

LE GRANDI SFIDE URBANE: CAMBIAMENTI CLIMATICI E QUALITÀ AMBIENTALE

ROMA 31 marzo 2015

Climate Vulnerability Map of Rome 1.0

Simone Ombuen
Department of Architecture, University of Roma Tre

ROMA 31 marzo 2015

The extreme rain event of 2014.01.31 in Rome

Cumulated mm. of rain in hours

Rilevamento di	12:00	18:00	21:00	24:00
Monte Mario	153,8	167,0	173,4	181,8
Flaminio	106,8	115,8	122,4	129,6
Massimina	135,8	150,0	157,4	166,0
Riano	139,0	160,0	167,2	177,6

LE GRANDI SFIDE URBANE: CAMBIAMENTI CLIMATICI E QUALITÀ AMBIENTALE

ROMA 31 marzo 2015

The extreme rain event of 2014.01.31 in Rome - Labaro

LE GRANDI SFIDE URBANE: CAMBIAMENTI CLIMATICI E QUALITÀ AMBIENTALE

ROMA 31 marzo 2015

The extreme rain event in Rome 2014.01.31

Map of the infrastructures bocked from floods and landslides www.automap.it

SAPIENZA UNIVERSITÀ DI ROMA

ROMA 31 marzo 2015

CVMR 1.0

Climate Vulnerability Map of Rome 1.0

Research group DARC Università degli studi Roma Tre: A. Filpa, S. Ombuen, L. Barbieri, F. Benelli, F. Camerata, V. Pellegrini Research group ENEA UTMEA: F. Borfecchia, E. Caiaffa, M. Pollino, L. De Cecco, S. Martini, L. La Porta

SAPIENZA UNIVERSITÀ DI ROMA

ROMA 31 marzo 2015

CVMR 1.0

Methodology

The chosen methodology is similar, though simplified and adapted to the urban scale, to the one used in the research *Climate Change and territorial effect on regions and local economies*, developed within the ESPON 2013 Programme

ROMA 31 marzo 2015

Spatial Units (SU)

The identified Spatial Units to build up the CVMR 1.0 are the minimum spatial subdivisions of the built-up environment of Rome.

They are obtained intersecting:

- -the Land Cover Map of Regione Lazio, able to render the building density and continuity characteristics;
- the MultiNet road network database, useful for further subdividing the above land cover units in order to obtain a finer result.

Agenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenible

Land Cover Map of Regione Lazio

MultiNet road network

database

SAPIENZA UNIVERSITÀ DI ROMA

ROMA 31 marzo 2015

CVMR 1.0

Exposure

Ground temperatures observed by MODIS satellite on 14th-08-2003 at 9,30 pm. Approximate value of exposure to UHI.

Heavy rainwater flooding observed by the civil protection department between 2004 and 2007. Approximate value of exposure to extreme rainwater flooding.

Flood risk according to the Basin Authority of the Tiber river.
Approximate value of exposure to river flooding.

SAPIENZA UNIVERSITÀ DI ROMA

ROMA 31 marzo 2015

CVMR 1.0

Sensitivity

SAPIENZA UNIVERSITÀ DI ROMA

ROMA 31 marzo 2015

Resilience

Green infrastructure: green core areas as shown in CUS Regione Lazio. Calculated as **proximity** of SUs **to green areas**.

NDVI calculated from a Landsat 8 satellite image from 2013.07.27th Calculated as an indicator of the presence of **green areas**.

Soil sealing elaborated by the EEA. The reversed value is calculated as an indicator of **soil permeability**.

SAPIENZA UNIVERSITÀ DI ROMA

ROMA 31 marzo 2015

Vulnerability

Vulnerability to **high temperatures**: calculated by multiplying exposure to high temperatures by overall sensitivity and resilience.

Vulnerability to **heavy rainwater floodings**: calculated multiplying exposure to rainwater flooding by overall sensitivity and resilience.

Vulnerability to **river flooding**: calculated multiplying exposure to river flooding by overall sensitivity and resilience.

LE GRANDI SFIDE URBANE: CAMBIAMENTI CLIMATICI E QUALITÀ AMBIENTALE

ROMA 31 marzo 2015

Indice di vulnerabilità

Vulnerabilità delle Unità di Analisi

bassa (0.0095-0.5980)

medio-bassa (0.6045-1.2895)

media (1.3135-2.2575)

medio-alta (2.2693-3.7500)

alta (4.1000-9.0000)

Infrastrutture verdi

Parchi, ville e aree verdi urbane

Reticolo idrografico

Reticolo principale

Reticolo secondario

Strade principali

Strade principali

Zone urbanistiche Morena

Confine comunale

CVMR 1.0

Overall vulnerability

SAPIENZA UNIVERSITÀ DI ROMA

ROMA 31 marzo 2015

CVMR 1.0

Focus on transport infrastructure

A strand of this research focuses on transport infrastructure vulnerability:

Based on the 31st Jan 2014 extreme rain event, which points of the public transport network were disrupted?

 Info retrieved through local transport agencies tweets (disruption warnings) we localised where the network was disrupted

Between 6am and 10am (rush hour) more than 30 tweets

SAPIENZA UNIVERSITÀ DI ROMA

ROMA 31 marzo 2015

- Flooding (roads, tracks, tunnels, cycle paths)
- Heat waves (melting road surface, rail buckling, overheating of tunnels)
- Storm surge (flooding of transport infrastructure located on the seaside)

ROMA 31 marzo 2015

Focus on transport infrastructure

Possible adaptation options:

- Good maintenance (looks obvious but it's not)
- Retrofitting existing infrastructure where possible
- New climate-proof design standards (Crossrail in UK)
- Green infrastructure approaches (Edgware road tube station)
- Increase awareness

Next steps

- Joint work with ATAC (data retrieval)
- Finding good practices
- Suggest implementation of examples where applicable

LE GRANDI SFIDE URBANE: CAMBIAMENTI CLIMATICI E QUALITÀ AMBIENTALE

ROMA 31 marzo 2015

