione (SS e SP)		1	NON conformità doc. APAT								

6.3	Correttezza del criterio di calcolo del rischio individuale per la risorsa idrica sotterranea (GW) Presenza dei valori di rishio individuale in	APAT (paragr. 4.3)	NON conformità doc. APAT
6.4	relazione ad ogni contaminate e ad ogni modalità di esposizione individuata		NO
6.5	Calcolo delle CSR in corrispondenza ad ogni sorgente di contaminazione identificata	SI	NO
6.6	CSR individuate comportano l'accettabilità del rischio individuale per ogni sorgente di contaminazione		NO
6.7	CSR individuate comportano l'accettabilità del rischio cumulativo per ogni sorgente di contaminazione		NO
6.8	Corretta applicazione dei criteri di calcolo della CSR per la risorsa idrica sotterranea (GW)		NON conformità doc. APAT
6.9	Correttezza, per ogni inquinante, del criterio di cumulo per le diverse modalità di esposizione		NON conformità doc. APAT
6.10	Effettiva conversione della CSR da tal quale a secco per il confronto con le CSC	Conformità doc. APAT (paragr. 4.5)	NON conformità doc. APAT

6.11	Utilizzo della Csat (per il suolo) o della Solubilità (per la falda) come valore di CSR, nei casi in cui le CSR risultino superiori ai suddetti valori di saturazione N.B. Tale circostanza evidenzia la presenza di NAPL.	SI	NO
6.12	Utilizzo delle CSR come obiettivi della bonifica anche nei casi in cui risulta CSR < CSC	SI	NO

⁽¹⁾ La compilazione delle NOTE è particolarmente opportuna nei casi di non conformità, ossia di mancato soddisfacimento dei requisiti specificati.

Il documento APAT "Criteri metodologici per l'applicazione dell'analisi assoluta di rischio ai siti contaminati" fa riferimento al solo livello 2 di analisi.

			Valore di				Stima	diretta (1)	
SIMBOLO	PARAMETRO	UNITA' DI MISURA	default doc. APAT (tab. 5.2)	Necessità di misure sito- specifiche*	Valore Utilizzato	Stima Indiretta	Analisi statistica (N > = 10)	Valore più conservativo (N < 10) (rif. doc APAT - tab. N.9)	NOTE (2)
Parametri	geometrici generali								
L _{GW}	Profondità del piano di falda	cm	300	SI'					
h _{cap}	Spessore frangia capillare	cm	18.8			(3)			
h _v	Spessore della zona insatura	cm	281.2	SI'					
D	Spessore del suolo superficiale	cm	100						
η _{out}	Frazione areale di fratture nel pavimento outdoor	adim.	1						
da	Spessore della falda	cm		SI'					
Geometria	a della sorgente di cor	ntaminazı	ione						

w	Estensione della sorgente nella direzione del flusso di falda	cm	4500	SI'			
S _w	Estensione della sorgente nella direzione ortogonale al flusso di falda	cm	4500	SI'			
A	Area della sorgente (rispetto alla direzione del flusso di falda)	cm ²	20250000	SI'			
w·	Estensione della sorgente di contaminazione nella direzione principale del vento	cm	4500	SI'			
S _w '	Estensione della sorgente di contaminazione nella direzione ortogonale a quella principale del vento	cm	4500	SI'			

	Area della sorgente						
A'	(rispetto alla direzione	cm ²	20250000	SI'			
	prevalente del vento)						
	Profondità del top						
1	della sorgente nel	cm	0	SI'			
L _{s (SS)}	suolo superficiale	CIII	U	31			
	rispetto al p.c.						
	Profondità del top						
L _{s (SP)}	della sorgente nel	cm	100	SI'			
►s (SP)	suolo profondo rispetto	OIII	100	O.			
	al p.c.						
	Profondità della base						
L _f	della sorgente rispetto	cm	300	SI'			
	al p.c.						
	Spessore della						
ds	sorgente nel suolo	cm	200	SI'			
	profondo (insaturo)						
	Spessore della						
d	sorgente nel suolo	cm	100	SI'			
	superficiale (insaturo)						
	Soggiacenza della						
L _F	falda rispetto al top	cm	300	SI'			
	della sorgente						

δ_{gw}	Spessore della zona di miscelazione in falda	cm	200			(4)					
Caratteris	Caratteristiche fisiche del terreno in zona insatura										
ρ_{s}	Densità del suolo	g/cm ³	1.7	SI'							
θτ	Porosità totale del terreno in zona insatura	adim.	0.41								
θ_{e}	Porosità efficace del terreno in zona satura	adim.	0.353								
θ_{w}	Contenuto volumetrico di acqua	adim.	0.103								
θ_a	Contenuto volumetrico di aria	adim.	0.25								
$\theta_{ m wcap}$	Contenuto volumetrico di acqua nelle frangia capillare	adim.	0.318								
θ _{асар}	Contenuto volumetrico di aria nelle frangia capillare	adim.	0.035								

f _{oc}	Frazione di carbonio organico nel suolo insaturo	g-C/g- suolo	0.01	SI'			
l _{ef}	Infiltrazione efficace	cm/anno	30	SI'			
рН	pH del suolo insaturo	adim.	6.8	SI'			
Caratteris	stiche fisiche del terrei	no in zon	a satura				
V _{gw}	Velocità di Darcy	cm/anno	2500	SI'			
K _{sat}	Conducibilità idraulica del terreno saturo	cm/anno		SI'			
i	Gradiente idraulico	adim.		SI'			
V _e	Velocità media effettiva nella falda	cm/anno	7082				
θ_{T}	Porosità totale del terreno in zona satura	adim.	0.41				
θ_{e}	Porosità efficace del terreno in zona satura	adim.	0.353				
f _{oc}	Frazione di carbonio organico nel suolo saturo	g-C/g- suolo	0.001	SI'			

	Dispersività	om	10				
α_{x}	longitudinale	cm	10				
~	Dispersività	cm	3.3				
α_{y}	trasversale	CIII	3.3				
α_{z}	Dispersività verticale	cm	0.5				
рН	pH del suolo saturo	adim.	6.8	SI'			
Caratteris	stiche ambienti outdoo	r					
δ_{air}	Altezza della zona di	cm	200				
Vair	miscelazione	OIII	200				
	Estensione della						
	sorgente di						
w'	contaminazione nella	cm	4500	SI'			
	direzione principale del						
	vento						
	Estensione della						
	sorgente di						
S _w '	contaminazione nella	cm	4500	SI'			
- "	direzione ortogonale a	-					
	quella principale del						
	vento						

A'	Area della sorgente (rispetto alla direzione prevalente del vento)	cm ²	20250000	SI'			
U _{air}	Velocità del vento	cm/s	225	SI'			
σ_{y}	Coefficiente di dispersione trasversale	cm					
σ _z	Coefficiente di dispersione verticale	cm					
τ	Tempo medio di durata del flusso di vapore (RES.)	anno	30				
τ	Tempo medio di durata del flusso di vapore (IND.)	anno	25				
P _e	Portata di particolato per unità di superficie	g/(cm²-s)	6.90E-14				
Caratteris	stiche ambienti indoor						
A _b	Superficie totale coinvolta nell'infiltrazione	cm ²	700000	SI'			
L _{crack}	Spessore delle fondazioni/muri	cm	15	SI'			

	Rapporto tra volume						
L _b	indoor ed area di	cm	200	SI'			
	infiltrazione (RES.)						
	Rapporto tra volume						
L _b	indoor ed area di	cm	300	SI'			
	infiltrazione (IND.)						
n	Frazione areale di	adim.	0.01				
η	fratture	adim.	0.01				
	Contenuto						
$ heta_{wcrack}$	volumetrico di acqua	adim.	0.12				
	nelle fratture						
	Contenuto						
θ_{acrack}	volumetrico di aria	adim.	0.26				
	nelle fratture						
ER	Tasso di ricambio di	1/s	0.00014				
	aria indoor (RES.)	., -					
ER	Tasso di ricambio di	1/s	0.00023				
	aria indoor (IND.)						
	Distanza tra il top della						
L _T	sorgente nel suolo	cm	0 (285)	SI'			
	insaturo (in falda) e la		(200)				
	base delle fondazioni						
Z _{crack}	Profondità delle	cm	15	SI'			
—crack	fondazioni			0.			

Κ _ν	Permeabilità del suolo al flusso di vapore	cm ²	1.00E-08			
Δр	Differenza di pressione tra indoor e outdoor	g/(cm*s²)	0			
$\mu_{ m air}$	Viscosità del vapore	g/(cm*s)	1.81E-04			
	Tempo medio di durata					
τ	del flusso di vapore	anni	25			
	(IND.)					
	Tempo medio di durata					
τ	del flusso di vapore	anni	30			
	(RES.)					
_	Frazione di polvere	مطانعه	4			
Fi	indoor	adim.	1			

- (1) Selezionare (con una croce) il criterio di stima adottato per ogni parametro sito-specifico
- La compilazione delle NOTE è particolarmente opportuna nei casi di non conformità, ossia di mancato soddisfacimento dei requisiti specificati.
- (3) in tal caso, indicare la conformità con la tab. 3.1-2 del doc. APAT (in caso contrario specificare nelle NOTE la validità del rif. adottato)
- in tal caso, indicare la conformità con i criteri del doc. APAT: eq. 3.1.5 e 3.1.6 pag. 31 (in caso contrario specificare nelle NOTE la validità del rif. adottato)

FATTORI DI ESPOSIZIONE (1)	Simbolo	Unità di Misura	Residenziale Default doc. APAT (rif. Tab. 3.4-3)		Ricreativo Default doc. APAT (rif. Tab. 3.4-3)		Com/Ind Default doc. APAT (rif. Tab. 3.4-3)	Valore utilizzato	Conformità documento APAT		NOTE (2)
			Adulto	Bambino	Adulto	Bambino	Adulto		SI	NO	
Fattori comuni a tutte le modalità di esposizione											
Peso corporeo	BW	kg	70	15	70	15	70				
Tempo medio di esposizione per le sostanze cancerogene	ATc	anni	70	70	70	70	70				
Tempo medio di esposizione per le sostanze non cancerogene	ATn	anni	ED	ED	ED	ED	ED				
Inalazione di Aria Outdoor (AO)											
Durata di esposizione	ED	anni	24	6	24	6	25				
Frequenza di esposizione	EF	giorni/anno	350	350	350	350	250				
Frequenza giornaliera di esposizione outddor	EFgo	ore/giorno	24	24	3	3	8				
Inalazione outdoor	Во	m³/ora	0,9 (^b)	0,7 (^b)	3,2	1,9	2,5 (°)				
Frazione di particelle di suolo nella polvere	Fsd	adim.	1	1	1	1	1				
Inalazione di Aria Indoor (AI)											
Durata di esposizione	ED	anni	24	6			25				
Frequenza di esposizione	EF	giorni/anno	350	350			250				

Frequenza giornaliera di esposizione indoor	EFgi	ore/giorno	24	24			8				
Inalazione indoor (**)	Bi	m³/ora	0.9	0.7			0,9 (°)				
Frazione indoor di polvere all'aperto	Fi	adim.	1	1			1				
Contatto dermico con Suolo (SS)											
Durata di esposizione	ED	anni	24	6	24	6	25				
Frequenza di esposizione	EF	giorni/anno	350	350	350	350	250				
Superficie di pelle esposta	SA	cm ²	5700	2800	5700	2800	3300				
Fattore di aderenza dermica del suolo	AF	mg/(cm ² giorno)	1	1	1	1	1				
Fattore di assorbimento dermico	ABS	adim.	0,1 / 0,01(^d)								
Ingestione di Suolo (SS)											
Durata di esposizione	ED	anni	24	6	24	6	25				
Frequenza di esposizione	EF	giorni/anno	350	350	350	350	250				
Frazione di suolo ingerita	FI	adim.	1	1	1	1	1				
Tasso di ingestione di suolo	IR	mg/giorno	100	200	100	200	50				

- (1) Non sono riportati i fattori di esposizione associati alla ingestione di acqua potabile, poiché in tal caso è necessario stimare direttamente il rischio per la risorsa idrica sotterranea
- (2) La compilazione delle NOTE è particolarmente opportuna nei casi di non conformità, ossia di mancato soddisfacimento dei requisiti specificati.
- (b) In caso di intensa attività fisica, in ambienti residenziali outdoor, si consiglia l'utilizzo di un valore maggiormente conservativo, pari a 1,5 m³/ora per gli adulti, e di 1,0 m³/ora per i bambini.
- (c) Il tasso di inalazione pari a 0,9 m³/ora è da utilizzare nel caso di attività sedentaria; mentre, nel caso di attività moderata o di dura attività fisica è più opportuno utilizzare un valore rispettivamente pari a 1,5 o 2,5 m³/ora.

- (d) Tale parametro è una proprietà specifica della specie chimica esaminata. Nonostante ciò, alcuni testi come anche il Manuale Unichim, propongono di associare a tale parametro un valore pari a **0,1** per le sostanze organiche e pari a **0,01** per le sostanze inorganiche.
 - * I dati relativi alle caratteristiche fisiche dei terreni dovranno essere determinati su almeno tre campioni rappresentativi di ciascun strato omogeneo (top soil, materiale di riporto, insaturo, saturo), distinguendo tra i vari litotipi presenti.

Bibliografia

APAT (2006): "Criteri metodologici per l'applicazione dell'analisi assoluta di rischio ai siti contaminati", rev 1, www.apat.it

U.S. EPA (2001) "RAGS: volume 3 PART A-Process for Conducting Probabilistic Risk Assessment_Appendix A)".

U.S. EPA (2001) "Risk Assessment Guidance for Superfund: volume 1; Human Health Evaluation Manual (PART E, Supplemental Guidance for Dermal Risk Assessment)", EPA/540/R/99-005, OSWER9285.7-02EP,PB 99-963312.