ISPRA WORKSHOP Reference Materials: Looking forward ISPRA Rome, 25 June 2009

Development of reference materials for national QA programme in radioactivity measurements

P. De Felice ENEA – National Institute for Ionising Radiation Metrology pierino.defelice@enea.it

INMRI : ENEA

NATIONAL QA PROGRAMME

The National radioactivity surveillance network

□ In Italy the control of radioactivity in foodstuffs and environment is carried out by a national radioactivity surveillance network

□ The network is coordinated by the ISPRA APAT (Italian Environmental Protection Agency)

National QA Program (QAP)

- Regards the national network for environmental radioactivity surveillance
- □ To achieve and maintain an adequate and uniform reliability level of the network for each measurement condition
- Established since 1983
- Carried out by ENEA-INMRI under request of the National Agency for Environmental Protection (APAT)
- Based on periodical calibration and intercomparison campaigns
- Main objects: Beta counting and γ-ray spectrometry in environmental samples
- Effective in reducing to about 10% the maximum deviation of the results among the network laboratories

QAP general objectives:

- a) to assure <u>traceability</u> of measurement results of the network laboratories to the national standards of radionuclide activity
- b) to assure a uniform level of <u>accuracy</u> for the measurements performed by all network laboratories

QAP Procedures

These general objectives are fulfilled respectively by periodical <u>calibration</u> and <u>intercomparison</u> campaigns.
 The calibration campaigns are carried out in specific measurement conditions.

The intercomparison campaigns are needed to assess the main sources of error in measurement procedures and perform consequent actions for accuracy improvement.

QAP Participants

- Participants in the QAP were the laboratories belonging to the radioactivity surveillance network
- Total number of participants ranging from 10 to
 50

Organisational aspects of the QAP

Standard sources and calibration certificates
Technical guides
Detailed questionnaire for results
Extensive use of E-mail
Participants were given closed codes
Bilateral meetings with each participant
General meeting for results presentation

Gamma intercomparison 1997: two typical good results

Gamma intercomparison 1997: detection of systematic errors (coincidence summing effect)

Gamma intercomparison 1997: errors due to spectral deconvolution

INMRI : ENEA

STANDARD SOURCES FOR THE QA PROGRAMME

Standard sources for the QA programme of radioactivity surveillance network

- □ The radioactive sources needed for the different phases of the QAP were prepared by the INMRI-ENEA.
- A large number of different types of standard sources were needed to take into account the large variability of matrices routinely measured by the network laboratories.
- Paper filters, liquid solutions and point sources were the main source geometries considered for beta and gamma measurements.

Mission of the INMRI-ENEA: the Italian Primary Metrology Institute for ionizing radiation quantities

1- Development of national standards
2- Certification and accreditation of calibration centers
3- Standardization of measurement methods

International traceability

International traceability and equivalence are established by:

□ <u>International comparisons</u>:

- organised by the "Bureau International des Poids et Mesures" (BIPM)
- International reference system (SIR-BIPM)
- Regional Metrology Organisations (EUROMET,...)

□ <u>Bilateral comparisons between NMI's</u>

ENEA-INMRI primary standards for radionuclide metrology

Physical quantity	Radiation type	Measurement method	Measuring interval	<mark>uc</mark> (1σ, %)
activity	β - γ α - γ x - γ	4πβ–γ Coincidence counting	1 ÷ 20 kBq	0.1 ÷ 2
activity	γ - γ	Sum-peak counting	1 ÷ 20 kBq	0.5 ÷ 3
activity	γ, β, α	4π counting	1 ÷ 20 kBq	0.5 ÷ 5
activity	α, γ (222 <mark>Rn)</mark>	222 _{Rn -} 226 _{Ra} separation	1 ÷ 20 kBq	1
Surface emission rate	β, α, x	2π sr counting	1 ÷ 20 kBq	0.5 ÷ 2

Example: Results of an international comparison on radionuclide activity measurements (Ni-63 and Fe-55)

INMRI : ENEA

ENEA-INMRI secondary standards for radionuclide metrology

Physical quantity	Radiation type	Measurement method	Measuring interval	u _c (1σ, %)
Activity	γ 40 keV ÷ 3 MeV	Well-type ionisation chamber	10 kBq ÷ 20 MBq	0,2 ÷ 3
Activity	γ 40 keV ÷ 3 MeV	HPGe coaxial detector	1 Bq ÷ 100 kBq	0,5 ÷ 5
Activity	γ 3 keV ÷ 3 MeV	HPGe coaxial detector	1 Bq ÷ 100 kBq	0,5 ÷ 5
Activity	γ 30 keV ÷ 3 MeV	HPGe well-type detector	1 Bq ÷ 100 kBq	0,5 ÷ 5
Activity	Χ, γ (²²² Rn)	Nal(TI) well-type detector	1 ÷ 13 kBq	1,2
Surface emission rate	β, α, X > 6 keV	$2\pi sr$ proportional counter	1 ÷ 20 kBq	1

Preparation of standard sources and reference materials by quantitative deposition

- □ Preparation of the master solution
- □ Stabilisation of the master solution (acidification and carrier addition)
- □ Standardisation of the master solution
- □ Dilution by gravimetric/volumetric methods
- □ Preparation of standard sources and reference materials by quantitative deposition of the standardised solution
 - Deposition on solid supports
 - Spiking in acetone bath
 - ☐ Incorporation in resins
 - ☐ Introduction in gel
- □ Characterisation of the standard sources and reference materials (homogeneity, stability and leakage tests)

Standard sources prepared by **ENEA-INMRI** for calibration of radionuclide activity measurment instruments

Source type	Emitted radiations	Activity level
point sources (< 20 mm ²)	β, γ	from 50 Bq to 1 MBq
extended area (10 ÷ 400 cm ²)	α, β, γ	from 50 Bq to 1 MBq
electrodeposited (0,2 ÷ 1 cm ²)	α	from 10 Bq to 5 kBq
gas sources (< 100 cm ³)	γ (222 _{Rn)}	from 1 kBq to 50 kBq
Liquid or solid matrices (1 cm ³ ÷ 100 dm ³)	β, γ	from 1 Bq kg ⁻¹ to 1 MBq g ⁻¹
Marinelli beaker (0,5 ÷ 2 dm ³)	γ	from 1 Bq to 100 kBq
Reference atmosphere $(0,1 \div 1 \text{ m}^3)$	α, β, γ (²²² Rn)	from 1 kBq m ⁻³ to 500 kBq m ⁻³

Geometry of standard sources for efficiency calibration

Standard sources for gamma-ray spectrometry

- Paper filters, liquid solutions, Marinelli beakers, point sources, spiked filters: main source geometries considered for gamma emitting radionuclides.
- <u>Calibration</u> sources mainly prepared with mixtures of single-photon emitters with different and well spaced energy lines (60 keV- 2 MeV).
- Intercomparison sources prepared to simulate experimental difficulties frequently encountered in daily measurement practice such as those due to selfabsorption correction, coincidence summing and spectral deconvolution.

CERTIFIED REFERENCE MATERIALS

Certified Reference Materials

- A special need was expressed by the network laboratories concerning reference materials for gammaray spectrometry with different chemical-physical characteristics.
- ☐ These materials were needed for calibration of spectrometers used for volume source measurements.
- A number of these reference materials was then developed with different density and chemical composition of the materials and different spiking nuclides.

Spiked Reference Materials developed at ENEA-INMRI

Matrix	Density (g/cm ³)	Number of samples
Silice	0.4	2
Kaolin	0.6	2
Zeolite	0.8	2
HCI 0.2 N	1.00	8
Gel	1.00	3
HCI 0.5N	1.004	2
Gel	1.006	2
HCI 1N	1.01	10
HCI 2N	1.03	8
Gel	1.03	3
HCI 0.2 N + KCI	1.05	5
Gel	1.05	3
HCI 4N	1.06	3
Glucose	1.30	2
Soil	1.30	5
Sand	1.60	5
Sand	1.75	5
Simulated filters	-	1
TOTAL	_	71

Example: Low-level mixed nuclide standard solutions

Radionuclide	Activity conc. (Bq/g)	Radionuclide	Activity conc. (Bq/g)
Am-241	1.3	Cs-134	0.7
Cd-109	4.3	Cs-137	0.4
Co-57	0.1	Mn-54	0.4
Ce-139	0.1	Y-88	0.6
Ra-226	0.4	Zn-65	0.7
Ba-133	0.6	Na-22	0.7
Sr-85	0.2	Eu-152	1.1

QC of Spiked Reference Materials

- The QC is based on the comparison of the full-energy-peak efficiency values obtained, for the different samples, on a HPGe γ -ray spectrometer in Marinelli beaker counting geometry.
- The full-energy-peak efficiency values for the different materials were normalised to a reference sample composition (HCl 2N) allowing the reduction of the acceptability criteria on which the QC is based.
- **Two theoretical models, to compute the self-attenuation corrections, were compared obtaining a satisfactory agreement in the considered range of sample parameters.**

Characteristics of the HPGe detector used for characterisation of SRMs

Туре	EG&G Ortec, GEM-15190
Geometry	Closed-End coaxial
Material	HPGe p-type
Energy range	40 - 10000 keV
Crystal radius	25.40 mm
Crystal height	41.2 mm
Core radius	4.65 mm
Core height	27.70 mm
Absorbing layer	2.45 mm Al
Inactive Ge	800 mm
Relative efficiency (NaI)	15%
FWHM	0.9 keV (at 122 keV)
	1.9 keV (at 1332 keV)
Peak to Compton ratio	44:1

Detector geometry

□Needed for calculation of:

Full-energy peak and total efficiencies
 Self-absorption correction

Determined by X-ray radiography

Measurement of the linear attenuation coefficient of the matrix

(linear attenuation of a collimated photon beam)

$$\frac{I}{I_0} = \int_0^L e^{-\mu x} dx$$

$$I = I_0 \frac{1 - e^{-\mu L}}{\mu L}$$

Comparison of measured and calculated (X-Com) linear attenuation coefficients (tuff sample)

Self absorbtion correction

(1 L Marinelli Beaker)

Example of homogeneity test of SRMs The relative deviation of the full-energy-peak efficiency values at 59.5 keV (a), 661.7 keV (b) and 1332.5 keV (c), from their respective average values are reported for each sample. The two dashed lines indicate the $\pm 2\sigma$ limit bands.

2004-2005 COMPARISON: SIMULATED AIR FILTERS

The 2004-2005 intercomparison

- 2004-2005 intercomparison campaign carried out for γ-ray spectrometry measurements on spiked simulated filters
- ☐ About 60 sources were prepared and distributed to the participating laboratories
- □ Application of coincident summing and geometry corrections
- □ Determination of the MAR for specific radionuclides and measurement conditions
Source preparation scheme

INMRI : ENEA

Main steps for preparation of the master solution

□ Preparation of single-nuclide standard solutions (Co-57, Cs-134, Cs-137, Co-60, Eu-152) Standardization **Dilution and stabilization** Purity check Preparation of the mixed-nuclide standard solution Quantitative gravimetrical mixing Stabilization Quality control **Calibration**

Main steps for preparation of the "simulated filter" sources

Definition of the spiking geometry (M.C. code simulation) Preparation of sources in the "simulated filter" geometry □ N. 2 sources by gravimetric deposition (Reference set) □ N. 80 sources by volumetric deposition (Working set) □ Source sealing by adhesive paper □ Characterization of the Working set □ Counting the Reference and Working source sets on two measuring systems (HPGe and NaI detectors) Reproducibility check and source selection Calibration of the working set Certification

Deposition of standard solution by gravimetric method with polyethylene picnometer

Deposition of standard solution by volumetric method

Dispenser: Brand Dispensette III (0.05 ml)

Handling

Serial dispensing

The flexible discharge tube with safety handle facilitates serial dispensing. It permits fast and precise dispensing even into narrow test tubes.

Dispensette® III, Analog-adjustable

Capaci ml	ty		Subdivision ml	A* ≤ : %	± µl	CV* ≤ %	μΙ	without SafetyPrime ⁿ recirculation valve Cat. No.	⁴ with SafetyPrime™ recirculation valve Cat. No.
0.05		0.5	0.01	1.0	5	0.2	1	4700 100	4700 101
0.2	-	2	0.05	0.5	10	0.1	2	4700 120	4700 121
0.5	-	5	0.1	0.5	25	0.1	5	4700 130	4700 131
1	-	10	0.2	0.5	50	0.1	10	4700 140	4700 141
2.5	-	25	0.5	0.5	125	0.1	25	4700 150	4700 151
5	-	50	1.0	0.5	250	0.1	50	4700 160	4700 161
10	- 1	100	1.0	0.5	500	0.1	100	4700 170	4700 171

Deposition of master solution with polyethylene picnometer

The Working and Reference Sets of standard air filter sources

Source counting

	HPGe-coa	ax				Nal Well					RATIO	S
	ALL		SELECTED			ALL		SELECTED				
		Deviation		Deviation			Deviation		Deviation			
	Net count	from	Net count	from	Mass of	Net count	from	Net count	from	Mass of	Nal to	HPGe to
	rate (s-1)	average	rate (s-1)	average	solution (g)	rate (s-1)	average	rate (s-1)	average	solution (g)	HPGe	Nal
		(%)		(%)			(%)		(%)			
AVERAGE	71,50	0,00	70,61	0,00	0,1930	228,32	0,00	226,14	-0,95	0,1930	3,20	0,31
ST.Dev	2,22	3,11	0,86	1,22	0,0060	6,59	2,89	3,67	1,61	0,0056	0,05	0,00
ST Dev (%)	3,1	76	1,2	55	3,1	2,9	70	1,6	-168,4	2,9	1,5	1,5
Min	67	-6	69	-2.26	0 1817	216	-6	54 217	-5	0 1824	12	12
Max	80	12	73	2.84	0.2156	254	11	235	3	0.2150		
Max-Min (%)	17	598	5	1749	17	16	576	8	-871	16		
Background	1,549				0.450	15,550				0.450		
Ref source n. 1	56,009				0,150	1/8,06/				0,150		
R0/m0 1 (1/sg)	51,725				372 30	105,707				1183 64		
R0/m0 2 (1/sq)					368.80					1181.95		
AVERAGE (1/sg)					370,55					1182,80		
Dev (%)					-0,951					-0,143		
				ST. Dev of the		ALL 2.19/	SELECTED					
				from variance	(Nal)	3,1%	1,1%					

2,0%

0,9%

from covariance (HPGe, Nal)

INMRI ENEA	IN	MRI	ENEA
------------	----	-----	------

Technical specification of the "Simulated filter" sources

- **Support:** polystyrene disc with aluminium ring
- □ Radionuclides: Co-57, Cs-134, Cs-137, Co-60, Eu-152
- \Box Disk thickness: 0,30 ± 0,05 mm
- □ N° of drops dispensed: 19
- □ Spiking pattern: Reproducible pentagonal grid
- \square Average diameter of active deposit: $34 \pm 1 \text{ mm}$
- □ Standard deviation of activity values: 1,5 %

□ Calibration combined std uncertainty: 2-3 % (10 % per Co-57)

- \square Uniformity of radioactive deposit: ± 5 %
- □ Source stability > 99% (6 months)
- □ Radionuclidic impurity < 0,01%

THE 2004-2005 INTERCOMPARISON

Participants (2004-2005)

APAT	Ξ
APPA BOLZANO	Ξ
APPA TRENTO	Ξ
ARPA CALABRIA	Ξ
ARPA CAMPANIA	Ξ
ARPA EMILIA-ROMAGNA	Ξ
ARPA FVG	Ξ
ARPA LIGURIA	Ξ
ARPA LOMBARDIA BERGAMO	Ξ
ARPA LOMBARDIA CREMONA	Ξ
ARPA LOMBARDIA MILANO	Ξ
ARPA MARCHE	Ξ
ARPA MOLISE	Ξ
ARPA PIEMONTE ALESSANDRIA	Ξ
ARPA PIEMONTE TORINO	Ξ
ARPA PIEMONTE VERCELLI	Ξ
ARPA SARDEGNA SASSARI	Ξ
ARPA TOSCANA	Ξ
ARPA UMBRIA	Ξ
ARPA VALLE D'AOSTA	Ξ
ARPA VENETO BELLUNO	Ξ
ARPA VENETO PADOVA	Ξ
ARPA VENETO VENEZIA	Ξ
ARPA VENETO VERONA	Ξ
ARPA VENETO VICENZA	Ξ
ARTA ABRUZZO	Ξ
AULSS 12 - VENEZIANA	0
C.I.S.A.M Pisa	0

C.R.I. ROMA	Ε
C.R.R. BARI	Ξ
C.R.R. PALERMO	Ε
C.R.R. SARDEGNA	Ε
Commissione Europea-C.C.R. Ispra	0
ENEA C.R. CASACCIA	0
ENEA C.R. FRASCATI	0
ENEA C.R. SALUGGIA	0
ENEA C.R. TRISAIA	0
ENEA Fis-Ing C.R. BRASIMONE	0
ICIS-CNR PADOVA	0
INFN-LNF	0
ISPESL	0
IZS PUGLIA E BASILICATA	0
IZSLT ROMA	0
LENA - PAVIA	0
SOGIN CAORSO	0
SOGIN GARIGLIANO	0
SOGIN LATINA	0
SOGIN TRINO	0
UNIVERSITA' CATT. PIACENZA	0
UNIVERSITÀ DI BOLOGNA	0
UNIVERSITA' DI CAGLIARI	0
UNIVERSITA' NAPOLI-Sede Caserta	0
UNIVERSITA' NAPOLI-Sede Napoli	0
UNIVERSITA' PERUGIA	0
UNIVERSITA' POLITECNICO MILANO	0

Total number of participants: 55

Critical aspects to be considered by participants

Low radionuclide activities
Non standard source geometry
Coincident summing nuclides
Spectral multiplets: 121.78 keV (¹⁵²Eu) – 122.06 keV (⁵⁷Co)
Count rate of 136 keV (⁵⁷Co) peak at very low level

Typical spectrum with P-type HPGe detector

Typical spectrum with P-type HPGe detector

Measurement instruments

Codice	RIVELATORE	TIPO	GEOM	Eff. Rel.	Vol. sensibile	Codice	RIVELATORE	TIPO	GEOM	Eff. Rel.	Vol. sensibile
				(70)	(cm3)					(70)	(cm3)
1,0	HPGe	Р	COAX	28,5%	137	34,0	HPGe	P(*)	COAX	59,5%	
2,0	HPGe	Р	COAX	32,6%	144	35,0	HPGe	Ρ	COAX	28,0%	
4,0	HPGe	Р	COAX	28,0%	148	36,0	HPGe	Ρ	COAX	20,0%	110
5,0	HPGe	Р	COAX	21,6%	104	37,1	HPGe	Ρ	COAX	29,9%	
6,0	HPGe	Р	COAX	28,0%	159	37,2	HPGe	Ρ	COAX	26,9%	
8,0	HPGe	Р	COAX	25,0%	90	38,0	HPGe	Ρ	COAX	30,0%	140
9,0	HPGe	Р	COAX			39,0	HPGe	Р	COAX	25,0%	133
10,0	HPGe	Р	COAX	25,0%	134	40,0	HPGe	Ρ	COAX	25,0%	142
11,0	HPGe	Р	POZZ.	27,8%	120	41,0	HPGe	Ρ	COAX	70,0%	336
12,0	HPGe	Р	COAX	32,5%	139	42,0	HPGe	Р	COAX	25,0%	140
13,0	HPGe	Р	COAX	25,0%		43,0	HPGe	Р	COAX	28,0%	147
14,0	HPGe	Р	COAX	30,0%	100	44,0	HPGe	Ρ	COAX	33,0%	155
16,0	HPGe	Р	COAX	30,0%	169	45,1	HPGe	Ν	COAX	36,0%	198
17,0	HPGe	Р	COAX	28,0%	153	45,2	HPGe	Р	COAX	26,5%	144
18,0	HPGe	Р	COAX		105	45,3	HPGe	Ν	COAX	40,0%	211
19,0	HPGe	Р	COAX	30,1%	130	46,0	HPGe	Ν	COAX	50,2%	223
21,0	HPGe	Р	COAX	44,3%	61	47,0	HPGe	Р	COAX	30,0%	129
22,0	HPGe	Р	COAX	25,0%		48,1	HPGe	Р	COAX	25,0%	139
23,1	HPGe	Р	COAX	28,0%	133	48,2	HPGe	Р	COAX	30,0%	163
23,2	HPGe	Р	COAX	19,0%	102	49,0	HPGe	Р	COAX	55,7%	268
24,0	HPGe	Р	COAX	81,7%		50,0	HPGe	Ν	COAX	24,1%	109
25,0	HPGe	Р	COAX	25,0%	120	51,0	HPGe	Р	COAX	20,0%	86
26,0	HPGe	Ν	COAX			53,1	HPGe	Р	COAX	25,0%	36
27,0	HPGe	Р	COAX	48,0%	194	53,2	HPGe	Р	COAX	25,0%	125
28,0	HPGe	Р	COAX	28,0%	120	54,0	HPGe	Ν	COAX	61,2%	48
30,0	HPGe	Р	COAX	35,0%	217	55,0	HPGe	Р	COAX	43,5%	174
31.0	HPGe	Р	COAX	27.6%	128						

Items Examined in data evaluation

□ Nominal detector efficiency vs detector volume

- Procedures for detector calibration and uncertainties achieved
- □ Coincident-summing correction
- Geometry correction
- **Counting times**
- □ Dead time correction
- □ Energy resolution
- □ Background correction
- □ Counting efficiency
- Nuclide identification
- Accuracy in activity determination (deviation from reference values)
- **MDA**

Example: Dead time analysis

Dead time > 1% (3 results.: Cod. 4 -44 -49)

Example: Energy resolution analysis (1)

Example: Energy resolution analysis (2)

INMRI : ENEA

Conclusions

Average accuracy level within 10-15% (non standard geometry)
Outliers still present
Corrections for coincidence-summing and geometry applied by several participants
MDA not always correctly evaluated

RADON METROLOGY AT ENEA-INMRI

Radon metrology at INMRI-ENEA

- The INMRI-ENEA has been involved since 1990 in research and development of radon measurement standards
- The INMRI-ENEA has set up the experimental equipment for calibration of a large variety of radon measurement instruments

TRACEABILITY of radon calibrations

Ra-226 Reference source

(liquid solution)

Ra-226 Reference Measurement System (ionisation chamber +. HPGe det.)

Ra-226 standard sources

(liquid solution)

Rn-222 Reference Measurement System

(electrostatic cell)

Rn-222 Transfer Measurement System

(NaI well-type detector)

Rn-222 standard sources

(gas source)

Ra-226 standard sources (charcoal matrix)

Rn-222 standard sources (radon-in-water standard)

> Rn-222 Reference Atmosphere (radon chambers)

 EQUIVALENCE of radon calibrations
International comparisons (BIPM, EUROMET) support the equivalence of national standards
EUROMET intercomparison (radon-in-air)

The Rn-222 Reference Measurement System

The Rn-222 Reference Monitor

Schematic picture of the glass bulb used for radon gas sampling

Calibration procedure for radon-inair measurement instruments

Radon activity in gas source is measured by the Rn-222 RMS
Radon is transferred in a closed chamber
The chamber volume is measured
The activity concentration is calculated

DIAGRAM OF THE CALIBRATION CIRCUIT (for passive detectors, continuous/diffusion monitors)

INMRI : ENEA

Main characteristics of the standard atmosphere

Influence parameter	Working interval	Stability (%)
Rn concentration	0,5 kBq m ⁻³ - 5 kBq dm ⁻³	2
Rn activity	0,5-20 kBq	1
Chamber volume	$4 \text{ dm}^3 - 1 \text{ m}^3$	0,5
Temperature	18 - 24 °C	10
Relative Humidity	55 - 65 %	10
Pressure	800 - 1000 mbar	10
Carrier gas	C Air, N_2 , He_2	-
Air particulate	0,4 - 0,9 μ Filtration	20
Exposure duration	1 - 72 h	-
Exposure	0,5 – 1000 kBq h m ⁻³	-

	Standard
Source of uncertainty	unc.
	(%)
Homogeneity	3 7
Air particulate (ref. monitor)	<i>3,2</i> 2,6
All particulate (lef. monitor)	2,0
Gas flow	2,4
Chamber volume	2,1
Radon transfer	2,1
Long term stability (ref. monitor)	2,1
Temperature correction (ref. monitor)	1,5
Pressure correction (ref. monitor)	1,5
Linearity (ref. monitor)	1,5
Relative Humidity correction (ref. monitor)	1,3
Activity measurement	1,2
Counting statistics (ref. monitor)	0,4
Background (ref. monitor)	0,1
Radon decay	0,1

6,8

Combined standard uncertainty

Standard atmosphere: components of the standard uncertainty
RADON-IN-WATER STANDARD

COMPONENTS:
Radon-in-water generator;
Radon-in-water measurement systems:
HPGe gamma-ray spectrometrer
Alpha/beta liquid scintillation counter

Diagram of the radon-inwater generator

Main characteristics of the radon-inwater standard

Radon activity concentration	200 – 10000 Bq/L
Combined standard uncertainty	1.9%
Radium content	<0.1 Bq/L
Volume of solution	10 mL - 4 L

Uncertainty budget of the radon-in-water concentration

Source of uncertainty	Standard uncertainty (%)
Activity of the radium standard source	0.6
Reproducibility	0.8
Radon adsorption	1,0
Counting statistics (gamma-ray spec.)	0.6
Counting statistics (LSC)	1.2
Combined standard uncertainty	1.9

Future developments

 Extensive calibration program
 Intercomparison campaign on radon measurements

Reference materials for Nuclear Medicine 2004-2009

Extensive calibration on radionuclides with short half-life used in Nuclear
 Medicine Department both for diagnostic and therapy: ¹⁸F, ⁶⁴Cu, ¹²⁴I, ^{99m}Tc.

Calibration uncertainty lower than 2,5% (k=1)

Thank you