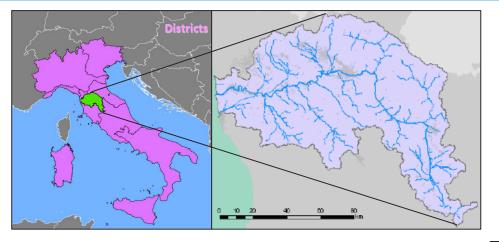
PAWA – Pilot Arno Water Accounts

System of Environmental-Economic Accounting for Water

1st Draft water flow diagrams & SEEA-Water tables

Carolina Cardete EMWIS Technical Unit

Rome, 1 December 2014


- INTRODUCTION
 - CASE OF STUDY
 - THE SEEA-WATER METHOD
 - PAWA OBJECTIVES
- DATA CHARACTERIZATION
- WATER FLOW DIAGRAMS
- METHOD TO BUILD THE TABLES
- SEEA-WATER TABLES
- OPTIMIZATION OF MEASURES
- CONCLUSIONS AND RECOMMENDATIONS

SEMIDE

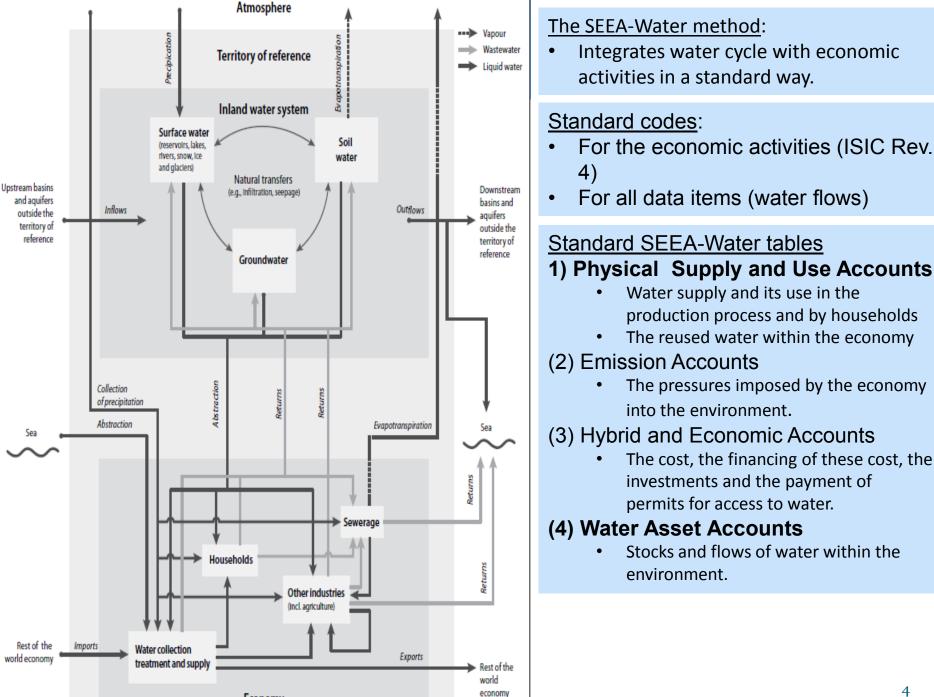
EMWI

Introduction. Case of study

Arno River Basin:

- Area: 8228 Km²
- River length: 241 Km
- Altitude: 0 m-1385 m
- Climate: Mediterranean

Chiana: Pollution, high irrigation use


- Area: 1373 km²
- Precipitation: 774.6 mm/year
- Annual avg. Temperature: 13.8 °C

 Bisenzio: Pollution, bigh industrial use

Bisenzio: Pollution, high industrial use

- Area: 347.5 km²
- Precipitation: 570.7 mm/year
- Annual avg. Temperature: 13.9 °C Pisa: Salinity intrusion, aquifer exploitation
 - Area: 407 km²
 - Precipitation: 891.2 mm/year
 - Annual avg. Temperature: 15.9 °C

Source: United Nations Statistic Division 2012. Economy

1st Draft water flow diagrams and SEEA-Water tables Introduction. PAWA Objectives

What for

- Improve the knowledge on water availability and its use in the economy.
- Support for decision making.
- Have been we able to collect all data necessary?
- What are the main difficulties faced?

How

Creating a tool:

- Set of SEEA-Water tables
- Water-related indicators.

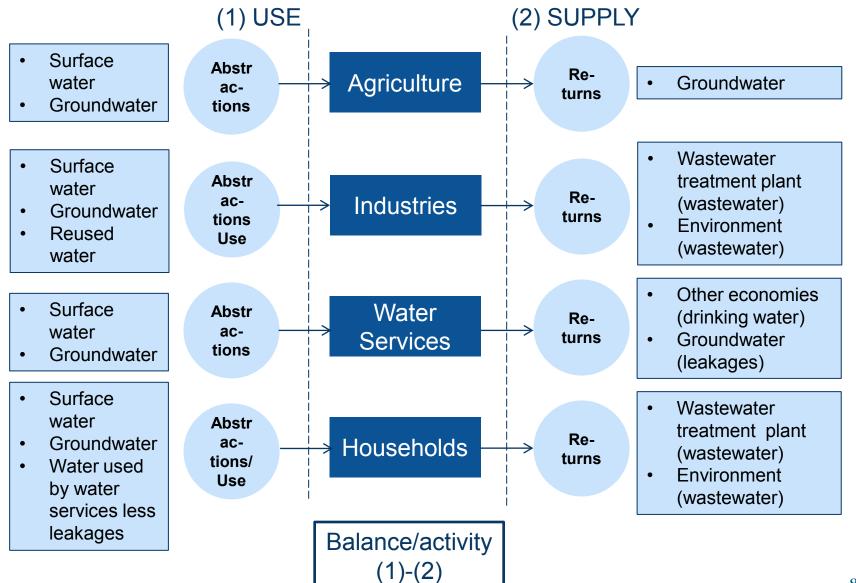
Main Actions

- Create data inventory table;
- Match data sets with SEEA-Water structure;
- Build water accounts from 1999 to 2013;
- Compute water efficiency indicators;
- Pre-define water saving measures;
- Create scenarios.

- INTRODUCTION
 - CASE OF STUDY
 - THE SEEA-WATER METHOD
 - PAWA OBJECTIVES
- DATA CHARACTERIZATION
- WATER FLOW DIAGRAMS
- METHOD TO BUILD THE TABLES
- SEEA-WATER TABLES
- OPTIMIZATION OF MEASURES
- CONCLUSIONS AND RECOMMENDATIONS

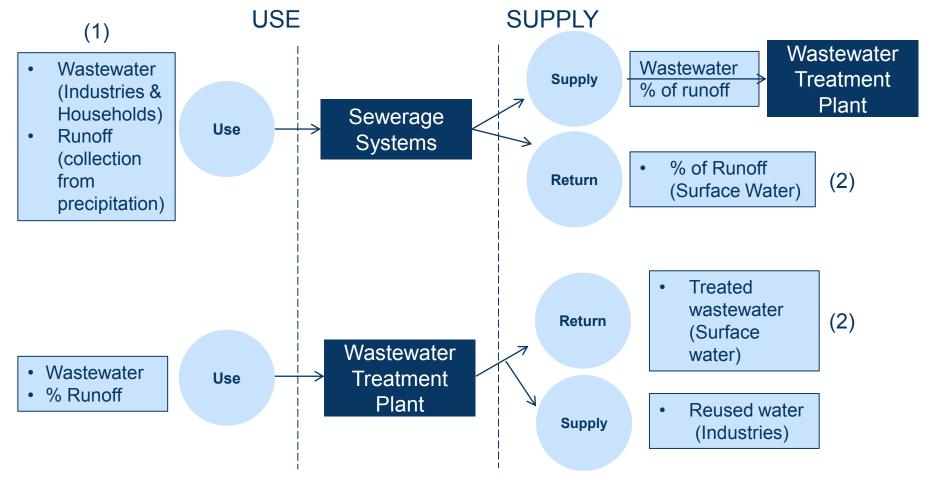
SEMIDE

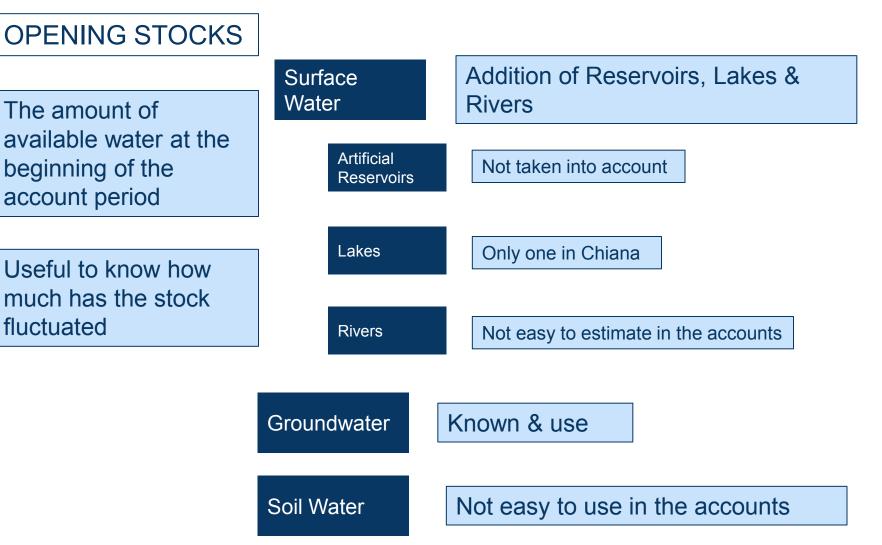
EMWI



Data characterization

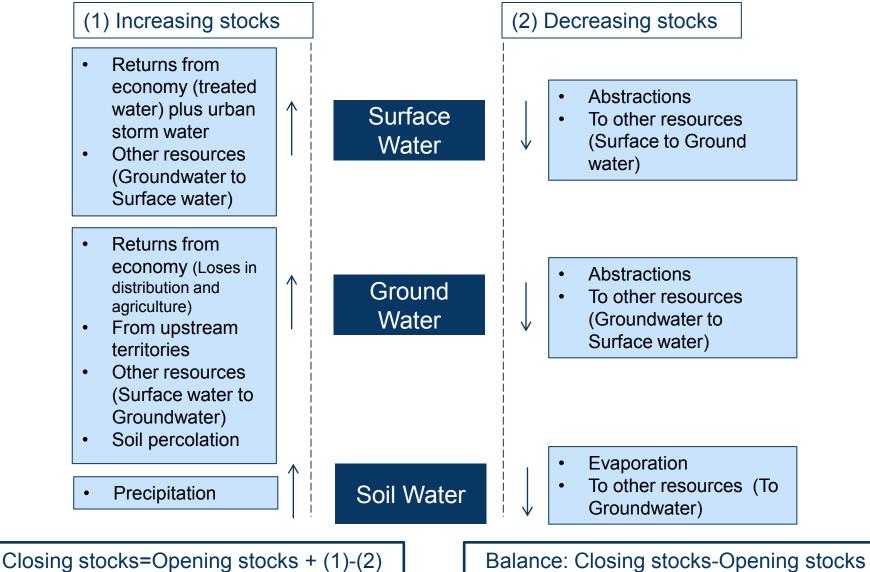
SEEA-W· 2012¤	Туре¤	Parameter¤		Data-source¤	Location-(web- site)¤	Temporal· scale· (monthly)¤	Temporal• extend¤	Physical• scale¤	Comments (Ex. Modelled data or real data, access rights)¤	3
Water• use•table• (A• TableIII.3)		Abstraction frominland water resources: surface water (Specify which purpose: distribution or own use) X	Agriculture, farming.lf. it'sfor-own- use:-which- use?- Irrigation,- etc.,# mining- quarrying,- manufacturi ng-and- construction- If-it's-for- own-use:- which-use?#	 Dir Da ba Da dis Es 	lance,	easur n mo i.e. C n wat e per s and	eme del: i SIS la ter riq mits,	.e. g ayer ghts	ground water s, and wastew	
Ħ	я	ж	Electricity, Gas, steam, air conditioning lfit's for own use: which use? Ex:-	¥	*	*X	*1	*	я	3


1st Draft water flow diagrams and SEEA-Water tables Water Flow Diagrams for Water Supply and Use Accounts Table I


Water Flow Diagrams for Water Supply and Use Accounts Table II

SEMIDE EMWIS

Balance: Sewerage Systems + WasteWater Treatment Plant: (1)-(2)


Water Flow Diagrams for Water Asset Accounts I

SEMI

Water Flow Diagrams for Water Asset Accounts II

- INTRODUCTION
 - CASE OF STUDY
 - THE SEEA-WATER METHOD
 - PAWA OBJECTIVES
- DATA CHARACTERIZATION
- WATER FLOW DIAGRAMS
- METHOD TO BUILD THE TABLES
- SEEA-WATER TABLES
- OPTIMIZATION OF MEASURES
- CONCLUSIONS AND RECOMMENDATIONS

SEMIDE

EMW

SEMIDE

Chiana

PSUAT

1999

Januari

0.00

2718050.88

41913852.1813

x

•

Ŧ

÷

Arno Water Accounts Initialize: Clear table Initialize Subbasin GetOpenings: 923208.66 853286.462 923208.66 SEEA-W Table Store Opening GetOpenings and Closing Year [1990-2013] GetUse&Supply stocks Month GetEmissions GetUse&Supply: 0.0 0.0 Store use and Get Balance 4.60393869822137 supply items and Activities balance. A. Physical water use table (Table III.3) [m3] 1-3 RWR Indicators From the GetBalance: environment 1.a Abstraction for own use 14571235.2 ReusedWater (Type of use) Hydroelectric power generation DrinkingWaterSupplyLoses Computes balance 14571235.2 Irrigation water AgricultureLoses Mine water Use&Consumption Urban run-off (urban storm water) DischargeToEnvironment Cooling water AquiferRecharge Other 5165184.84 Abstraction for distribution 14571235.27 2050027.69 1.i From inland water resources 5165184.84 Surface water 901235.27 50027.69 1895184.84 Groundwater 3270000.00 13670000.00 2000000.00 Soil water 1.ii Collection of precipitation 1.iii Abstraction from the sea 2050027.69 Total abstraction (1.a+1.b(=1.i+1.ii+1.iii)) 14571235.27 5165184.84 Within the Exit 0.00 economy From other economic units Water services 0.00 Reused water 2718050.88 Wastewater to sewerage Desalinated water 3. TotalA (1+2) 14571235.27 2050027.69 33448667.03 5165184.839 11662219.23 8465185.16

Method to fill SEEA-Water tables. VBA graphical user interface

1933 Janua 1933 Febra 1933 Rech 1933 April 1933 April 1933 June 1933 June 1933 June 1933 Septer 1933 Docobe 1933 Docobe 1933 Decem

1933 Total 1933 Total 1934 Janua 1934 Fabrua 1934 Rahu 1934 Agai 1935 Agai 1935 Fabri 1935 Fabri 1935 Fabri 1935 Kayi 1935 Kayi

The Water Use & Supply Accounts table. CHIANA 2007 WATER USE

	\uparrow	Activities						Households	Rest of the world	Total
A. Physical wa	ter use table (Table III.3) [m3]	Agric	Industry	35	Water Servics	Sew. & WWTP	Total		(exports water)	
From the										
environment	1.a Abstraction for own use	18,539,762	3,728,788				22,268,550	4,229,734		26,498,284
	(Type of use) Hydroelectric power generation									
	Irrigation water	18,539,762					18,539,762			18,539,762
	Mine water									
	Urban run-off (urban storm water)					17,888,337	17,888,337			17,888,337
	Cooling water									
	Other									
	1.b Abstraction for distribution				5,165,185		5,165,185			5,165,185
	1.i From inland water resources	18,539,762	3,728,788		5,165,185		27,433,735	4,229,734		31,663,468
	Surface water	4,869,762	1,728,788		1,895,185		8,493,735	309,734		8,803,468
	Groundwater	13,670,000	2,000,000		3,270,000		18,940,000	3,920,000		22,860,000
	Soil water									
	1.ii Collection of precipitation					17,888,337	17,888,337			17,888,337
	1 iii Abstraction from the sea									
	1. Total abstraction (1.a+1.b(=1.i+1.ii+1.iii))	18.539.762	3.728.788		5.165.185		27.433.735	4.229.734		31.663.468
Within the										
economy	2. From other economic units		-			6,945,792	6,945,792	4,235,452		11,181,244
	Water services							4,235,452		4,235,452
	Reused water						-			-
	Wastewater to sewerage					6,945,792	6,945,792			6,945,792
	Desalinated water									
	3. TotalA (1+2)	18,539,762	3,728,788		5,165,185	24,834,129	47,102,679	8,465,185		55,567,864

Water abstractions H	[%]	
Agriculture	18.54	58.55
Industries	3.73	11.78
WaterServices	5.17	16.31
Sewerage&Treatment	0.00	0.00
HouseHolds	4.23	13.36

Hm3	Water abstr	[%]
Surface water	8.80	27.80
Groundwater	22.86	72.20
TotalAbs.	31.66	

IDE

S

SEM

EMW

The Water Use & Supply Accounts table. CHIANA 2007 WATER SUPPLY

		Activities						Households	Rest of the world	Total
B. Physical sup	oply table (Table III.3) [m3]	Agric	Industry	35	Water Servics	Sew. & WWTP	Total		(Imports water)	
Within the										
economy	4. To other economic units		1,864,394		4,235,452	-	6,099,846	5,081,398		11,181,24
	4.a Reused water						-			-
	4.b Wasterwater to sewerage		1,864,394				1,864,394	5,081,398		6,945,79
	4.c Desalinated water									
	5. Total returns (=5a+5b)	3,707,952	745,758		929,733	24,834,129	30,217,572	3,172,300		33,389,87
nto the										
environment	Hydroloelectric power generation									
	Irrigation water	7,415,905					7,415,905			7,415,90
	Mine water									
	Urban run-off (storm water)					17,888,337	17,888,337			17,888,33
	Cooling water									
	Loses in distribution because of leakages				929,733		929,733			929,73
	Non treated wastewater		745,758			12,521,836	13,267,593	3,172,300		16,439,89
	Treated wastewater					12,312,293	12,312,293			12,312,29
	Other									
	5.a To inland water resources (=5a.1+5a.2+5a.3)	3,707,952	745,758		929,733	24,834,129	29,471,815	3,172,300		32,644,11
	5a.1 Surface water					24,834,129	24,834,129			24,834,12
	5a.2 Groundwater	3,707,952			929,733		4,637,686			4,637,68
	5a.3 Soil water									
	5b To other resources	12,050,845					12,050,845			12,050,84
	6. TotalB (4+5)	3,707,952	2,610,152		5,165,185	24,834,129	36,317,418	8,253,698		44,571,11
	7. Consumption	14,831,810	1,118,636		-	-	15,950,446	211,487		10,996,74

	Water Use Hm3	[%]	Water Returns Hm3	[%]	Water Consumed Hm3	[%]
Agriculture	18.5	33.4	3.7	20.0	14.8	80.0
Industries	3.7	6.7	2.6	70.0	1.1	30.0
WaterServices	5.2	9.3	5.2	100.0	0.0	0.0
Sewerage&Treatment	24.8	44.7	24.8	100.0	0.0	0.0
HouseHolds	8.5	15.2	8.3	97.5	0.2	2.5
Total	55.6	100.0	44.6	80.2	11.0	<u>19.8</u>
Rused	0	0				

Ε

S

SEN

EM

The Asset Accounts table. CHIANA JULY 2007

	EA.131.Surface water						
Asset accounts (Table VI.1) [m3]	EA.1311 Artificial reservoir	EA.1312 Lakes	EA.1313 Rivers	EA.131 Surface Water	EA.132 Groundwater	EA.133 Soil water	Total
1. Opening stocks	-	5,880,000.0	-	-	535,005,589,907.3	-	535,011,469,907.3
Increases in stocks			-	589,670.2	3,034,711.6	177,433.5	3,801,815.3
2. Returns				589,670.2	564,711.6		1,154,381.8
3. Precipitation						177,433.5	177,433.5
4. Inflows			-	-	2,470,000.0		2,470,000.0
4.a From upstream territories					1,235,000.0		1,235,000.0
4.b From other resources in the territory					1,235,000.0		1,235,000.0
Decreases in stocks		90,140.4	791,942.4	1,641,867.1	1,905,000.0	27,807,276.0	30,594,358.8
5. Abstraction		90,140.4		1,641,867.1	1,905,000.0		3,637,007.5
6. Evaporation/actual evapotranspiration						27,807,276.0	27,807,276.0
7. Outflows			791,942.4		-	-	791,942.4
7.a To dowsntream territories			791,942.4				791,942.4
7.b To the sea							-
7.c To other resources in the territory						-	-
8. Other changes in volume							336,178.3
9. Closing stocks		5,789,859.6			535,006,719,618.9		534,958,220,998.6
10.Balance	-	5,789,859.6	- 791,942.4	- 1,052,196.8	1,129,711.6	- 27,629,842.5	- 53,248,908.7

(1) Incrs. Groundw	[%]	(2) Decrs. Grou	Balance (1)-(2) [m3]		
Economy	564,711.6	31.4	Economy	1,905,000.0	- 1,340,288.4
UpstreamTerritories	1,235,000.0	68.6		-	1,235,000.0
SurfaceWater	-	-	Other Resources in		
Percolation	-	-	the territory		
Total	1,799,711.6	100		1,905,000.0	- 105,288.4

The Asset Accounts table. CHIANA DECEMBER 2007

EA.131.Surface water							
Asset accounts (Table VI.1) [m3]	EA.1311 Artificial reservoir	EA.1312 Lakes	EA.1313 Rivers	EA.131 Surface Water	EA.132 Groundwater	EA.133 Soil water	Total
1. Opening stocks	-	5,880,000.0	-	-	535,010,490,889.1	-	535,016,370,889.1
Increases in stocks			-	1,346,158.7	2,831,796.6	36,727,458.0	40,905,413.3
2. Returns				1,346,158.7	361,796.6		1,707,955.3
3. Precipitation						36,727,458.0	36,727,458.0
4. Inflows			-	-	2,470,000.0		2,470,000.0
4.a From upstream territories					1,235,000.0		1,235,000.0
4.b From other resources in the territory					1,235,000.0		1,235,000.0
Decreases in stocks		90,140.4	987,552.0	612,998.9	1,905,000.0	16,819,933.0	19,802,625.4
5. Abstraction		90,140.4		612,998.9	1,905,000.0		2,608,139.3
6. Evaporation/actual evapotranspiration						15,340,977.0	15,340,977.0
7. Outflows			987,552.0		-	1,478,956.0	2,466,508.0
7.a To dowsntream territories			987,552.0				987,552.0
7.b To the sea							-
7.c To other resources in the territory						1,478,956.0	1,478,956.0
8. Other changes in volume							325,458.4
9. Closing stocks		5,789,859.6			535,011,417,685.7		535,058,901,923.3
10.Balance	-	5,789,859.6	- 987,552.0	733,159.8	926,796.6	19,907,525.0	42,531,034.3

(1) Incrs. Groundw	vater [m3]	[%]	(2) Decrs. Grou	ndwater [m3]	Balance [m3]	(1)-(2)
Economy	361,796.6	11.8	Economy	1,905,000.0	- 1,	,543,203.4
UpstreamTerritories	1,235,000.0	40.2		-	2,	,713,956.0
SurfaceWater	-	-	Other Resources in			
Percolation	1,478,956.0	48.1	the territory			
Total	3,075,752.6	100		1,905,000.0	1,	,170,752.6

- ITRODUCTION
 - CASE OF STUDY
 - THE SEEA-WATER METHOD
 - PAWA OBJECTIVES
- DATA CHARACTERIZATION
- WATER FLOW DIAGRAMS
- METHOD TO BUILD THE TABLES
- SEEA-WATER TABLES
- OPTIMIZATION OF MEASURES
- CONCLUSIONS AND RECOMMENDATIONS

SEMIDE

EMW

OPTIMIZATION OF MEASURES II: Tool in development.

rrent Scenario Creating Scenarios	WEI Help					
1. Select Subbasin	•		5. Water sav	/ing goal		
2. Chose Measures	— 3. Year to start the measure — — ·	4. Year goal	SurfaceW Gr	roundW		6. Cost E
1. Sensibilsation campagne	•	•			HH/WS abstractions	
2. Irrg. Techniques	_	-			Irrigation abstractions	
3. Household devices	_	-			Household abstractions	
🗌 4. Ind. water reuse	· · · ·	-			Industry abstractions	
5. Desalination	· · · · ·	-			HH/WS abstractions	
6. Reduction leakages	•	•			WS abstractions	
7. Urban green measures	•	•			HH/WS abstractions	
8. Intercropping	•	-			Irrigation abstractions	
9. Reduce permits	•	•			Surface and groundwater	
					l	
7. Water Assets	9. Resu	JITS				
Apply long term average	Scenario projectios Total v	water savings	_			
	To	otal cost E				

8. Obtain Data base

EMWIS

- ITRODUCTION
 - CASE OF STUDY
 - THE SEEA-WATER METHOD
 - PAWA OBJECTIVES
- DATA CHARACTERIZATION
- WATER FLOW DIAGRAMS
- METHOD TO BUILD THE TABLES
- SEEA-WATER TABLES
- OPTIMIZATION OF MEASURES
- CONCLUSIONS AND RECOMMENDATIONS

SEMIDE

EMW

Conclusions and Recommendations

PAWA project	SEEA-Water	Recommendations
 Objectives fulfilment: Water accounts from 1999 to 2013, Annual incremental trend groundwater stocks, Inf. on surface water: stocks not easy access, WEI high summer periods; Visual Basic tool as support decision making in water saving measures. 	 Identify dry years, Easy comparison between territories, <u>Strong points:</u> Compact system of information, WA link hydrological information (assets) directly to economic accounts (supply and use, WA at sub-basin level. <u>Weak points:</u> It requires a great sum of data series, Some of data series high level of uncertainty. 	 Improve knowledge on: water abstractions, surface water availability at sub- catchment level. Would it be possible to rearrange the surface water returns upstream? Further steps beyond PAWA: Link the existing tables with: Pollutant emissions, cost and revenues.

Thank you for your kind attention!

e.mino@semide.org

http://pawa.emwis.net/