Dipartimento di Fisica e Astronomia Università di Catania

# TL, OSL ed EPR Tre Metodologie per la Datazione

Sebastiano Olindo Troja

# Datazione assoluta e relativa di sedimenti

## **DATAZIONE ASSOLUTA**

Collocazione di un evento in una scala temporale

## **DATAZIONE RELATIVA**

Ordinamento temporale di un evento rispetto ad uno che lo precede o che lo segue  Una grandezza fisica che vari nel tempo secondo una legge conosciuta e la cui "intensità" sia correlabile al tempo intercorso fra un evento del passato, che si vuole datare, ed il momento in cui viene effettuata la sua misura in laboratorio

## Radioisotopi e datazione

| Elemento<br>progenitore | Tempo di<br>dimezzamento (a) | Elemento figlio | Materiali datati                                                         |
|-------------------------|------------------------------|-----------------|--------------------------------------------------------------------------|
| Carbonio-14             | 5730                         | Azoto-14        | Materiali organici                                                       |
| Uranio-235              | 723 milioni                  | Piombo-207      | Zircone, Uraninite, Pechblenda                                           |
| Potassio-40             | 1.300 milioni                | Argon-40        | Muscovite, Biotite, Orneblenda, Feldspato<br>potassico, Rocce vulcaniche |
| Uranio-238              | 4.510 milioni                | Piombo-206      | Zircone, Uraninite, Pechblenda                                           |
| Torio-232               | 13.900 milioni               | Piombo-208      | Rocce vulcaniche                                                         |
| Rubidio-87              | 47.000 milioni               | Stronzio-87     | Miche, Feldspati potassici, Rocce<br>metamorfiche                        |







## Modello di Mc Keever



- 1 Trappola termicamente instabile
- 2 Trappola termicamente stabile **(TL)**
- 3 Trappola termicamente disconnessa otticamente stimolabile (OSL)
- 4 Centro di ricombinazione LUMINESCENTE
- 5 Centro di ricombinazione NON LUMINESCENTE

$$\frac{dm_4}{dt} = I_{OSL} \Longrightarrow n \ (-\frac{t}{\tau})$$













McKeever, 1985

Determinazione della temperatura equivalente di riscaldamento



campo magnetico (G)





## Assorbimento di dose



|          |                         | <sup>40</sup> K         |                         |                         |
|----------|-------------------------|-------------------------|-------------------------|-------------------------|
| Elemento | Vita Media              | Emissione<br>α<br>(MeV) | Emissione<br>β<br>(keV) | Emissione<br>γ<br>(MeV) |
| K40      | 1.277×10 <sup>9</sup> a | -                       | 583<br>(Ca40)<br>(Ar40) | 1.461                   |

| Catena $^{232}$ Th $\rightarrow ^{208}$ Pb |                         |                                           |                                       |                         |  |  |  |  |  |
|--------------------------------------------|-------------------------|-------------------------------------------|---------------------------------------|-------------------------|--|--|--|--|--|
| Elemento                                   | Vita Media              | Emissione α (MeV)                         | Emissione β <sub>max</sub> (keV)      | Emissione γ (MeV)       |  |  |  |  |  |
| Th232                                      | 1.39×10 <sup>10</sup> a | 4.007<br>3.952<br>3.882                   | stabile                               |                         |  |  |  |  |  |
| Ra228                                      | 5.75 a                  | -                                         | 55                                    |                         |  |  |  |  |  |
| Ac228                                      | 6.13 h                  | -                                         | 2110                                  | 0.338<br>0.911<br>0.969 |  |  |  |  |  |
| Th228                                      | 1.913 a                 | 5.421<br>5.338<br>5.208<br>5.173<br>5.137 | stabile                               |                         |  |  |  |  |  |
| Ra224                                      | 3.66 g                  | 5.684<br>5.447                            | stabile                               |                         |  |  |  |  |  |
| Rn220                                      | 55.6 s                  | 6.296<br>5.761                            | stabile                               |                         |  |  |  |  |  |
| Po216                                      | <b>0.145</b> s          | 6.777                                     | stabile                               |                         |  |  |  |  |  |
| Pb212                                      | 10.64 h                 | -                                         | 580                                   | 0.239                   |  |  |  |  |  |
| Bi212                                      | 60.6 min                | 6.09<br>6.05                              | 2250                                  |                         |  |  |  |  |  |
| Po212                                      | 3.04×10 <sup>-7</sup> s | 8.780                                     | · · · · · · · · · · · · · · · · · · · |                         |  |  |  |  |  |
| T1208                                      | 3.1 min                 |                                           | 1800                                  | 0.583<br>2.615          |  |  |  |  |  |

|                | Cat                          | tena <sup>238</sup> U – | → <sup>206</sup> Pb |                         |                |                                        |                        |                     |                                  |
|----------------|------------------------------|-------------------------|---------------------|-------------------------|----------------|----------------------------------------|------------------------|---------------------|----------------------------------|
|                | Vita Media                   | Emissione<br>α          | Emissione<br>β      | Emissione<br>γ          |                | Cat                                    | ena <sup>238</sup> U – | → <sup>206</sup> Pb |                                  |
|                |                              | (MeV)                   | (keV)               | (MeV)                   |                | Vita Media                             | Emission               | Emissione           | Emissione                        |
| U238           | 4.468 × 10 <sup>9</sup><br>a | 4.195<br>4.147<br>4.038 | stabile             |                         |                |                                        | eα<br>(MeV)            | β<br>(keV)          | γ<br>(MeV)                       |
| Th234          | 24.10 g                      | -                       | 191<br>103          | 0.633<br>0.924<br>0.928 | Bi214          | 19.7 min                               | 5.61                   | 3260                | 0.609<br>1.120<br>1.765<br>2.204 |
| Pa234          | 1.18 min                     |                         | 2290                | 1.001                   |                |                                        |                        |                     | 2.448                            |
|                | 6.7 h                        |                         | 530<br>1130<br>1300 | 1.121<br>1.765          | Po214          | $\frac{1.64\times10^{-4}}{\mathrm{s}}$ | 7.83                   | -                   |                                  |
| U234           | 2.48 ×10 <sup>5</sup> a      | 4.768<br>4.717          | stabile             |                         | Tl210<br>Pb210 | 1.32 min<br>22 a                       | -                      | 2300                |                                  |
| Th230          | 7.52×10 <sup>4</sup> a       | 4.600<br>4.682<br>4.615 | stabile             |                         | Bi210          | 5.02 g                                 | 4.93<br>4.89<br>4.59   | 17<br>64            |                                  |
|                |                              | 4.476                   |                     |                         | Hg206          | 8.6 min                                | -                      | 1300                |                                  |
| Ra226          | 1.6×10 <sup>3</sup> a        | 4.781                   | stabile             | 0.186                   | Po210          | 138.3 g                                | 5.305                  |                     |                                  |
|                |                              | 4.598                   |                     |                         | T1206          | 4.19 min                               |                        | 1520                |                                  |
|                |                              | 4.340<br>4.191          |                     |                         | Pb206          |                                        |                        |                     |                                  |
| Rn222          | 3.824 g                      | 5.486<br>4.983          |                     |                         |                | $\wedge$                               |                        |                     |                                  |
| Po218          | 3.05 min                     | 6.110                   | 330                 |                         |                |                                        |                        |                     |                                  |
| Pb214<br>At218 | 26.8 min<br>2 s              | -<br>6.70<br>6.65       | 1030<br>670         | 0.242<br>0.295<br>0.352 |                |                                        |                        |                     | 18                               |

| Catena $^{235}U \rightarrow ^{207}Pb$ |                       |           |           |           |  |  |  |
|---------------------------------------|-----------------------|-----------|-----------|-----------|--|--|--|
| Elemento                              | Vita                  | Emissione | Emissione | Emissione |  |  |  |
|                                       | Media                 | α         | β         | γ         |  |  |  |
|                                       |                       | (MeV)     | (keV)     | (MeV)     |  |  |  |
| U 235                                 | 7.13 ×10 <sup>8</sup> | 4.391     | stabile   | 0.093     |  |  |  |
|                                       | a                     | 4.361     |           | 0.144     |  |  |  |
|                                       |                       | 4.1-4.6   |           | 0.186     |  |  |  |
|                                       |                       |           |           | 0.241     |  |  |  |
| Th231                                 | 25.64 h               | -         | 300       | 0.093     |  |  |  |
| Pa231                                 | 3.43×10 <sup>4</sup>  | 5.050     | stabile   | 0.243     |  |  |  |
|                                       | a                     | 5.016     |           | 0.341     |  |  |  |
|                                       |                       | 4.999     |           |           |  |  |  |
|                                       |                       | 4.938     |           |           |  |  |  |
|                                       |                       | 4.724     |           |           |  |  |  |
| Ac227                                 | 22 a                  | 4.949     | 46        |           |  |  |  |
|                                       |                       | 4.937     |           |           |  |  |  |
|                                       |                       | 4.866     |           |           |  |  |  |
|                                       |                       | 4.849     |           |           |  |  |  |
| Th227                                 | 18.17 g               | 6.036     | stabile   | 0.235     |  |  |  |
|                                       |                       | 5.976     |           | 0.236     |  |  |  |
|                                       |                       | 5.755     |           |           |  |  |  |
|                                       |                       | altri 9   |           |           |  |  |  |
| Fr223                                 | 21 min                | 5.340     | 1150      |           |  |  |  |
| Ra223                                 | 11.68 g               | 5.745     |           | 0.144     |  |  |  |
|                                       |                       | 5.714     |           | 0.338     |  |  |  |
|                                       |                       | 5.605     |           | 0.609     |  |  |  |
|                                       |                       | 5.538     |           |           |  |  |  |
| At219                                 | 0.9 min               | 6.28      | n.d.      |           |  |  |  |
| Rn219                                 | <b>3.92</b> s         | 6.813     |           |           |  |  |  |
|                                       |                       | 6.547     |           |           |  |  |  |
|                                       |                       | 6.419     |           |           |  |  |  |

| Catena $^{235}U \rightarrow ^{207}Pb$ |                  |                          |                           |                          |  |  |  |  |
|---------------------------------------|------------------|--------------------------|---------------------------|--------------------------|--|--|--|--|
| Element<br>o                          | Vita<br>Media    | Emission<br>e α<br>(MeV) | Emission<br>eβ<br>(keV)   | Emission<br>e γ<br>(MeV) |  |  |  |  |
| Bi215<br>Po215                        | 8 min<br>1.83 ms | -<br>7.384               | n.d.                      |                          |  |  |  |  |
| Pb211                                 | 36.1<br>min      | -                        | 1355<br>951<br>525<br>251 |                          |  |  |  |  |
| Bi211                                 | 2.16<br>min      | 6.617<br>6.273           | n.d.                      | 0.351                    |  |  |  |  |
| Po211                                 | 0.52 s           | 7.434<br>6.895           |                           |                          |  |  |  |  |
| T1207                                 | 4.79<br>min      | -                        | 1440                      |                          |  |  |  |  |
|                                       |                  | Pb207                    |                           |                          |  |  |  |  |



# Raggi cosmici

Principalmente protoni, ma anche e<sup>-</sup>,  $\alpha$ ,  $\gamma$ , neutrini

Interazione con i nuclei delle molecole dell'atmosfera terrestre



Al livello del mare si hanno principalmente muoni, protoni, elettroni, ...

## Metodologia di datazione

**IPOTESI DI APPLICABILITA'** 

Se il numero di elettroni intrappolati, è proporzionale alla dose ricevuta nel tempo (TL), (OSL), (EPR)

Se Э un evento azzerante : riscaldamento, bleaching solare, formazione del minerale

<u>Se l'irraggiamento naturale è continuo e costante</u>

## Datazione TL, OSL e EPR

Inclusioni cristalline che mantengono la loro dose geologica (tipicamente carbonati quali speleotemi, gusci di conchiglie.....)



Età = Intervallo di tempo formazione del minerale/misura



Età = Intervallo di tempo bleaching/misura



Catena dell'uranio 238 (semplificata) in equilibrio secolare



Catena del torio 232 (semplificata) in equilibrio secolare

Problema

## Differenze chimiche fra i diversi elementi delle catene

Disequilibrio

## Calcolo della Dose Annua

$$D_{a} = D_{int} + D_{ext} = (D_{\alpha} + D_{\beta} + D_{\gamma})_{int} + (D_{\alpha} + D_{\beta} + D_{\gamma})_{ext} + D_{cosm}$$

|                           | $D_{lpha}$ (Gy/ka) | D <sub>β</sub> (Gy/ka) | D <sub>γ</sub> (Gy/ka) |
|---------------------------|--------------------|------------------------|------------------------|
| <sup>238</sup> U (1ppm)   | 0.218              | 0.146                  | 0.113                  |
| <sup>232</sup> Th (1 ppm) | 0.061              | 0.027                  | 0.048                  |
| <sup>40</sup> K (1 %)     | _                  | 0.782                  | 0.243                  |

(Adamiec and Aitken, 1998)

# Disequilibrio



# Disequilibrio



**+**Spettrometria  $\alpha \epsilon / o \gamma$  ad alta risoluzione per valutare correttamente la dose annua ricevuta dal campione

#### Thorium





Dose annua

tempg<sub>0</sub>



## Correzioni alla dose annua



## Calcolo della Dose annua

$$D_a = D_{int} + D_{ext} = (D_{\alpha} + D_{\beta} + D_{\gamma})_{int} + (D_{\alpha} + D_{\beta} + D_{\gamma})_{ext} + D_{cosm}$$

Per campioni di quarzo il contributo della dose interna è trascurabile rispetto a quella esterna (Aitken 1998).

$$D_a = D_{int} + D_{ext} = (D_{\alpha} + D_{\beta} + D_{\gamma})_{ext} + D_{cosm}$$

## Calcolo della Dose annua

$$D_a = D_{int} + D_{ext} = (D_{\alpha} + D_{\beta} + D_{\gamma})_{ext} + D_{cosm}$$

A causa dell'attacco in HF al 40% (coarse grain), uno spessore di circa 20  $\mu$ n per grano viene rimosso, e quindi si può trascurare D $\alpha$ 

$$D_a = D_{int} + D_{ext} = (D_{\beta} + D_{\gamma})_{ext} + D_{cosm}$$

## Calcolo della Dose annua

$$D_a = D_{int} + D_{ext} = (D_\beta + D_\gamma)_{ext} + D_{cosm}$$

 $D\beta$  deve essere corretta tramite un fattore moltiplicativo, detto fattore di attenuazione "f".

$$D_a = D_{int} + D_{ext} = (fD_\beta + D_\gamma)_{ext} + D_{cosm}$$



## **Contributo alla Dose Annua**



## Contributo alla Dose Annua

**COARSE GRAIN ZIRCONE** 



## L'equazione dell'Età FG e CG

Fine grain (fase mista Q ed FK)

(4µm≤Φ≤8µm)

$$Et\hat{a}_{FG} = \frac{P_{FG}}{kD_{\alpha} + D_{\beta} + D_{\gamma} + D_{Cosm}}$$



#### **Dove:**

 $D_{\alpha} e D_{\beta} = dose a e \beta$  (corrette in umidità) campione;  $k = fattore di efficienza delle \alpha rispetto alle \beta;$ f = fattore di attenuazione per quella particolare granulometria. Metodologie di ricostruzione della relazione Intensità vs dose

- ADDED
- REGENERATION
  SAR (Large aliquots, Small aliquots)
  DSAR
  SGR (Single grain)

# Metodo della Added Dose



nel caso di utilizzazione del modello lineare

# Metodo della Regeneration

#### **Emissione OSL naturale e "Rigenerazione"** tramite sorgente $\beta$ calibrata



Determinazione della dose equivalente artificiale  $\beta$  tramite misure OSL col metodo *Regeneration* 



## Quali soluzioni?

Estrazione del quarzo dalla matrice ceramica polytungstato  $2.62 \text{ g/cm}^3 < \rho < 2.67 \text{ g/cm}^3$ 

Misure di OSL su Inclusion Qz

> nat β-2 Gy

> β-4 Gy

β-6 Gy

β-8 Gy β-10 Gy

1. Condizione necessaria  $\rightarrow$  Verifica della purezza del quarzo





### **Calcolo della paleodose**

#### metodo added dose

#### metodo regeneration





## ED frequency (MPA5)



## ED Radial Plot (MPA5)



# **ED** determination

# Il sito di Milena



Il sito Neolitico



#### Il sito del Bronzo

# Datazione del comprensorio di Milena



#### Età ottenute mediante TL per i vari siti del comprensorio



Confronto tra la datazione TL del comprensorio di Milena e quelle ottenute con altri metodi per siti siciliani coevi

# La chiesa della Calispera





• BACINO del CRATI (Calabria)





Carta geologica e morfologica dell'area di Tarsia



Profilo geologico dettagliato in cui si osserva lo strato vulcanoclastico intercalato a depositi colluviali.



Profilo geologico dell'area di Tarsia



Colonna stratigrafica di dettaglio dello strato vulcanoclastico dell'area di Tarsia e sue relazioni con i depositi sottostanti e sovrastanti. Le metodologie di datazione possono essere, sulla base della tipologia di campionamento :



| Separated<br>Fraction | Grain size<br>(μm) | $\Delta_{sat}$    | U (ppm)         | Th (ppm)        | K (%)          | Internal K<br>(%) | P(TL)<br>(Gy)     | P(IR-OSL)<br>(Gy) |
|-----------------------|--------------------|-------------------|-----------------|-----------------|----------------|-------------------|-------------------|-------------------|
| Q13                   | 100-300            | 1.06<br>±<br>0.02 | 15.80 ±<br>0.40 | 82.60 ±<br>2.10 | 3.97 ±<br>0.01 | -                 | 531.87 ±<br>40.05 | 364.28 ±<br>31.42 |
| KF13                  | 100-300            | 1.06<br>±<br>0.02 | 15.80 ±<br>0.40 | 82.60 ± 2.10    | 3.97 ±<br>0.01 | $12.74\pm0.64$    | 449.13 ±<br>33.77 | 367.47 ±<br>29.45 |

| Separated<br>Fraction | Grain size<br>(μm) | Ext. Beta<br>(Gy/ka) | Ext.<br>Gamma<br>+ cosmic<br>(Gy/ka)            | Int. beta<br>(Gy/ka) | Total dose<br>rate<br>(Gy/ka) | TL age<br>(ka)  | IR-OSL<br>age (ka) |
|-----------------------|--------------------|----------------------|-------------------------------------------------|----------------------|-------------------------------|-----------------|--------------------|
| Q13                   | 100-300            | 6.51 ±<br>0.23       | $\begin{array}{c} 6.50 \pm \\ 0.26 \end{array}$ | -                    | 13.01 ±<br>0.34               | 40.88 ±<br>3.26 | 28.00 ±<br>2.52    |
| KF13                  | 100-300            | 6.51 ±<br>0.23       | 6.50 ±<br>0.26                                  | $0.60\pm0.02$        | 13.61 ± 0.34                  | 33.00 ±<br>2.62 | 27.00 ±<br>2.27    |

## Scelta dei siti



## Misure sperimentali→ Paleodose

Single-aliquot regenerative-dose protocols (Murray and Wintle, 2000)



## **Capo Vaticano**

Bianca, M., Catalano, S., De Guidi, G., Gueli, A.M., Monaco, C., Ristuccia, G.M., Stella, G., Tortorici, G., Tortorici, L., Troja, S.O., 2011. Luminescence chronology of Pleistocene marine terraces of Capo Vaticano peninsula (Calabria, Southern Italy). Quaternary International 232, 144-121.





## Età dei campioni

| Sample | Elevation<br>(m) | ED<br>(Gy) | U<br>(ppm) | Th<br>(ppm) | K<br>(%)  | D <sub>β</sub><br>(Gy/ka) | D <sub>γamb+cosm</sub><br>(Gy/ka) | AD<br>(Gy/ka) | Età OSL<br>(ka) |
|--------|------------------|------------|------------|-------------|-----------|---------------------------|-----------------------------------|---------------|-----------------|
| VVA    | 380              | 136±8      | 0,78±0,01  | 1,11±0,05   | 0,27±0,01 | 0,32±0,02                 | 0,41±0,03                         | 0,63±0,06     | 214±25          |
| TA     | 560              | 134±7      | 0,84±0,01  | 1,32±0,05   | 0,26±0,01 | 0,33±0,02                 | 0,42±0,03                         | 0,65±0,06     | 207±22          |
| ТС     | 465              | 142±9      | 0,76±0,01  | 1,27±0,05   | 0,35±0,01 | 0,38±0,02                 | 0,43±0,03                         | 0,71±0,06     | 199±21          |
| PA     | 125              | 123±6      | 0,70±0,01  | 1,20±0,05   | 0,30±0,01 | 0,34±0,02                 | 0,41±0,03                         | 0,67±0,06     | 184±20          |
| ТВ     | 52               | 122±6      | 1,12±0,01  | 1,92±0,05   | 0,84±0,01 | 0,80±0,02                 | 0,62±0,03                         | 1,29±0,06     | 94±8            |
| NA     | 50               | 59±4       | 0,73±0,01  | 1,33±0,05   | 0,61±0,01 | 0,57±0,02                 | 0,50±0,03                         | 0,96±0,06     | 62±6            |

| Ftà (ka)-                                                     | ED (Gy)                                                                               |         |
|---------------------------------------------------------------|---------------------------------------------------------------------------------------|---------|
| $\operatorname{Lia}_{\operatorname{CG}}(\operatorname{Ka}) =$ | $1 \cdot \mathbf{D}_{\beta \text{camp}} + \mathbf{D}_{\gamma \text{anb}+\text{cosm}}$ | (Gy/ka) |

| Ordine del terrazzo | Quota inner<br>edge (m) | Stage<br>isotopico | ka  | Sea level<br>corr. |
|---------------------|-------------------------|--------------------|-----|--------------------|
| VII                 | 30-75                   | 3.3                | 60  | +48                |
| VI                  | 45-135                  | 5.1                | 81  | +19                |
| V                   | 50-175                  | 5.3                | 100 | +21                |
| IV                  | 75-285                  | 5.5                | 124 | -6                 |
|                     | 125-370                 | 7.1                | 197 | +10                |
| П                   | 250-500                 | 7.3                | 215 | +4                 |
| I                   | 350-575                 | 7.5                | 236 | +9                 |

## Sant'Agata di Militello



## Età dei campioni

| Sample | Elevation<br>(m) | ED<br>(Gy) | U<br>(ppm) | Th<br>(ppm) | K<br>(%)  | D <sub>β</sub><br>(Gy/ka) | D <sub>γamb+cosm</sub><br>(Gy/ka) | AD<br>(Gy/ka) | Età OSL<br>(ka) |
|--------|------------------|------------|------------|-------------|-----------|---------------------------|-----------------------------------|---------------|-----------------|
| SAM21  | 210              | 176±13     | 0,78±0,02  | 1,11±0,03   | 0,43±0,01 | 0,30±0,01                 | 0,32±0,01                         | 0,62±0,02     | 283±23          |
| SAM23  | 30               | 94±5       | 0,84±0,02  | 1,33±0,04   | 0,75±0,01 | 0,44±0,01                 | 0,36±0,01                         | 0,80±0,02     | 118±8           |



| Ordine del<br>terrazzo | Quota inner edge<br>(m) | Stage isotopico | ka  | Sea level corr. |
|------------------------|-------------------------|-----------------|-----|-----------------|
| V                      | 250-310                 | 9.3             | 330 | +4,68           |
| IV                     | 180-230                 | 8.5             | 288 | -16,88          |
| III                    | 90-160                  | 7.1             | 197 | -9,68           |
| Ш                      | 50-100                  | 5.5             | 124 | +6,30           |
| I                      | 30-50                   | 5.3             | 100 | -23,84          |



## Tassi di sollevamento (mm/a)





#### Sant'Agata di Militello