



maîtriser le risque pour un développement durable

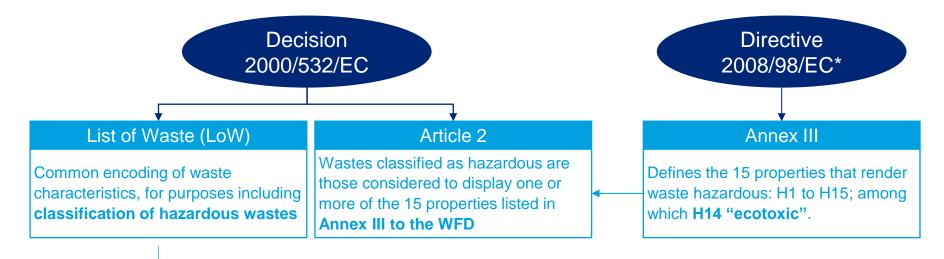
Study to assess the impacts of different classification approaches for hazard property "H 14" on selected waste streams

### Workshop

Brussels, 20th April 2015






## Agenda

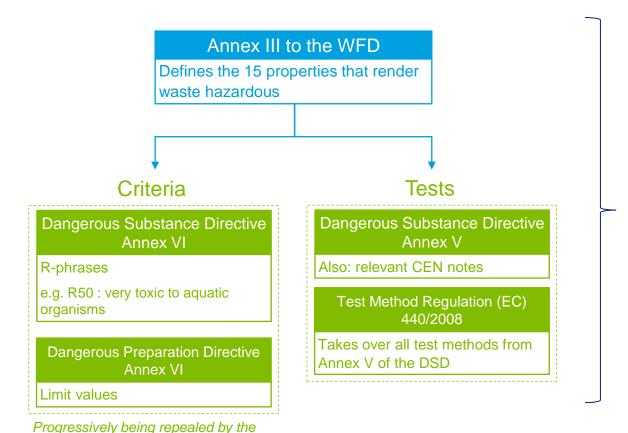
| 09h30 – Context & objectives of the project                     | 3  |
|-----------------------------------------------------------------|----|
| 09h40 – Approaches in nine Member States                        | 8  |
| 10h00 – Questions                                               |    |
| 10h15 – Coffee break                                            |    |
| 10h30 – Calculations methods: results and assessment            | 21 |
| 11h15 – Discussion about the four calculation methods           | 45 |
| 12h00 – Relevance of a combined approach to assess H14 – Debate | 46 |
| 12h45 – Wrap-up of the discussions, conclusions and next steps  | 53 |
| 13h00 – Lunch break                                             |    |

# Part I Context & objectives of the project

Impact assessment of classification methods for HP 14 - Workshop in Brussels, 20th April 2015

## Context of the project Regulatory framework governing classification of waste in the EU




200 waste codes in mirror pairs: the unique basis for choosing the hazardous or non-hazardous entry is **Annex III of the WFD** 

| Definition of mirror pairs:                                         |             |                                                            |
|---------------------------------------------------------------------|-------------|------------------------------------------------------------|
| •                                                                   | Waste codes | Name of waste                                              |
| Pairs of entries of the LoW of which one waste may be               |             |                                                            |
| classified as hazardous or non-hazardous depending on               | 19 01 11*   | Bottom ash and slag containing dangerous substances        |
| the type and concentration of the hazardous substances it contains. | 19 01 12    | Bottom ash and slag other than those mentioned in 19 01 11 |
|                                                                     |             |                                                            |

#### \*The Waste Framework Directive (WFD)

Impact assessment of classification methods for HP 14 - Workshop in Brussels, 20th April 2015

## Context of the project A strong link with chemical legislation



However :

- At EU level, no guidelines or recommendations exist for a specific methodology for the assessment of H 14.
- As a result, H 14 is assessed in different ways throughout Member States.

CLP and REACH Regulation (1st June

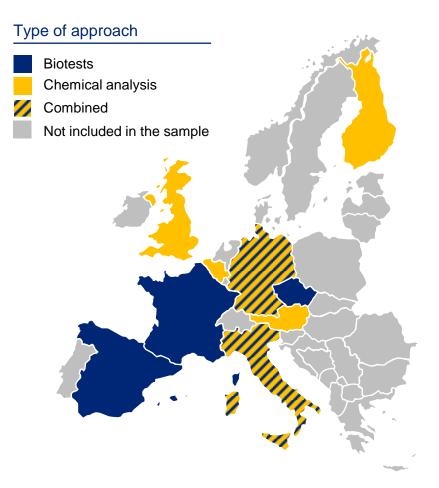
2015)

## Context of the project A need to review and harmonise H 14 approaches

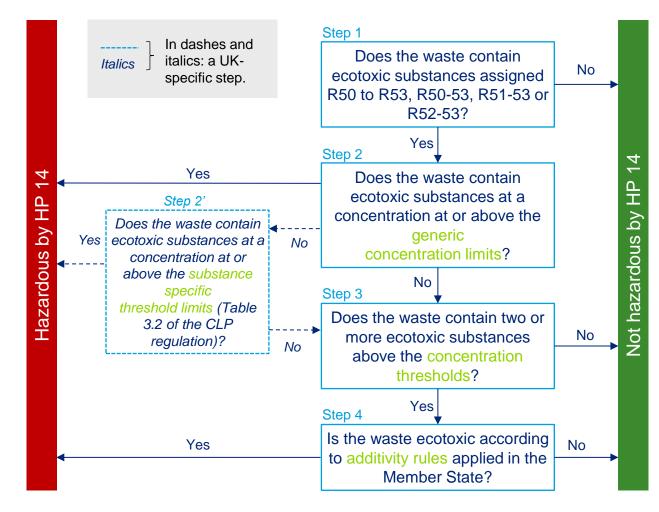
- Review of LoW and WFD in 2008 by a WG : priority on review of hazardous properties
- H-Criteria 1- 15 renamed HP 1-15
- Strict alignment on CLP (concentration limit, M-Factors)

- Issues raised by the alignment on CLP
- Changes in amounts of waste classified as hazardous
- Disagreements on strategy to adopt
- Proposal to ignore concentration limits & M-Factors, or Chronic 3&4 categories
- No agreement reached

## Objectives of the project


- Documenting the strategies of a sample of Member States regarding assessment of HP 14
- Assessing the implications for Member States and the industry of the implementation of 4 different options of calculation methods for HP 14 assessment
  - calculation methods proposed by the Commission based on outcomes of the WG
- The identification of the potential limits of the proposed methodologies and recommendations

## Part II Approaches in nine Member States


Impact assessment of classification methods for HP 14 - Workshop in Brussels, 20th April 2015

## Approaches in nine Member States Overview

|                | Law | Guidelines |
|----------------|-----|------------|
| Austria        | ×   |            |
| Belgium        |     | ×          |
| Czech Republic | ×   | ×          |
| Finland        |     | ×          |
| France         |     | ×          |
| Germany        |     | ×          |
| Italy          | ×   |            |
| Spain          | ×   | ×          |
| UK             |     | ×          |



## Approaches in nine Member States Based on chemical analyses: the DPD as a reference





## Approaches in nine Member States Based on chemical analyses: Member States apply different additivity rules

| Member State(s)       | Conditions                                                                                                                                                                        | Member State(s)                                  | Conditions                                                                                            |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Finland, UK and Italy | $\sum \left( \frac{P_{R50-53}}{0.25} + \frac{P_{R51-53}}{2.5} + \frac{P_{R52-53}}{25} \right) \ge 1$<br>Or<br>$\sum (P_{R50} + P_{R50-53}) \ge 25$<br>Or<br>$\sum P_{R52} \ge 25$ | Germany <sup>1</sup>                             | $\sum (P_{R50-53}) \ge 0.25$<br>Or<br>$\sum (P_{R51-53}) \ge 2.5$<br>Or<br>$\sum (P_{R52-53}) \ge 25$ |
|                       | Or<br>$\sum (P_{R53} + P_{R50-53} + P_{R51-53} + P_{R52-53}) \ge 25$                                                                                                              |                                                  | Or $\sum (P_{R59}) \ge 0.1$                                                                           |
| Belgium               | $\sum (P_{R50-53}) \ge 2.5$<br>Or<br>$\sum (P_{R51-53}) \ge 25$<br>Or<br>$\sum (P_{R50}) \ge 25$<br>Or<br>$\sum (P_{R59}) \ge 0.1$                                                | Where P <sub>RX</sub> is the total concentration | of substances classified as RX, expressed in w/w %.                                                   |

## Approaches in nine Member States Based on chemical analyses: advantages and drawbacks

| Easy and satisfactory for well-defined waste samples.                                                                                                                                                                                                              | Limited information and uncertainties regarding the composition of waste:                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| <ul> <li>Lower cost compared to approaches based or<br/>biotests.</li> </ul>                                                                                                                                                                                       | <ul> <li>heterogeneity of waste samples can make<br/>determination of composition difficult.</li> </ul>   |
| <ul> <li>In particular, strategies based on the DPD are<br/>and align directly with chemical risk phrase<br/>classification systems</li> </ul>                                                                                                                     | <ul> <li>clear</li> <li>o suitable methods to identify organic substances in waste are lacking</li> </ul> |
| <ul> <li>The Austrian strategy, partly based on classific<br/>according to the ADR, is easier to apply than<br/>based approaches and costs less because the<br/>classification according to the ADR is required<br/>anyway if the waste is transported.</li> </ul> | DPD-known leads to an overestimation of theewaste hazard                                                  |
| <ul> <li>Specific advantage of the British strategy: the complete.         <ul> <li>Includes more recent legislation; and</li> <li>Provides a more finely tuned approach.</li> </ul> </li> </ul>                                                                   | most not straightforward and has not been evaluated.                                                      |

## Approaches in nine Member States Based on biotests: batteries (aquatic)

| Organiam              | Ctondord            | Member States |       |       |    |    |    |
|-----------------------|---------------------|---------------|-------|-------|----|----|----|
| Organism              | Standard            | CZ            | FR(i) | FR(h) | ES | DE | IT |
| D. Magna<br>(acute)   | ISO 6341            | х             | х     | х     | х  | х  | x  |
| D. Magna<br>(chronic) | ISO 10706           |               |       |       |    | х  |    |
| V. fischeri           | ISO 11348           |               | х     | x     | x  | x  | x  |
| P.<br>subcapitata     | ISO 8692            |               | х     | х     |    | х  | x  |
| L. minor              | ISO 200795          |               |       |       |    | х  |    |
| S. alba               | Czech<br>guidelines | х             |       |       |    |    |    |
| P. reticulata         | ISO 7346-2          | х             |       |       |    |    |    |
| C. dubia              | ISO 20665           |               | х     |       |    |    |    |
| B.<br>Calicyflorus    | ISO 20666           |               | х     |       |    |    |    |



Impact assessment of classification methods for HP 14 - Workshop in Brussels, 20th April 2015



## Approaches in nine Member States Based on biotests: batteries (aquatic) – example of *D. magna*

#### No harmonisation of thresholds (value and unit).

| Organiam | Ctondord |                          | Member States              |           |           |          |           |
|----------|----------|--------------------------|----------------------------|-----------|-----------|----------|-----------|
| Organism | Standard |                          | FR                         | ES        | DE        | IT       | CZ        |
|          |          | Expression of<br>results | EC50                       |           |           |          |           |
| D. Magna |          | Test duration            | 24h or 48h 48h             |           |           | 8h       |           |
| (acute)  |          | Threshold                | 10mL/L<br>(i.e. 1%<br>v/v) | 10% (v/v) | 10% (v/v) | 750 mg/L | 10% (v/v) |

## Approaches in nine Member States Based on biotests: batteries (terrestrial)

| Organism Chandard      | Member States |    |       |       |    |    |    |
|------------------------|---------------|----|-------|-------|----|----|----|
| Organism               | Standard      | CZ | FR(i) | FR(h) | ES | DE | IT |
| E. fetida<br>(acute)   | ISO 11268-1   |    | х     |       |    | х  |    |
| E. fetida<br>(chronic) | ISO 17512-1   |    |       | x     |    | х  |    |
| L. sativa              | ISO 11269-2   |    | Х     |       |    |    |    |
| A.<br>globiformis      | ISO 18187     |    |       | x     |    | х  |    |
| L. minor               | ISO 200795    |    |       |       |    | х  |    |
| B. rapa                | ISO 11269-2   |    |       | х     |    | х  |    |
| F. candida             | ISO 11267     |    |       |       |    | х  |    |

In Italy and the Czech Republic, members of the scientific community recommend the use of terrestrial tests in the assessment of HP 14.

## Approaches in nine Member States Based on biotests: preparing waste samples

Preparing waste samples is a key step for the assessment of ecotoxicity, as test results can be highly variable depending on the protocol.

| Member State   | Standard     | Scope                           | Description                                                                                                                                                                                                                         |
|----------------|--------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Czech Republic | EN 14735     | raw wastes or water<br>extracts | Necessary steps to be performed before carrying<br>out ecotoxicity tests on wastes: taking of the<br>sample, transport, storage of wastes and to define<br>preparation.                                                             |
| France         | EN 12457 - 2 | water extracts                  | Leaching - Compliance test for leaching of granular<br>waste materials and sludge. One stage batch test<br>at a liquid to solid ratio of 10 l/kg for materials with<br>particle size below 4 mm (without or with size<br>reduction) |
|                | EN 12457 - 2 | water extracts                  | See France                                                                                                                                                                                                                          |
| Germany        | DIN 19528    | water extracts                  | Leaching of solid materials - Percolation method<br>for the joint examination of the leaching behaviour<br>of inorganic and organic substances                                                                                      |
| Italy          | EN 14735     | raw wastes or water extracts    | See Czech Republic                                                                                                                                                                                                                  |
| Spain          | EN 12457 - 2 | water extracts                  | See France                                                                                                                                                                                                                          |

## Approaches in nine Member States

Based on biotests: advantages and drawbacks

|   |                                                                                                                                                                                                                                                                   | <b>—</b>                                                                                                                                                                                                                        |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| • | <ul> <li>Mirror well the effects of:</li> <li>all bioavailable contaminants, including their potential interactions (additive, synergistic and antagonistic);</li> <li>pollutants in complex matrices, which cannot be determined by chemical analysis</li> </ul> | <ul> <li>The lack of legally-fixed and harmonised threshold values.</li> <li>Some hold the view that animal testing of solid wastes raises ethical concerns.</li> <li>Some test batteries only include aquatic tests</li> </ul> |
| • | Are sensitive to many water soluble substances, thus<br>being relevant to the assessment of wastes<br>Test batteries containing only a few assays can be<br>cheap and simple                                                                                      |                                                                                                                                                                                                                                 |
|   |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                 |

## Approaches in nine Member States Combined approaches

In Germany and Italy, assessment of HP 14 follows a **tiered approach**:

 If the composition of the waste sample can be sufficiently known through chemical analysis, then classification according to HP 14 is done following the DPD method



٠

| Italy                                                                                                | Germany                      |
|------------------------------------------------------------------------------------------------------|------------------------------|
| $\sum \left( \frac{P_{R50-53}}{0.25} + \frac{P_{R51-53}}{2.5} + \frac{P_{R52-53}}{25} \right) \ge 1$ | $\sum (P_{R50-53}) \ge 0.25$ |
| Or                                                                                                   | Or                           |
| $\sum (P_{R50} + P_{R50-53}) \ge 25$                                                                 | ∑(P <sub>R51-53</sub> )≥2.5  |
| Or                                                                                                   | Or                           |
| ∑ P <sub>R52</sub> ≥25<br>Or                                                                         | $\sum (P_{R52-53}) \ge 25$   |
| Or                                                                                                   | Or                           |
| $\sum (P_{R53} + P_{R50-53} + P_{R51-53} + P_{R52-53}) \ge 25$                                       | $\sum (P_{R59}) \ge 0.1$     |
|                                                                                                      |                              |

Where  $P_{RX}$  is the total concentration of substances classified as RX, expressed in w/w %.

• If the composition of the waste is unknown or complex, biotests are applied.

| good | l            |
|------|--------------|
| com  | olementarity |

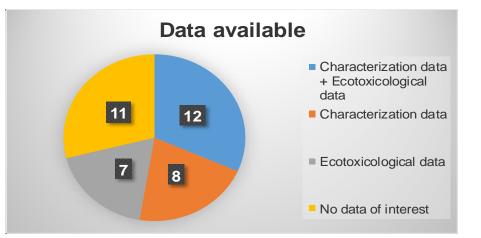
Recently been investigated by researchers as a promising alternative to the status quo regarding the assessment of HP 14 in the EU it has been noticed in the UK that the results of the two approaches (chemical analysis and biotests) are often different and lead to different classification of the waste. Questions

Coffee break

## Part III Calculations methods: results and assessment

Impact assessment of classification methods for HP 14 - Workshop in Brussels, 20th April 2015

## Overview of data sent by the Members states


Six member states have responded positively to our solicitations

| Member<br>states  | Filled<br>database | Reports | Characterization<br>data | Ecotoxic-<br>ological<br>data | Waste code                                                                  |
|-------------------|--------------------|---------|--------------------------|-------------------------------|-----------------------------------------------------------------------------|
| Belgium           |                    | x       | (5)                      |                               | 19 01 12<br>19 01 14                                                        |
| Finland           | х                  |         | (1)                      | Х                             | 19 01 14                                                                    |
| Germany           |                    | x       | (9)                      | Х                             | 08 01 13* 06 05 03<br>19 01 12 12 01 14*<br>19 01 13* 19 10 04<br>19 08 13* |
| Italy             | x                  |         |                          | x                             | 17 05 03* / 17 05 04<br>19 01 11*<br>19 01 13* / 19 01 14                   |
| Sweden            | x                  |         | (6)                      | x                             | 19 01 11* / 19 01 12<br>19 01 13* / 19 01 14                                |
| United<br>Kingdom |                    | x       | (20)                     |                               | 19 01 11* / 19 01 12                                                        |

## Overview of data from publications

#### **Bibliographic data:**

- 18 publications
- 15 reports
- 4 databases
- 1 website



#### Only 11 references report waste code (+ 4 references with probable code identified)

Sludges from paint or varnish 08 01 13\*/08 01 14 (1) Sludges and filter cakes 11 01 09\*/11 01 10 (1) Flue-gas dust 10 03 19\*/10 03 20 (1) Packaging 15 01 10\*/15 01 11 (1) Soil and stones 17 05 03\*/17 05 04 (6) Bottom ash and slag 19 01 11\*/19 01 12 (2) Fly ash 19 01 13\*/19 01 14 (1) Sludges from waste water treatment plants 19 08 11\*/19 08 12 (1) Sludges from other treatment of industrial waste water 19 08 13\*/19 08 14 (1) Bottom ash and slag 19 01 11\*/19 01 12 (5) Other wastes from mechanical treatment of waste 19 12 11\*/19 12 12 (1)

Data from publications/reports: 70 % of references without waste code

## Characterization data collection on the selected pairs

|                                    |                                                                                   | Characterization data (sample) |                        |  |
|------------------------------------|-----------------------------------------------------------------------------------|--------------------------------|------------------------|--|
| Waste code                         | Description                                                                       | Waste code<br>mentionned       | Probable<br>waste code |  |
| 06 05 02* / 06 05 03               | sludges from on-site effluent treatment                                           | 1                              | -                      |  |
| 08 01 13* / 08 01 14               | sludges from paint or varnish                                                     | 3                              | -                      |  |
| 10 03 19* / 10 03 20               | flue-gas dust                                                                     | 1                              | -                      |  |
| 11 01 09* / 11 01 10               | sludges and filter cakes                                                          | 1                              | -                      |  |
| 12 01 14* / 12 01 15               | machining sludges                                                                 | 2                              | -                      |  |
| 15 01 01 / 15 01 02 / 15<br>01 10* | packaging                                                                         | 1                              | -                      |  |
| 17 05 03* / 17 05 04               | soil and stones                                                                   | 3                              | 7                      |  |
| 19 01 11* / 19 01 12               | bottom ash and slag                                                               | 27                             | 9                      |  |
| 19 01 13* / 19 01 14               | fly ash                                                                           | 7                              | -                      |  |
| 19 08 11* / 19 08 12               | sludges from biological treatment of industrial waste water                       | 3                              | 1                      |  |
| 19 08 13* / 19 08 14               | sludges from other treatment of industrial waste water                            | 2                              | -                      |  |
| 19 10 03* / 19 10 04               | fluff-light fraction and dust                                                     | 1                              | -                      |  |
| 19 12 11* / 19 12 12               | other wastes (including mixtures of materials) from mechanical treatment of waste | 1                              | -                      |  |
|                                    |                                                                                   | 57                             | 17                     |  |

## **Difficulties and limitations**

#### Limitations according to characterization data

- Only concentrations of elemental compounds in most of the cases (mainly metallic elements)
- Non exhaustive characterization data
  - Chemical speciation not identified
  - Data on organic compounds rarely available
  - Data for a group of compounds (sum of PAH compounds, nitroaromatic compounds, ...)
  - A significant fraction of the waste could be not identified ( $\approx$  95 to 99.9 % w/w)
  - Only few weight by weight percentage data (mainly mg/kg concentration)

#### Limitations according to waste code identification

- Several characterization data are not associated to a waste code
- Many waste code are possible for a single denomination (e.g. bottom ash)

#### Limitations due to protocols, pre-treatment, test method,...

- Not always mentioned or briefly described
- Characterization data only available on eluate (aqueous extract)

## CLP Regulation (1272/2008/EC)

**Regulation (EC) N°1272/2008** of the European Parliament and of the Council of 16 December 2008 **on classification, Iabelling and packaging of substances and mixtures**, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) N°1907/2006

- Implements Globally Harmonized System (GHS) of classification and labelling in the EU
- To identify all the physical, toxicological and ecotoxicological properties of substances/mixtures as placed on the market (elemental compound was not considered, except for few metals)
- Hazard based only
- Elements of classification
  - Hazard class and category (e.g. Aquatic Acute Toxicity, category 1)
  - Hazard statement (e.g. H400 : Very toxic to aquatic life)
  - M factor
  - GHS Pictogram
- Two kind of classification
  - Harmonized classifications which were adopted by the EU
  - Notified classifications which were proposed by industrial (significant disparity between notifiers)
- Mixtures are always self-classified

## CLP Regulation (1272/2008/EC) Specificity for aquatic environmental hazards of mixtures (M factor)

- Acute 1 and Chronic 1 highly toxic components contribute to the toxicity of the mixture even at a low concentration and shall be given increased weight in classification of mixtures.
- Multiplying factors based on ecotoxicological data (L(E)C50 or NOEC values) are determined
- > M factor is reported, if available, in harmonised and notified classification

| Acute toxicity                    | M factor | Chronic toxicity               | M f                   | actor                             |
|-----------------------------------|----------|--------------------------------|-----------------------|-----------------------------------|
| L(E)C <sub>50</sub> value mg/l    |          | NOEC value mg/l                | NRD (ª)<br>components | RD ( <sup>b</sup> )<br>components |
| $0,1 < L(E)C_{50} \le 1$          | 1        | $0,01 < \text{NOEC} \le 0,1$   | 1                     |                                   |
| $0.01 < L(E)C_{50} \le 0.1$       | 10       | $0,001 < \text{NOEC} \le 0,01$ | 10                    | 1                                 |
| $0,001 < L(E)C_{50} \le 0,01$     | 100      | 0,0001 < NOEC ≤ 0,001          | 100                   | 10                                |
| $0,0001 < L(E)C_{50} \le 0,001$   | 1 000    | 0,00001 < NOEC<br>≤ 0,0001     | 1 000                 | 100                               |
| $0,00001 < L(E)C_{50} \le 0,0001$ | 10 000   | 0,000001 < NOEC<br>≤ 0,00001   | 10 000                | 1 000                             |
| (continue in factor 10 intervals) |          | (continue in facto             | or 10 interval        | s)                                |

(a) Non-rapidly degradable.

(b) Rapidly degradable.

## CLP Regulation (1272/2008/EC) M factor among harmonised classification

| M factor      | Number of compounds |
|---------------|---------------------|
| M = 10        | 69                  |
| M = 100       | 49                  |
| M = 1,000     | 32                  |
| M = 10,000    | 10                  |
| M = 100,000   | 1                   |
| M = 1,000,000 | 1                   |

Entries identified in n°1272/2008/EC regulation and the Adaptations to Technical Progress (ATP 1, 2, 3, 5 and 6) among 4,552 substances with harmonised classification

## Feasibility of the calculation methods

#### Worst case consideration

- Based on the elemental compounds concentrations
  - Selection of the worst case based on harmonized classification
    - ✓ Consideration of the metal classification if available, or,
    - ✓ Consideration of the salt with the most severe classification
  - Difficulties associated to the worst case selection (e.g. lead chromate if only one of these elements is present in the waste)
  - Presence of the salt/compound in a waste lead to higher molecular weight and then higher concentration in the waste
- Probable underestimation : organic compounds not considered, significant fraction of waste not identified
- Only based on harmonized classification
- M factor not always available and mainly based on the soluble fraction
- Hazardous to the ozone layer : hazard rarely identified (only 4 substances with harmonized classification)

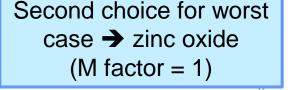
## Example of worst case consideration Harmonised classification for cobalt compounds

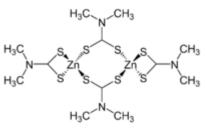
|                                                                                                                         |              |           | -           |                         | -        |   |
|-------------------------------------------------------------------------------------------------------------------------|--------------|-----------|-------------|-------------------------|----------|---|
| Substance                                                                                                               | Index Number | EC Number | CAS Number  | Classification          | M-Factor |   |
|                                                                                                                         | 027-002-00-4 | 215-154-6 | 1307-96-6   | Aquatic Acute 1 H400    |          |   |
| cobalt oxide                                                                                                            | 027-002-00-4 | 215-154-0 | 1201-20-0   | Aquatic Chronic 1 H410  | 10       |   |
|                                                                                                                         | 027-003-00-X | 215-273-3 | 1317-42-6   | Aquatic Acute 1 H400    |          |   |
| cobalt sulfide                                                                                                          | 027-005-00-7 | 213-275-5 | 1317-42-0   | Aquatic Chronic 1 H410  | 10       |   |
|                                                                                                                         | 027-004-00-5 | 231-589-4 | 7646-79-9   | Aquatic Acute 1 H400    |          |   |
| cobalt dichloride                                                                                                       | 027-004-00-5 | 231-369-4 | 7040-79-9   | Aquatic Chronic 1 H410  | 10       |   |
|                                                                                                                         | 027-005-00-0 | 233-334-2 | 10124-43-3  | Aquatic Acute 1 H400    |          |   |
| cobalt sulfate                                                                                                          | 027-003-00-0 | 255-554-2 | 10124-45-5  | Aquatic Chronic 1 H410  | 10       |   |
|                                                                                                                         | 027-006-00-6 | 200-755-8 | 71-48-7     | Aquatic Acute 1 H400    |          |   |
| cobalt acetate                                                                                                          | 027-000-00-0 | 200-755-8 | /1-40-/     | Aquatic Chronic 1 H410  | 10       |   |
|                                                                                                                         | 027-009-00-2 | 233-402-1 | 10141-05-6  | Aquatic Acute 1 H400    |          |   |
| cobalt nitrate                                                                                                          | 027-009-00-2 | 255-402-1 | 10141-05-0  | Aquatic Chronic 1 H410  | 10       |   |
|                                                                                                                         | 027-010-00-8 | 208-169-4 | 513-79-1    | Aquatic Acute 1 H400    |          |   |
| cobalt carbonate                                                                                                        | 027-010-00-8 | 208-109-4 | 515-79-1    | Aquatic Chronic 1 H410  | 10       | - |
|                                                                                                                         | 028-058-00-2 | 442-750-5 | _           | Aquatic Acute 1 H400    |          |   |
| cobalt lithium nickel oxide                                                                                             | 028-038-00-2 | 442-750-5 | _           | Aquatic Chronic 1 H410  | -        |   |
| zinc hexacyanocobaltate(III), tertiary butyl                                                                            | 027-007-00-1 | 425-240-7 | _           |                         |          |   |
| alcohol/polypropylene glycol complex                                                                                    | 027-007-00-1 | 423-240-7 | _           | Aquatic Chronic 2 H411  | -        |   |
| tetrazinc(2+)bis(hexacyanocobalt(3+))diacetate                                                                          | 030-015-00-8 | 440-060-9 | -           | Aquatic Chronic 2 H411  | -        |   |
| reaction mass of: pentasodium bis[6-anilino-3,5'-                                                                       |              |           |             |                         |          |   |
| disulfonatonaphthalene-2-azobenzene-1,2'-                                                                               | 611-177-00-4 | 444-290-0 | 508202-43-5 | Aquatic Chronic 3 H412  |          |   |
| diolato]cobaltate(III)                                                                                                  | 011 1/7 00 4 |           | 500202 45 5 | Aquatic enforme 5 11412 |          |   |
| tetrasodium [6-anilino-3,5'-disulfonatonaphthalene-                                                                     |              |           |             |                         | -        |   |
| cobalt                                                                                                                  | 027-001-00-9 | 231-158-0 | 7440-48-4   | Aquatic Chronic 4 H413  | -        |   |
| complex of cobalt(III)-bis(N-phenyl-4-(5-                                                                               |              |           |             |                         |          |   |
| ethylsulfonyl-2-hydroxyphenylazo)-3-                                                                                    | 027-008-00-7 | 427-390-9 | -           |                         |          |   |
| hydroxynaphthylamide), hydrated (n H2O, 2 <n<3)< td=""><td></td><td></td><td></td><td>-</td><td>-</td><td></td></n<3)<> |              |           |             | -                       | -        |   |
| cobalt nickel oxide                                                                                                     | 028-043-00-0 |           | 12737-30-3  | -                       | -        |   |
| cobalt nickel dioxide                                                                                                   | 028-043-00-0 | 261-346-8 | 58591-45-0  | -                       | -        |   |
| cobalt nickel gray periclase                                                                                            |              |           |             |                         |          |   |
| C.I. Pigment Black 25                                                                                                   | 028-043-00-0 | 269-051-6 | 68186-89-0  |                         |          |   |
| C.I. 77332                                                                                                              |              |           |             | -                       | -        |   |
| cobalt dimolybdenum nickel octaoxide                                                                                    | 028-057-00-7 | 268-169-5 | 68016-03-5  | -                       | -        |   |
|                                                                                                                         |              |           |             |                         |          |   |

## Example of worst case consideration Harmonised classification for zinc compounds

| Substance                                                                                      | Index Number         | EC Number          | CAS Number         | Classification                                 | M-Factor |           |
|------------------------------------------------------------------------------------------------|----------------------|--------------------|--------------------|------------------------------------------------|----------|-----------|
| ziram (ISO)<br>zinc bis dimethyldithiocarbamate                                                | 006-012-00-2         | 205-288-3          | 137-30-4           | Aquatic Acute 1 H400<br>Aquatic Chronic 1 H410 | 100      | Worst     |
| trizinc diphosphide<br>zinc phosphide                                                          | 015-006-00-9         | 215-244-5          | 1314-84-7          | Aquatic Acute 1 H400<br>Aquatic Chronic 1 H410 | 100      | cases     |
| zinc bis(dibutyldithiocarbamate)                                                               | 006-081-00-9         | 205-232-8          | 136-23-2           | Aquatic Acute 1 H400<br>Aquatic Chronic 1 H410 | -        |           |
| zinc bis(diethyldithiocarbamate)                                                               | 006-082-00-4         | 238-270-9          | 14324-55-1         | Aquatic Acute 1 H400<br>Aquatic Chronic 1 H410 | -        |           |
| zinc chloride                                                                                  | 030-003-00-2         | 231-592-0          | 7646-85-7          | Aquatic Acute 1 H400<br>Aquatic Chronic 1 H410 |          |           |
| dimethylzinc                                                                                   | 030-004-00-8         | 208-884-1          | 544-97-8           | Aquatic Acute 1 H400<br>Aquatic Chronic 1 H410 | -        |           |
| diethylzinc                                                                                    | 030-004-00-8         | 209-161-3          | 557-20-0           | Aquatic Acute 1 H400<br>Aquatic Chronic 1 H410 | -        | _         |
| zinc oxide                                                                                     | 030-013-00-7         | 215-222-5          | 1314-13-2          | Aquatic Acute 1 H400<br>Aquatic Chronic 1 H410 | -        | Presence  |
| benzothiazole-2-thiol                                                                          | 613-108-00-3         | 205-736-8          | 149-30-4           | Aquatic Acute 1 H400<br>Aquatic Chronic 1 H410 | -        | zinc      |
| + 9 compou                                                                                     | unds with the same o | lassification (Aqu | atic Acute/Chroni  | c 1 H400 /H410)                                |          | phosphide |
| mancozeb (ISO)<br>manganese ethylenebis(dithiocarbamate)<br>(polymeric) complex with zinc salt | 006-076-00-1         | -                  | 8018-01-7          | Aquatic Acute 1 H400                           | 10       | waste is  |
| propineb (ISO)<br>polymeric zinc propylenebis(dithiocarbamate)                                 | 006-091-00-3         | -                  | 9016-72-2          | Aquatic Acute 1 H400                           | -        | questiona |
| diamminediisocyanatozinc<br>vanadium(IV) oxide hydrogen phosphate                              | 030-005-00-3         | 401-610-3          | -                  | Aquatic Acute 1 H400                           | -        |           |
| hemihydrate, lithium, zinc, molybdenum, iron and chlorine-doped                                | 015-162-00-8         | 407-350-7          | -                  | Aquatic Chronic 2 H411                         | -        |           |
| zinc 2-hydroxy-5-C13-18alkylbenzoate                                                           | 607-183-00-1         | 402-280-3          | -                  | Aquatic Chronic 2 H411                         | -        |           |
| +90                                                                                            | compounds with the   | same classificatio | n (Aquatic Chronic | 2 H411)                                        |          |           |
| aluminium-magnesium-zinc-carbonate-hydroxide                                                   | 030-012-00-1         | 423-570-6          | 169314-88-9        | Aquatic Chronic 4 H413                         | -        |           |
| zinc salts, fatty acids, C16-18 and C18 unsaturated, branched and linear                       | 607-692-00-9         | 446-470-4          | -                  | Aquatic Chronic 4 H413                         | -        |           |
|                                                                                                |                      |                    |                    |                                                |          |           |

## Example of worst case consideration Harmonised classification for zinc compounds


### Worst case consideration: two compounds (H400, H410, M factor = 100)


- Zinc phosphide (rodenticide) (Zn<sub>3</sub>P<sub>2</sub>)
- Ziram (fungicide, complex organic compound)

### Presence in waste is questionnable (examples)

- Ziram
  - In case of incineration, ziram is degraded into elemental compounds
  - In soil, ziram seems to be rapidely degraded (half-life = 2-7 days)
- Zinc phosphide
  - In dry soils, zinc phosphide was reported to dissipate with a half-lives of one month or longer; in moist soils dissipation half-lives were less than one week
  - Zinc phosphide would may be hydrolysed (rate of hydrolysis is dependent on the pH)

Selection of worst case could be difficult and could have a significant impact on waste classification





### Overview of the four calculation methods

| $\begin{tabular}{lllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} \mbox{Method 2} \\ \mbox{IF:} \\ c (H420) \geq 0.1\% \\ OR \\ \mbox{If c (H400)} \geq 0.1/M\% \ \mbox{and } \Sigma \ (c \ H400 \times M) \geq 25 \% \\ OR \\ \mbox{If c (H410)} \geq 0.1/M\% \ \ \mbox{and } c \ (H411) \geq 1\% \ \ \mbox{and} \\ \mbox{If c (H410)} \geq 0.1/M\% \ \ \mbox{and } c \ (H411) \geq 1\% \ \ \mbox{and} \\ \Sigma \ (M \times 10 \times c \ H410) + \Sigma \ c \ H411 \geq 25\% \\ \mbox{$\longrightarrow$ waste hazardous} \end{array}$ |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{c} \method 3 \\ \mbox{ IF:} \\ \mbox{ c} (H420) \geq 0.1\% \\ \mbox{ OR} \\ \mbox{ $\Sigma$ (c H410) \geq 0.1 \%$} \\ \mbox{ OR} \\ \mbox{ $\Sigma$ (c H411) \geq 2.5 \%$} \\ \mbox{ OR} \\ \mbox{ $\Sigma$ (c H412) \geq 25 \%$} \\ \mbox{ OR} \\ \mbox{ $\Sigma$ (c H413) \geq 25 \%$} \\ \mbox{ $\longrightarrow$ $waste hazardous} \end{array}$ | Method 4<br>IF:<br>c (H420) ≥ 0.1%<br>OR<br>Σ (c H410) ≥ 2.5/M %<br>OR<br>Σ (c H411) ≥ 2.5 %<br>→ waste hazardous                                                                                                                                                                                                                                                                                                                                                                        |

• Method 3 and 4 :

Acute category 1 (H400) classification not considered

• Method 2 and 4 :

Chronic category 3 and 4 (H412/H413) not considered Only method that allows M factor consideration: usually the most severe in case of factor M availability

## Overview of the four calculation methods Cut-off values comparison

Concentrations required to consider the waste as hazardous (assumption that M factor = 1)

| Hazard                                                                                                                        | Cut –off values |                 |          |          |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|----------|----------|--|--|--|
| statement                                                                                                                     | Method 1        | Method 2        | Method 3 | Method 4 |  |  |  |
| H420                                                                                                                          | 0.1 %           | 0.1 %           | 0.1 %    | 0.1 %    |  |  |  |
| H400                                                                                                                          | 25 %            | 25 %            | NC       | NC       |  |  |  |
| H410                                                                                                                          | 0.25 %          | COMBINED HAZARD | 0.1 %    | 2.5 %    |  |  |  |
| H411                                                                                                                          | 2.5 %           | COMBINED HAZARD | 2.5 %    | 25 %     |  |  |  |
| H412                                                                                                                          | 25 %            | NC              | 25 %     | NC       |  |  |  |
| H413                                                                                                                          | 25 %            | NC              | 25 %     | NC       |  |  |  |
| NC: Not considered                                                                                                            |                 |                 |          |          |  |  |  |
| COMBINED HAZARD: $\sum c(H410) \ge 0.1 \%$ AND $\sum c(H411) \ge 1 \%$ AND $\sum (10 \times c(H410)) + \sum c(H411) \ge 25\%$ |                 |                 |          |          |  |  |  |

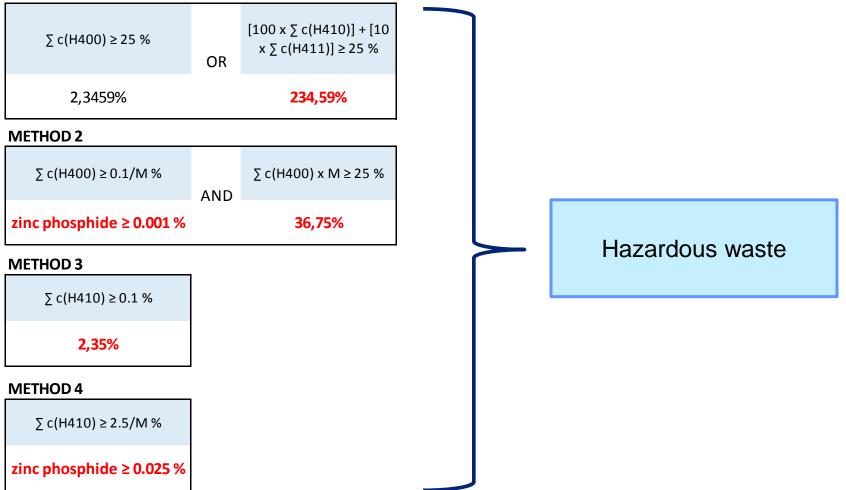
### Example of calculation according to the 4 methods (German Ring test results) Bottom ash from municipal waste (19 01 11\* / 19 01 12)

| Element | Concentration | Worst case selection                        | Classification                                 | M factor |
|---------|---------------|---------------------------------------------|------------------------------------------------|----------|
| Cd      | 6.6 mg/kg     | cadmium (pyrophoric)                        | Aquatic Acute 1 H400<br>Aquatic Chronic 1 H410 | -        |
| As      | 7.4 mg/kg     | arsenic                                     | Aquatic Acute 1 H400<br>Aquatic Chronic 1 H410 | -        |
| Со      | 19 mg/kg      | cobalt sulfate                              | Aquatic Acute 1 H400<br>Aquatic Chronic 1 H410 | 10       |
| Cr      | 212 mg/kg     | sodium chromate                             | Aquatic Acute 1 H400<br>Aquatic Chronic 1 H410 | -        |
| Cu      | 6,500 mg/kg   | copper chloride<br>copper (I) chloride      | Aquatic Acute 1 H400<br>Aquatic Chronic 1 H410 | -        |
| Hg      | 37 mg/kg      | mercury                                     | Aquatic Acute 1 H400<br>Aquatic Chronic 1 H410 | -        |
| Mn      | 800 mg/kg     | potassium permanganate                      | Aquatic Acute 1 H400<br>Aquatic Chronic 1 H410 | -        |
| Ni      | 211 mg/kg     | nickel sulfate                              | Aquatic Acute 1 H400<br>Aquatic Chronic 1 H410 | -        |
| Pb      | 1,623 mg/kg   | Lead sulphate                               | Aquatic Acute 1 H400<br>Aquatic Chronic 1 H410 | -        |
| V       | 42 mg/kg      | divanadium pentaoxide<br>vanadium pentoxide | Aquatic Acute 1 H400<br>Aquatic Chronic 1 H410 | -        |
| Zn      | 2,639 mg/kg   | trizinc diphosphide<br>zinc phosphide       | Aquatic Acute 1 H400<br>Aquatic Chronic 1 H410 | 100      |

→ relevance of the presence of zinc phosphide in the waste (M factor = 100) ?

## Example of calculation according to the 4 methods (German Ring test results)

Different concentration according to the consideration of element/compound


| Compound | Worst case selection                        | % w/w (element) | % w/w<br>(compound) |
|----------|---------------------------------------------|-----------------|---------------------|
| Cd       | cadmium                                     | 0.0007%         | -                   |
| As       | arsenic                                     | 0.0007%         | -                   |
| Со       | cobalt sulfate                              | 0.0019%         | 0.005%              |
| Cr       | sodium chromate                             | 0.0212%         | 0.066%              |
| Cu       | copper chloride<br>copper (I) chloride      | 0.6500%         | 1.377%              |
| Hg       | mercury                                     | 0.0037%         | -                   |
| Mn       | potassium permanganate                      | 0.0800%         | 0.230%              |
| Ni       | nickel sulfate                              | 0.0211%         | 0.055%              |
| Pb       | lead sulphate                               | 0.1623%         | 0.237%              |
| V        | divanadium pentaoxide<br>vanadium pentoxide | 0.0042%         | 0.007%              |
| Zn       | trizinc diphosphide<br>zinc phosphide       | 0.2639%         | 0.347%              |

#### unknown fraction of waste $\approx$ 97.7 % w/w

# Example of calculation according to the 4 methods (German Ring test results)

#### Calculation based on % w/w (compound)

**METHOD 1** 

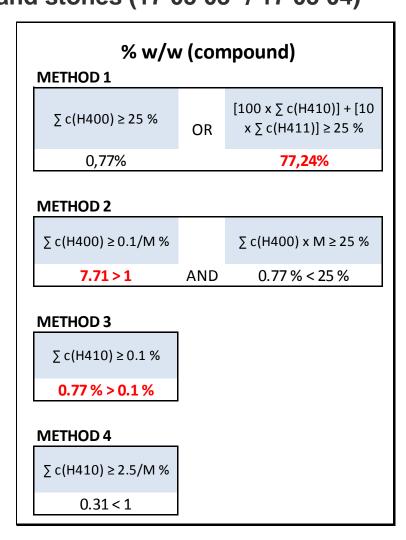


Example of calculation according to the 4 methods (German Ring test results)

Calculation based on % w/w (compound)

|                                   |     |                                                | ר |                               |
|-----------------------------------|-----|------------------------------------------------|---|-------------------------------|
| METHOD 1                          |     |                                                |   |                               |
| ∑c(H400)≥25 %                     | OR  | [100 x ∑ c(H410)] + [10<br>x ∑ c(H411)] ≥ 25 % |   |                               |
| 2,3274%                           |     | 232,74%                                        |   |                               |
| <b>NETHOD 2</b>                   |     |                                                |   | With zinc oxide consideration |
| ∑c(H400)≥0.1/M %                  | AND | ∑c(H400) x M ≥ 25 %                            |   | (M factor = 1)                |
| 23.7 > 1                          | AND | 2,37%                                          |   | , ,                           |
| METHOD 3                          | -   |                                                |   | Method 1 & 3                  |
| ∑ c(H410) ≥ 0.1 %<br><b>2,33%</b> |     |                                                |   |                               |
| METHOD 4                          |     |                                                |   | Hazardous waste               |
| ∑c(H410)≥2.5/M %                  |     |                                                |   |                               |
| 0.95 < 1                          |     |                                                |   |                               |

### Example of calculation according to the 4 methods (UK EAHW, Hazardous Waste, 2013) Soil and stones (17 05 03\* / 17 05 04)


| Compound        | Concentration | Worst case selection <sup>‡</sup> | Classification                                 | M factor | % w/w<br>(compound) |
|-----------------|---------------|-----------------------------------|------------------------------------------------|----------|---------------------|
| Cyanide (total) | 320 mg/kg     | sodium cyanide                    | Aquatic Acute 1 H400<br>Aquatic Chronic 1 H410 | -        | 0.06%               |
| Arsenic         | 530 mg/kg     | diarsenic trioxide                | Aquatic Acute 1 H400<br>Aquatic Chronic 1 H410 | -        | 0.07%               |
| Cadmium         | 782 mg/kg     | cadmium carbonate                 | Aquatic Acute 1 H400<br>Aquatic Chronic 1 H410 | -        | 0.12%               |
| Copper          | 400 mg/kg     | copper(I) oxide                   | Aquatic Acute 1 H400<br>Aquatic Chronic 1 H410 | -        | 0.05%               |
| Lead            | 1,620 mg/kg   | lead sulphate                     | Aquatic Acute 1 H400<br>Aquatic Chronic 1 H410 | -        | 0.24%               |
| Nickel          | 297 mg/kg     | nickel carbonate                  | Aquatic Acute 1 H400<br>Aquatic Chronic 1 H410 | -        | 0.06%               |
| Zinc            | 1,446 mg/kg   | zinc oxide                        | Aquatic Acute 1 H400<br>Aquatic Chronic 1 H410 | -        | 0.18%               |
| Benzo[a]pyrene  | 0.23 mg/kg    | -                                 | Aquatic Acute 1 H400<br>Aquatic Chronic 1 H410 | -        | 0.00002%            |

#### unknown fraction of waste ≈ 99.2 % w/w

Asbestos, Antimony, barium, Hexavalent chromium, Mercury, Molybdenum, PCBs, Selenium were analyzed for but not detected in this sample

<sup>*±*</sup> worst case selected by UK EAHW. Same classification priority as worst case selected for bottom ash example, except for zinc → relevance of the presence of zinc phosphide in the waste ?

### Example of calculation according to the 4 methods (UK EAHW, Hazardous Waste, 2013) Soil and stones (17 05 03\* / 17 05 04)





### Example of calculation according to the 4 methods (German ring test results) Soil and stones (17 05 03\* / 17 05 04)

| Compound               | CAS      | Classification                                   | M-factor | Concentration<br>(mg/kg) | Concentration<br>(% w/w) |
|------------------------|----------|--------------------------------------------------|----------|--------------------------|--------------------------|
| Naphthalene            | 91-20-3  | Aquatic Acute 1 H400<br>Aquatic Chronic 1 H410   | -        | n.d.                     | n.d.                     |
| Acenaphthylene         | 208-96-8 | NC*                                              | -        | n.d.                     | n.d.                     |
| Acenaphthene           | 83-32-9  | Aquatic Acute 1 H400*<br>Aquatic Chronic 1 H410* | -        | 7.18                     | 0.0007%                  |
| Fluorene               | 86-73-7  | Aquatic Acute 1 H400*<br>Aquatic Chronic 1 H410* | -        | 4.16                     | 0.0004%                  |
| Phenanthrene           | 85-01-8  | Aquatic Acute 1 H400*<br>Aquatic Chronic 1 H410* | 1*       | 69.1                     | 0.0069%                  |
| Anthracene             | 120-12-7 | Aquatic Acute 1 H400*<br>Aquatic Chronic 1 H410* | -        | 23.4                     | 0.0023%                  |
| Fluoranthene           | 206-44-0 | Aquatic Acute 1 H400*<br>Aquatic Chronic 1 H410* | -        | 181.6                    | 0.0182%                  |
| Pyrene                 | 129-00-0 | Aquatic Acute 1 H400*<br>Aquatic Chronic 1 H410* | 10*      | 146                      | 0.0146%                  |
| Benz[a]anthracene      | 56-55-3  | Aquatic Acute 1 H400<br>Aquatic Chronic 1 H410   | 100      | 87.2                     | 0.0087%                  |
| Chrysene               | 218-01-9 | Aquatic Acute 1 H400<br>Aquatic Chronic 1 H410   | -        | 69.4                     | 0.0069%                  |
| Benzo[b]fluoranthene   | 205-99-2 | Aquatic Acute 1 H400<br>Aquatic Chronic 1 H410   | -        | 78.6                     | 0.0079%                  |
| Benzo[k]fluoranthene   | 207-08-9 | Aquatic Acute 1 H400<br>Aquatic Chronic 1 H410   | -        | 31                       | 0.0031%                  |
| Benzo[a]pyrene         | 50-32-8  | Aquatic Acute 1 H400<br>Aquatic Chronic 1 H410   | -        | 59                       | 0.0059%                  |
| Dibenz[ah]anthracene   | 53-70-3  | Aquatic Acute 1 H400<br>Aquatic Chronic 1 H410   | 100      | 9.37                     | 0.0009%                  |
| Benzo[ghi]perylene     | 191-24-2 | Aquatic Acute 1 H400*<br>Aquatic Chronic 1 H410* | -        | 34.7                     | 0.0035%                  |
| Indeno[1,2,3-cd]pyrene | 193-39-5 | NC*                                              | -        | 35.2                     | 0.0035%                  |

n.d. : not determined

NC : Not classified for environmental hazard (according to notified classification)

\* : according to notified classification

unknown fraction of waste ≈ 99.9 % w/w

Example of calculation according to the 4 methods (German Ring test results) Soil and stones (17 05 03\* / 17 05 04)

| METHOD 1                    |     |                                                |
|-----------------------------|-----|------------------------------------------------|
| ∑ c(H400) ≥ 25 %            | OR  | [100 x ∑ c(H410)] + [10 x<br>∑ c(H411)] ≥ 25 % |
| 0,08%                       |     | 8,01%                                          |
| METHOD 2                    |     |                                                |
| ∑ c(H400) ≥ 0.1/M %         | AND | ∑c(H400) x M ≥ 25 %                            |
| Benz[a]anthracene > 0.001 % | AND | 1.17 % < 25 %                                  |
| METHOD 3                    |     |                                                |
| ∑ c(H410) ≥ 0.1 %           |     |                                                |
| 0.08 % < 0.1 %              |     |                                                |
| METHOD 4                    |     |                                                |
| ∑ c(H410) ≥ 2.5/M %         |     |                                                |
| 0.47 < 1                    |     |                                                |

# Overview of calculation results for characterisation data available (17 05 03\* / 17 05 04)

#### 17 05 03\* / 17 05 04 - Soil and stones

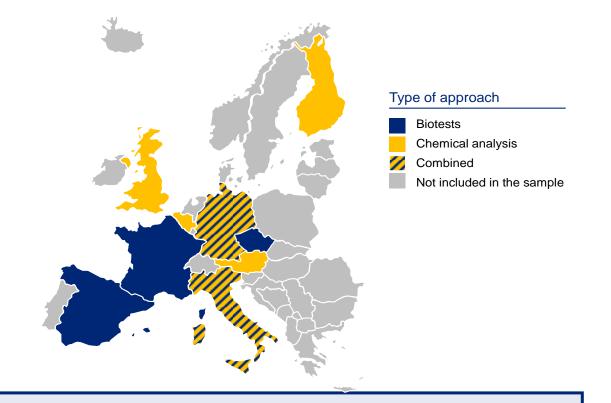
| Source of characterisation data                                                                     | Result for<br>Method 1 | Result for<br>Method 2 | Result for<br>Method 3 | Result for<br>Method 4 | Presence of<br>compounds with<br>M factor                                              |
|-----------------------------------------------------------------------------------------------------|------------------------|------------------------|------------------------|------------------------|----------------------------------------------------------------------------------------|
| Ring test (Germany)                                                                                 | Non hazardous          | Non hazardous          | Non hazardous          | Non hazardous          | Yes                                                                                    |
| Waste Classification Report (HazWasteOnline)                                                        | Non hazardous          | Non hazardous          | Hazardous              | Non hazardous          | Yes                                                                                    |
| EAHW, Hazardous Waste (united Kingdom)                                                              | Hazardous              | Non hazardous          | Hazardous              | Non hazardous          | No                                                                                     |
| Publication Gudrun M., et al (2000)<br>Soil contaminated with mineral oil (LMKW1)                   | Non hazardous          | Non hazardous          | Hazardous              | Non hazardous          |                                                                                        |
| Publication Gudrun M., et al (2000)<br>Soil contaminated with mineral oil (SPMKW1)                  | Non hazardous          | Non hazardous          | Hazardous              | Non hazardous          | Generic entries<br>like "sum of                                                        |
| Publication Gudrun M., et al (2000)<br>Soil containing nitroaromatics, PAH and heavy metals (HTNT1) | Hazardous              | Non hazardous          | Hazardous              | Non hazardous          | PAH" or "sum of<br>nitroaromatics"                                                     |
| Publication Gudrun M., et al (2000)<br>Soil containing nitroaromatics (CTNT1a)                      | Non hazardous          | Non hazardous          | Hazardous              | Non hazardous          | don't allowed M                                                                        |
| Publication Gudrun M., et al (2000)<br>Soil contaminated with PAH and chromium (SPAK1a)             | Hazardous              | Non hazardous          | Hazardous              | Non hazardous          | factor<br>identification                                                               |
| Publication Gudrun M., et al (2000)<br>Soil containing heavy metals (R1)                            | Hazardous              | Non hazardous          | Hazardous              | Non hazardous          |                                                                                        |
| Publication Koci V., et al (2010)<br>Soil contaminated with PAH and inorganic salts                 | Hazardous              | Non hazardous          | Hazardous              | Non hazardous          | Yes but generic<br>entry "sum of<br>PAH" doesn't<br>allowed M factor<br>identification |

- Classification of waste as hazardous with method 3 is related to the consideration of Acute Toxicity category 1 (H410) and the low cut-off value (0.1 %)
- For method 1, for some characterisation data, results could be very close to the cut-off value of 0.25 %

### Key aspects for discussion

- Several limitation according to characterization data = possible underestimation of waste classification
  - Data on organic compounds rarely available
  - Data for a group of compounds (e.g. sum of PAH compounds, nitroaromatic compounds,...): difficulties for worst case consideration
  - A significant fraction of the waste could be not identified ( $\approx$  95 to 99.9 % w/w)
  - Several compounds didn't have harmonised classification and/or M factor determination
- Importance of the worst case selection
  - Identification of worst case according to:
    - Harmonised classification (including M factor)
    - Molar mass

- Difficulties associated to the relevance of worst case in waste considered (e.g. zinc phosphide)
- Availability of waste code essential for comparison


### Discussion

# Part IV Possible combination of chemical analysis and biotests?

Impact assessment of classification methods for HP 14 - Workshop in Brussels, 20th April 2015

### Reminder

### Approaches for the assessment of HP 14 in the nine studied Member States



#### Germany and Italy are the only Member States proposing a combined approach

### Reminder Batteries of tests used in Member States

|                                        | Aquatic t                          | ests                | Terrestrial tests                            |               |              | Aquatic tests                                 |                     | Terrestrial tests                    |                             |
|----------------------------------------|------------------------------------|---------------------|----------------------------------------------|---------------|--------------|-----------------------------------------------|---------------------|--------------------------------------|-----------------------------|
| Member State                           | Organism                           | Standard            | Organism                                     | Standard      | Member State | Organism                                      | Standard            | Organism                             | Standard                    |
| Czech Republic                         | Daphnia magna                      | ISO 6341            | None                                         |               | Spain        | Vibrio fischeri                               | ISO 11348           | None                                 |                             |
|                                        | Sinapis alba                       | Czech<br>guidelines |                                              |               |              | Daphnia magna                                 | ISO 6341            |                                      |                             |
|                                        | Desmodesmus<br>subspicatus         | ISO 8692            |                                              |               | Germany      | Daphnia magna<br>(acute)                      | ISO 6341            | E. fetida                            | ISO 17512-1                 |
|                                        | Poecilia reticulata                | ISO 7346-2          |                                              |               |              | Daphnia magna<br>(chronic)                    | ISO 10706           | E. fetida (chronic)<br>Brassica rapa | ISO 12 268-1<br>ISO 11269-2 |
| France (initial strategy) <sup>1</sup> | Daphnia magna<br>(acute)           | ISO 6341            | E. fetida (acute)                            | ISO 11 268-1  |              | Vibrio fischeri                               | ISO 11348-<br>1/2/3 | Arthrobacter<br>globiformis          | ISO/DIS 18187               |
|                                        | Vibrio fischeri                    | ISO 11348-3         | Lactuca sativa                               | ISO 11269-2   |              | Pseudokirchneriella                           | NF EN ISO           | Folsomia candida                     | ISO 11267                   |
|                                        | Pseudokirchneriella<br>subcapitata | NF EN ISO<br>8692   |                                              |               |              | subcapitata /<br>Desmodesmus                  | 8692                | (chronic)                            |                             |
|                                        | Ceriodaphnia dubia                 | NF ISO 20665        |                                              |               |              | subspicatus                                   |                     |                                      |                             |
|                                        | Brachionus<br>calyciflorus         | NF ISO 20666        |                                              |               |              | Lemna minor                                   | ISO 20079           |                                      |                             |
|                                        |                                    |                     |                                              |               | Italy        | Daphnia magna                                 | ISO 6341            | None                                 |                             |
| France (hybrid<br>strategy             | Daphnia magna<br>(acute)           | ISO 6341            | E. fetida<br>(avoidance)                     | ISO 17512-1   |              | (acute)<br>Vibrio fischeri                    | ISO 11348           |                                      |                             |
| combining<br>initial strategy          | Vibrio fischeri                    | ISO 11348-3         | Avena sativa /                               | ISO 11269-2   |              | Pseudokirchneriella                           | ISO 8692            |                                      |                             |
| and German<br>strategy)                | Pseudokirchneriella<br>subcapitata | NF EN ISO<br>8692   | Brassica rapa<br>Arthrobacter<br>globiformis | ISO/DIS 18187 |              | subcapitata and<br>Desmodesmus<br>subspicatus |                     |                                      |                             |

#### Invertebrate Plant Micro-organisms

Algae Fish

• Acute and chronic endpoints

# Available data for both biotests and characterisation on the selected pairs

|                      |                                                                                   | Data (sample)            |                        |  |  |
|----------------------|-----------------------------------------------------------------------------------|--------------------------|------------------------|--|--|
| Waste code           | Description                                                                       | Waste code<br>mentionned | Probable<br>waste code |  |  |
| 06 05 02* / 06 05 03 | sludges from on-site effluent treatment                                           | 1                        | -                      |  |  |
| 08 01 13* / 08 01 14 | sludges from paint or varnish                                                     | 2                        | -                      |  |  |
| 11 01 09* / 11 01 10 | sludges and filter cakes                                                          | 1                        | -                      |  |  |
| 12 01 14* / 12 01 15 | machining sludges                                                                 | 2                        | -                      |  |  |
| 17 05 03* / 17 05 04 | soil and stones                                                                   | 3                        | 6                      |  |  |
| 19 01 11* / 19 01 12 | bottom ash and slag                                                               | 18                       | 9                      |  |  |
| 19 01 13* / 19 01 14 | fly ash                                                                           | 7                        | -                      |  |  |
| 19 08 11* / 19 08 12 | sludges from biological treatment of industrial waste water                       | 3                        | 1                      |  |  |
| 19 08 13* / 19 08 14 | sludges from other treatment of industrial waste water                            | 1                        | -                      |  |  |
| 19 10 03* / 19 10 04 | fluff-light fraction and dust                                                     | 1                        | -                      |  |  |
| 19 12 11* / 19 12 12 | other wastes (including mixtures of materials) from mechanical treatment of waste | 1                        | -                      |  |  |
|                      |                                                                                   | 40                       | 16                     |  |  |

# Test battery and proposed threshold values considered to classify wastes

| Test                                                                                                                           | Proposal of threshold values | Duration | Standard      |
|--------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------|---------------|
| Inhibition of the mobility of <i>Daphnia magna</i> ( <b>Dap</b> )                                                              | EC50 ≤ 10%                   | 48 h     | ISO 6341      |
| Inhibition of the light emission of Vibrio<br>fischeri (Luminescent bacteria test)<br>(Vib)                                    | EC50 ≤ 10%                   | 30 min   | ISO 11348-3   |
| Fresh water algal growth inhibition test with unicellular green algae ( <b>Alg</b> )                                           | EC50 ≤ 10%                   | 72 h     | ISO 8692      |
| Solid contact test using the dehydrogenase activity of <i>Arthrobacter globiformis</i> ( <b>Art</b> )                          | EC50 ≤ 10%                   | 2 h      | ISO/DIS 18187 |
| Effects on the emergence and early growth of higher plants ( <i>Avena sativa</i> , <i>Brassica napus</i> ) ( <b>Ave, Bra</b> ) | EC50 ≤ 10%                   | 14 d     | ISO 11269-2   |
| Avoidance test with earthworms<br>( <i>Eisenia andrei/fetida</i> ) ( <b>Ear</b> )                                              | EC50 ≤ 10%                   | 48 h     | ISO 17512-1   |

# Comparison of waste classification according to chemical composition and experimental approach

| Waste                                  |                         | С   | hemical | approad | h   | Experimental approach |           |     |        |                   |     |     |
|----------------------------------------|-------------------------|-----|---------|---------|-----|-----------------------|-----------|-----|--------|-------------------|-----|-----|
|                                        | Waste<br>Code           | M 1 | M 2     | M 3     | M 4 | Aq                    | uatic tes | sts | ٦      | Terrestrial tests |     |     |
|                                        |                         |     |         |         |     | Dap                   | Vib       | Alg | Arthr. | Ave               | Bra | Ear |
| Soil contaminated with<br>heavy metals | 17 05 03* /<br>17 05 04 | HW  | HW      | HW      | HW  | NH                    | HW        | HW  | HW     | HW                | NH  | NH  |
| PAH contaminated soil                  | 17 05 03* /<br>17 05 04 | NH  | NH      | NH      | NH  | NH                    | NH        | NH  | NH     | NH                | NH  | NH  |
| Bottom ash #1                          | 19 01 11* /<br>19 01 12 | HW  | HW      | HW      | HW  | HW                    | NH        | HW  | HW     | NH                | NH  | НW  |
| Bottom ash #2                          | 19 01 11* /<br>19 01 12 | NH  | NH      | HW      | NH  | NH                    | NH        | NH  | NH     | NH                | NH  | нw  |
| Bottom ash #3                          | 19 01 11* /<br>19 01 12 | HW  | NH      | HW      | NH  | HW                    | HW        | NH  | NH     | NH                | NH  | NH  |
| Fly ash                                | 19 01 13* /<br>19 01 14 | HW  | HW      | HW      | NH  | HW                    | NH        | NH  | HW     | HW                | HW  | HW  |

- Result obtained from battery of aquatic and battery of terrestrial tests are generally consistent (except for bottom ash #2)
- Given to the specificity of each test, combination of tests is mandatory to obtain a relevant answer
- Method 3 is the only one method consistent with experimental approach

Preliminary results for 6 wastes (further results are needed, work in progress)
Impact assessment of classification methods for HP 14 - Workshop in Brussels, 20th April 2015

# Possible combination of chemical and experimental approaches?

#### According to CLP rules

The approach for classification of aquatic environmental hazards is tiered, and is dependent upon the type of information available for the mixture itself and for its components. Elements of the tiered approach include:

- ✓ classification based on tested mixtures;
- ✓ classification based on bridging principles;
- ✓ the use of 'summation of classified components' and/or an 'additivity formula'.

#### Alternative approach

- ✓ Step 1: summation method
- Step 2 : experimental approach (if waste is not classified according to step 1)
   If the composition of the waste is unknown or complex, biotests are applied.
   The testing strategy includes a test battery with terrestrial and aquatic tests

### Debate and wrap up

### Thank you for your attention.

#### **BIO by Deloitte**

#### **Mariane Planchon**

Senior Consultant

mplanchon@bio.deloitte.fr

+33 1 55 61 67 56

#### Nada Saïdi

Consultant

nsaidi@bio.deloitte.fr

+33 1 55 61 67 72

#### Shailendra Mudgal

Director

shmudgal@deloitte.fr

+33 1 55 61 61 43

#### In partnership with INERIS:

- Pascal Pandard
- Sandrine Andres
- Adrien Toise