Interventi di rivegetazione e Ingegneria Naturalistica nel settore delle infrastrutture di trasporto elettrico
Interventi di rivegetazione e Ingegneria Naturalistica nel settore delle infrastrutture di trasporto elettrico
L’Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), le Agenzie Regionali per la Protezione dell’Ambiente (ARPA), le Agenzie Provinciali per la Protezione dell’Ambiente (APPA) e le persone che agiscono per loro conto sono responsabili per l’uso che può essere fatto delle informazioni contenute in questo manuale.

ISPRA - L’Istituto Superiore per la Protezione e la Ricerca Ambientale
Via Vitaliano Brancati, 48 – 00144 Roma
www.isprambiente.it

ISPRA, Manuali e Linee Guida 78.2/2012
ISBN 978-88-448-0534-0

Riproduzione autorizzata citando la fonte

Elaborazione grafica
ISPRA
Grafica di copertina: Franco Iozzoli, Alessia Marinelli
Foto di copertina: Andrea Corneo

Coordinamento editoriale:
Daria Mazzella
ISPRA – Settore Editoria

Finito di stampare marzo 2012
Autori
Giuliano Sauli AIPIN (Associazione Italiana per l’Ingegneria Naturalistica)

Revisione e correzione dei testi per ISPRA
Silvia Bertolini (AMB - Servizio Valutazioni Ambientali)
Settimio Narciso Fasano (AMB - Servizio Valutazioni Ambientali)
Valeria Giacanelli (NAT - Servizio Tutela della Biodiversità)
INDICE

1. PREMESSA ... 6

2. INTERVENTI DI MITIGAZIONE A VERDE E INGEGNERIA NATURALISTICA 7
 2.1 Definizioni e finalità .. 7
 2.2 Generalità sugli interventi naturalistici .. 7
 2.3 Tipologie di infrastrutture considerate ... 9
 2.4 Descrizione degli interventi di riqualificazione ... 9
 2.4.1 Stazioni Elettriche di nuova realizzazione .. 9
 2.4.2 Adeguamento di Stazioni Elettriche esistenti .. 10
 2.4.3 Linee elettriche di nuova costruzione ... 10
 2.4.4 Dismissione di linee esistenti .. 10

3. ANALISI DI SUPPORTO ALLA PROGETTAZIONE .. 11
 3.1 Analisi pedologica ... 11
 3.1.1 Analisi degli orizzonti superficiali dei suoli delle aree di intervento 11
 3.1.2 Modalità di scotico, accumulo, rimessa in posto e ammendamento dei suoli 15
 3.1.3 Utilizzo di suoli autoctoni ... 16
 3.1.4 Ricostruzione di suoli da matrici di inerte terroso .. 16
 3.1.5 Suoli artificiali (antropogenici o tecnogenici) ... 17
 3.2 Analisi floristico-vegetazionale ... 17
 3.2.1 Elenco floristico .. 17
 3.2.2 Analisi vegetazionale .. 19

4. PROGETTAZIONE ... 20
 4.1 Documenti di progetto ... 20
 4.2 Tecniche di rivegetazione e ingegneria naturalistica applicate al trasporto elettrico 22
 4.2.1 Tecniche antierosive .. 22
 4.2.2 Tecniche stabilizzanti .. 24
 4.2.3 Tecniche combinate e di sostegno ... 33
 4.3 Progettazione delle diverse tipologie di intervento ed esempi di realizzazione 36
 4.3.1 Stazioni elettriche di nuova realizzazione ... 36
 4.3.2 Adeguamento di Stazioni Elettriche esistenti ... 47
 4.3.3 Linee elettriche di nuova costruzione ... 51
 4.3.4 Dismissione di linee esistenti .. 57

5. MONITORAGGIO E MANUTENZIONE DEGLI INTERVENTI DI RIVEGETAZIONE – 59
 5.1 Obiettivi del monitoraggio e tempistica ... 59
 5.2 Tipologie e periodicità degli interventi di manutenzione .. 59
 5.2.1 Manutenzione nelle stazioni elettriche ... 59
 5.2.2 Manutenzione lungo le linee ... 61

6. BIBLIOGRAFIA DI RIFERIMENTO ... 64

7. GLOSSARIO ... 66
1. PREMESSA
La presente linea guida tecnica riguarda le modalità di esecuzione degli interventi a verde, di rivegetazione e di ingegneria naturalistica, nell’ambito delle infrastrutture di trasporto elettrico.
La linea guida fa parte di una serie prodotta da ISPRA in collaborazione e con il supporto tecnico del Coordinamento delle Associazioni Tecnico-Scientifiche Ambiente e Paesaggio (CATAP).
Scopo del lavoro è fornire esempi sulle migliori pratiche per l'esecuzione degli interventi di cui al titolo da utilizzare in sede di progettazione e realizzazione delle opere stesse.
L’esigenza del trasporto di energia elettrica dagli impianti di produzione (centrali elettriche a vari combustibili, ma anche centrali a fonti rinnovabili quali centrali idroelettriche, impianti eolici, fotovoltaici, geotermici, ecc.) alle zone di utilizzo (zone urbane, industriali, ecc.) determina il fatto che la rete di elettrodotti attraversi tutto il territorio nazionale con evidente indotto positivo sul piano socio-economico, ma anche con impatti potenziali di varia natura.
Il presente documento vuol fornire indicazioni relative alle modalità di esecuzione degli interventi a verde, di rivegetazione e in genere di ingegneria naturalistica, legati alla realizzazione di nuovi elettrodotti aerei e interrati e stazioni elettriche, ma anche agli adeguamenti delle esistenti stazioni elettriche e alle demolizioni connesse alla dismissione di vecchie linee, nell’ambito delle razionalizzazioni in corso su tutto il territorio nazionale.¹
Non vengono qui affrontate le problematiche delle interferenze tra linee elettriche e avifauna già oggetto di altre linee guida pubblicate e di altra bibliografia a cui si rimanda (Linee guida per la mitigazione dell’impatto delle linee elettriche sull’avifauna – MATTM e ISPRA maggio 2008).

¹ Si ringrazia Terna S.p.A. ed Enel S.p.A. per i materiali gentilmente messi a disposizione
2. INTERVENTI DI MITIGAZIONE A VERDE E INGEgNERIA NATURALISTICA

2.1 Definizioni e finalità

I principi e i metodi dell'ingegneria naturalistica possono essere applicati in numerosi settori infrastrutturali. Il trasporto elettrico presenta ambiti di intervento analogenli ad altri settori, come ad esempio il ripristino delle aree di cantiere, ma anche alcune peculiarità, come ad esempio quelle legate alla gestione delle interferenze tra linee aree e vegetazione. Pertanto, nella presente trattazione, oltre ad una panoramica generale dell'argomento, verranno messe in evidenza le specificità del settore e proposta una casistica di esperienze mature nell'ambito di progetti già realizzati.

Nelle tecniche di Ingegneria Naturalistica sono inclusi anche gli interventi di sole semine e piantagioni di arbusti ed alberi spesso citati nella casistica esaminata.

Va chiarito inoltre che nel testo vengono usati i termini “interventi a verde” e “interventi di rivegetazione” quasi in sinonimia, dove però con rivegetazione si sottintende l’uso esclusivo di specie autoctone. Gli interventi di rivegetazione hanno come meta nel tempo una vera e propria rinaturalizzazione (o rinaturalizzazione) cioè il ripristino delle condizioni biocenotiche e di funzionalità ecologica di un ecosistema.

Per le generalità sull'Ingegneria Naturalistica (di seguito IN) si rimanda alla bibliografia di riferimento.

Vengono di seguito richiamati alcuni concetti di base che costituiscono il riferimento delle scelte progettuali e realizzative nel settore del trasporto elettrico, partendo dalla definizione e dalle finalità più generali dell’IN.

Definizione e finalità dell’Ingegneria Naturalistica

“L'ingegneria naturalistica è una disciplina tecnico - naturalistica che utilizza le piante vive autoctone come materiale da costruzione negli interventi antierosivi, stabilizzanti, di consolidamento o anche di sola rinaturazione, da sole, o in abbinamento con altri materiali (paglia, legno, pietrame, reti metalliche, biostuoie, geosintetici, etc.)”.

Le finalità classiche dell’IN sono le seguenti:
1) tecnico-funzionali, quali , ad esempio, il contenimento dell'erosione e la stabilizzazione di una scarpata, di un versante fransato, di una sponda;
2) naturalistiche, quali la ricostruzione di ecosistemi o l'avvio della successione mediante impiego di specie autoctone degli stadi delle serie dinamiche della vegetazione potenziale dei siti di intervento;
3) paesaggistiche, cioè la “ricucitura” di aree oggetto di intervento rispetto al paesaggio naturale circostante;
4) economiche cioè l'ottenimento di vantaggi in termini funzionali e di costi di opere come palificate vive o terre verdi rinforzate rispetto ad opere tradizionali, quali ad esempio muri in cemento armato;
5) socio-economiche, cioè l'ottenimento di un indotto costituito da sviluppo occupazionale, miglioramento della qualità ambientale, gestione ecocompatibile delle risorse naturali.

Vale sempre il principio di realizzare il massimo livello di valore ecologico compatibile con le limitazioni funzionali strutturali e gestionali intrinseche dell’opera.

2.2 Generalità sugli interventi naturalistici

I progetti di realizzazione di nuove linee e relative demolizioni di linee che vengono dismesse, nonché quelli relativi alla costruzione o all’adeguamento delle stazioni elettriche, devono prendere in considerazione i possibili interventi a verde da inserire nel progetto stesso.
Contemporaneamente al perseguimento di alcune imprescindibili finalità quali il contenimento dell'erosione, la stabilizzazione delle superfici messe a nudo durante i lavori, il mascheramento visivo degli impianti, gli interventi a verde e di IN andrebbero sempre condotti in un'ottica di coerenza con le potenzialità floristico-vegetazionali dell'area, al fine di ridurre gli impatti complessivi dell'opera. È cioè necessario conciliare una serie di esigenze tecnologiche (costruttive e gestionali) con quelle naturalistiche e paesaggistiche, acquisendo alcuni nuovi principi orientati alla tutela della biodiversità e alla ricostruzione di unità ecosistemiche di valore ecologico. In alcuni casi, la possibilità di includere nei progetti di ripristino anche superfici attigue all'intervento, ma non direttamente impattate, può divenire occasione di riqualificazione naturalistica di aree agricole o recupero ambientale di aree degradate. Infatti è ormai superato il concetto di un tempo che faceva coincidere le superfici di intervento con il perimetro degli impianti. Le opere a verde consistevano al massimo in siepi monospecifiche e spesso di specie esotiche. Negli ultimi anni, al contrario, molti progetti destinano notevoli superfici, esternamente ai perimetri delle SE, alla realizzazione di interventi di rivegetazione con finalità naturalistiche e paesaggistiche.

Ciò implica che sin dall'inizio, nelle procedure di esproprio del progetto generale, vengano inserite anche le particelle destinate agli interventi a verde per superare ogni futura difficoltà nell’acquisizione delle aree. Ad esempio per il mascheramento delle stazioni vengono destinate fasce perimetrali di almeno 20 m, che consentono anche l'impianto di cenosi boscate, cosa che permette di integrare le esigenze visive e paesaggistiche con quelle più specificatamente naturalistiche.

Negli ultimi anni si è inoltre fatto strada il modello della “macchia seriale”, che la botanica applicativa propone per gli interventi di rivegetazione in vari settori infrastrutturali (strade, cave, discariche, ecc.). Questo modello prevede una striscia esterna a soli arbusti ed una interna ad alberi di dimensioni varie e crescenti. Lo scopo è quello di ricreare condizioni ecotonalì; inoltre se si adotta una forma circolare si esalta l’effetto di protezione interna creando habitat per specie faunistiche silvicole (vedi definizione nel glossario). Il modello va ovviamente adattato ad alcune limitazioni derivanti dal progetto come la forma irregolare delle particelle, la presenza dei conduttori in arrivo/partenza dalla stazione, che limitano l’uso di specie arboree e la possibilità di realizzare terrapieni di mascheramento, la presenza di cavi e condotte interrate, il cronoprogramma dei lavori (stagioni di realizzazione) e la presenza di punti visuali critici: strade, centri abitati.

In generale, gli interventi a verde non sempre possono perseguire l'obiettivo di ricostituire la vegetazione preesistente e tagliata durante la costruzione delle opere per una serie di motivi legati al corretto funzionamento degli impianti, alla loro gestione e alla sicurezza, come la possibile interferenza degli alberi con i conduttori. Ad esempio laddove si renda necessario il taglio raso di aree boscate per il passaggio delle linee, queste potranno essere rivegetate solo con vegetazione arbustiva (vegetazione mantello) o erbacea, sempre in un'ottica di coerenza floristico-vegetazionale con il contesto ambientale di riferimento. In alcuni casi può presentarsi invece l'opportunità di favorire la naturalità dell'area mediante l'impianto di specie autoctone su superfici sottoposte a taglio, ma precedentemente occupate da formazioni artificiali (es. pinete, castagneti, robinieti).

Una discussione a parte va fatta per le aree su cui insistono i tralicci. Queste infatti non possono essere oggetto di interventi di rivegetazione per i seguenti motivi:
• i terreni occupati rimangono di proprietà dei privati ai quali non si può vincolare l’uso del suolo che è in genere agricolo;
• non sono in genere gradite dai proprietari specie legnose perché contrastano con la destinazione d’uso agricolo (ombreggiamento, radicazione invasiva);
• la gestione/manutenzione delle linee richiede la completa accessibilità alla base dei tralicci stessi;
• vi è la necessità di ridurre il pericolo di incendi.

In tutti i casi in cui le superfici impattate per la realizzazione di infrastrutture di trasporto elettrico non possono essere rivegetate, è possibile prevedere, in accordo con gli Enti Locali, la destinazione di altre aree, disgiunte da quelle di intervento e situate su proprietà demaniali o comunali rese eventualmente disponibili, per opere di compensazione ambientale.
2.3 Tipologie di infrastrutture considerate

Le potenzialità di impiego degli interventi a verde e di IN variano in funzione delle diverse tipologie di infrastrutture.

Vengono di seguito prese in considerazione le due principali tipologie di infrastrutture su cui sono stati progettati e in certi casi realizzati negli ultimi anni interventi di mitigazione a verde e cioè:

- **Le stazioni elettriche**, cioè i punti di smistamento della corrente, a cui arrivano e da cui partono le linee elettriche di trasporto e distribuzione. Si tratta di strutture areali con dimensioni di occupazione al suolo che variano in genere da 3 ha a 10 ha;

- **Le linee elettriche aeree** di tensione alta, media e bassa, costituite principalmente da tralicci di varia dimensione e forma e conduttori aerei. L’occupazione al suolo dei sostegni varia da 100 a 125 mq nei tralicci di varia dimensione e forma ed è di ca. 5x5 (10 x 10) mq nei sostegni tubolari a monostelo di recente impiego.

Non vengono trattate nella presente linea guida le **linee elettriche in cavo interrato** che si utilizzano quando la costruzione di una linea aerea non è possibile per motivi tecnico-ambientali (ad es. centri urbani) e che presentano limiti dimensionali in lunghezza. Gli interventi di riqualificazione sono assimilabili ad altre strutture lineari interrate (occupazione al suolo variabile), in genere con ricomposizione dell’uso del suolo.

2.4 Descrizione degli interventi di riqualificazione

Si riportano di seguito, in base alla casistica esaminata, le principali necessità di intervento sulle componenti suolo e vegetazione connesse alla costruzione/demolizione di infrastrutture di trasporto elettrico, per le quali è possibile l’applicazione dei principi e delle tecniche di IN.

In generale le principali azioni mitigative connesse alla realizzazione di infrastrutture di trasporto elettrico sono:

Stazioni elettriche
- riqualificazione delle aree dei cantieri e delle piste d’accesso;
- mascheramento dell’impianto;
- arredo verde;
- opere di compensazione (da realizzare in accordo con gli Enti Locali previa disponibilità delle aree).

Linee elettriche
- riqualificazione delle aree dei cantieri e delle piste d’accesso;
- ricomposizione del suolo alla base dei tralicci di nuova realizzazione (nelle aree interne al traliccio e immediatamente adiacenti);
- impianto di vegetazione arbustiva nelle fasce di taglio raso per tracciati che attraversano zone boscate;
- trapianto di esemplari arborei da rimuovere per interferenza con la linea;
- ricucitura delle superfici derivate dagli interventi di demolizione (ricomposizione del suolo, riqualificazione, ricostituzione dell'uso agricolo e/o di cenosi a prato) ;
- opere di compensazione (da realizzare in accordo con gli Enti Locali previa disponibilità delle aree);

Nel dettaglio le possibili operazioni per la realizzazione di interventi a verde da adottare nell’ambito delle infrastrutture di trasporto elettrico sono riportate nei paragrafi seguenti per tipologia di opera e in sequenza cronologica.

2.4.1 Stazioni Elettriche di nuova realizzazione

- Individuazione e trapianto di singole alberature o macchie arbustive di pregio naturalistico che interferiscano con le future infrastrutture (conduttori aerei, cavi interrati, ecc.).
• Scotico dello strato vegetale, separato da strati sottostanti minerali, delle superfici della costruenda stazione e accumulo per riutilizzo come terreno vegetale e inerte terroso;
• Realizzazione di siepi e fasce boscate di mascheramento su aree perimetrali.
• Realizzazione di terrapieni di mascheramento anche utilizzando i materiali di scavo.
• Riporto dello scotico vegetale (previa eventuale ammendamento) su scarpate e zone piane.
• Rivestimento di scarpate con stuoie organiche (juta, cocco, paglia) con funzioni antierosive.
• Realizzazione di interventi stabilizzanti ove necessari su scarpata (viminate, fascinate).
• Idrosemine.
• Messa a dimora di arbusti ed alberi autoctoni delle serie dinamiche della vegetazione potenziale del sito.
• Impiego di shelter antifauna, dischi o teli pacciamanti per contenimento delle infestanti.
• Realizzazione di singoli interventi di consolidamento in terre verdi rinforzate, palificate vive, gabbionate verdi.
• Attivazione di un programma di manutenzione pluriennale (irrigazione, sfalci periodici, potature di rinforzo, sostituzione fallanze, ecc.).

2.4.2 Adeguamento di Stazioni Elettriche esistenti
Per i progetti di adeguamento, ampliamento, ristrutturazione di Stazioni Elettriche esistenti, le possibilità di interventi a verde sono in genere molto limitate dalle preesistenze morfologiche ed urbanistiche in cui le SE sono inserite (vicinanza di strade, centri abitati, morfologie particolari, ecc.). Vale la raccomandazione di effettuare, almeno per le aree in ampliamento, interventi di rivegetazione e mascheramento a verde, come proposti nel capitolo precedente. Vanno in tal senso sfruttate tutte le possibili superfici perimetrali, anche esterne alle recinzioni.

2.4.3 Linee elettriche di nuova costruzione
• Scotici preventivi e successiva riquilificazione delle aree dei cantieri e piste d’accesso (ricomposizione del suolo, semine).
• Scotici preventivi e ricomposizione del suolo e semine nelle aree interne alla base del traliccio e immediatamente adiacenti coinvolte nelle aree dei minicanteri relativi alle basi dei tralicci di nuova realizzazione.
• Realizzazione di fasce boscate o filari di mascheramento visuale.
• Eventuali interventi di trapianto di specie arbustive in aree a prato-pascolo o a macchia. Interventi di taglio su fasce di bosco attraversate dall’elettrodotto per possibili interferenze alberi – conduttori (taglio raso; potature a determinate altezze).
• Ripiantagione con specie arbustive nelle fasce di taglio raso in zone boscate.

2.4.4 Dismissione di linee esistenti
Gli interventi di demolizione (asporto di strutture metalliche, isolatori e cementizie di tralicci e basamenti) lasciano libere superfici che devono essere restituite all'uso del suolo originario, prevedendo quindi la ricomposizione del suolo e, a seconda dei casi, interventi di semina o rivegetazione.
3. ANALISI DI SUPPORTO ALLA PROGETTAZIONE

Nell'ambito di una progettazione orientata a minimizzare gli impatti di un'opera infrastrutturale sull'ambiente, gli interventi a verde e di IN costituiscono una delle fasi finali (mitigazione degli impatti) e si avvalgono generalmente degli studi dello stato dei luoghi già condotti nel corso della valutazione di impatto e incidenza ambientale.

Nei successivi paragrafi verranno sinteticamente descritte le indagini pedologiche e floristico-vegetazionali fondamentali per una corretta progettazione degli interventi a verde e di IN. Le analisi pedologiche non sono normalmente presenti negli Studi di Impatto mentre quelle botaniche non hanno i necessari approfondimenti applicativi.

Per maggiori dettagli su queste tematiche si rimanda alle seguenti Linee Guida pubblicate nell'ambito del Progetto ISPRA-CATAP: Il trattamento dei suoli nei ripristini ambientali legati alle infrastrutture (ISPRA, Manuali e linee guida 65.2/2010); Analisi e progettazione botanica per gli interventi di mitigazione degli impatti delle infrastrutture lineari (ISPRA, Manuali e linee guida 65.3/2010).

3.1 Analisi pedologica

3.1.1 Analisi degli orizzonti superficiali dei suoli delle aree di intervento

Per un efficace riutilizzo dei suoli sulle scarpate e in genere sulle superfici di intervento a verde vanno adottate alcune modalità di indagine collegate con l'esecuzione degli interventi di progetto.

In fase di progettazione definitiva ed esecutiva, in quelle che saranno le future aree di scotico, vanno effettuati dei prelievi di suolo a campione da sottoporre ad analisi (sono previsti in genere 5 campioni per ettaro). Il prelievo va effettuato:

- in superficie per una osservazione superficiale o speditiva o secondo la tecnica del minipit (o pozzetto) cioè uno scavo di circa 50 cm di profondità, utile per verificare le condizioni dello strato maggiormente interessato dalle radici che è quello che si prevede in genere di scoticare;
- più in profondità (Trivellata) che permette di estrarre “carote di suolo”, il campione prelevato è disturbato e solo alcune caratteristiche o qualità possono essere osservate con precisione. Questo tipo di osservazione è utilizzato soprattutto per individuare il sito idoneo allo scavo di un profilo pedologico, o per confermare la presenza di certe caratteristiche dei suoli;
- per alcune aree di particolare significato naturalistico può essere necessario effettuare un vero e proprio “Profilo”. Si intende per profilo uno scavo di adeguate dimensioni e profondità, utile per descrivere la morfologia derivante dallo sviluppo genetico-evolutivo del suolo e per prelevare campioni per le analisi di laboratorio. Con il profilo è normalmente possibile riconoscere una serie di strati con andamento parallelo alla superficie chiamati orizzonti.

Le analisi dei suoli sono finalizzate alla caratterizzazione dei suoli stessi in funzione del loro riutilizzo tal quali o da sottoporre ad ammendamenti. Sono di solito sufficienti analisi semplificate relative ai principali parametri fisico-idrologici, organici e chimici. Le analisi da effettuarsi dovranno essere almeno quelle di seguito citate: tessitura (USDA), reazione (pH in H₂O), sostanza organica (%), calcare totale (%), calcare attivo (%), capacità di scambio cationico (meq/100), salinità. Si riportano di seguito a titolo di esempio alcune analisi relative ad interventi progettati o in corso d’opera relativi a linee elettriche o stazioni elettriche.
A - Scheda di analisi relativa ad una SE in costruzione in Sardegna (loc. Ittiri, SS) su suoli di foresta mediterranea a sughera (Progetto esecutivo Terna Spa - 2009):

<table>
<thead>
<tr>
<th>Carattere</th>
<th>Unità di misura</th>
<th>Stazione Ittiri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sabbia</td>
<td>%</td>
<td>53</td>
</tr>
<tr>
<td>Limo</td>
<td>%</td>
<td>36</td>
</tr>
<tr>
<td>Argilla</td>
<td>%</td>
<td>11</td>
</tr>
<tr>
<td>Tessitura (USDA)</td>
<td>Franco sabbiosa</td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>(1:2,5)</td>
<td>5,7 Mod. acida</td>
</tr>
<tr>
<td>Conducibilità elettrica (1:2,5)</td>
<td>(1:2,5)</td>
<td>0,161 trascurabile</td>
</tr>
<tr>
<td>Calcare totale</td>
<td>%</td>
<td>assente</td>
</tr>
<tr>
<td>Calcare attivo</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Sostanza organica</td>
<td>%</td>
<td>7,4 molto elevato</td>
</tr>
<tr>
<td>Carbonio organico</td>
<td>%</td>
<td>4,30</td>
</tr>
<tr>
<td>Azoto totale (N)</td>
<td>%</td>
<td>0,366 ben fornito</td>
</tr>
<tr>
<td>Rapporto Carbonio Azoto</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Fosforo assimilabile (P)</td>
<td>ppm</td>
<td>2 m.basso</td>
</tr>
<tr>
<td>Calcio scambiabile (Ca)</td>
<td>ppm</td>
<td>1700 alto</td>
</tr>
<tr>
<td>Magnesio scambiabile (Mg)</td>
<td>ppm</td>
<td>260 m.alto</td>
</tr>
<tr>
<td>Potassio scambiabile (K)</td>
<td>ppm</td>
<td>258 m.alto</td>
</tr>
<tr>
<td>Sodio scambiabile (Na)</td>
<td>ppm</td>
<td>85 normale</td>
</tr>
<tr>
<td>Capacità di scambio cationico (CSC)</td>
<td>meq/100g</td>
<td>16,34 mod. alta</td>
</tr>
<tr>
<td>Calcio scambiabile</td>
<td>meq/100g</td>
<td>8,5</td>
</tr>
<tr>
<td>Calcio scambiabile (saturazione)</td>
<td>%</td>
<td>52,02% media</td>
</tr>
<tr>
<td>Magnesio scambiabile</td>
<td>meq/100g</td>
<td>2,17</td>
</tr>
<tr>
<td>Magnesio scambiabile (saturazione)</td>
<td>%</td>
<td>13,28% alta</td>
</tr>
<tr>
<td>Potassio scambiabile</td>
<td>meq/100g</td>
<td>0,66</td>
</tr>
<tr>
<td>Potassio scambiabile (saturazione)</td>
<td>%</td>
<td>4,04% media</td>
</tr>
<tr>
<td>Sodio scambiabile</td>
<td>meq/100g</td>
<td>0,37</td>
</tr>
<tr>
<td>Sodio scambiabile (saturazione)</td>
<td>%</td>
<td>2,26% normale</td>
</tr>
<tr>
<td>Saturazione in basi</td>
<td>%</td>
<td>71,60% media</td>
</tr>
<tr>
<td>Rapporto Mg/K</td>
<td></td>
<td>3,29 medio</td>
</tr>
</tbody>
</table>
Foto 1 - Profilo con orizzonti pedologici ben distinti relativo alla SE in costruzione in Sardegna (loc. Ittiri, SS) su suoli di foresta mediterranea a sughera. (Foto G. Sauli)

Conclusioni: le analisi hanno evidenziato un suolo con caratteristiche ottimali per riutilizzo su scarpate di progetto.

B – Scheda di analisi relativa ad una SE in costruzione in Lombardia (loc. Maleo, LO) su suoli golenali del F. Adda (prelievo *ante operam*) (Progetto esecutivo Terna spa 2010)

<table>
<thead>
<tr>
<th>Sabbia</th>
<th>Limo</th>
<th>Argilla</th>
<th>Tessitura</th>
<th>pH</th>
<th>Cond.</th>
<th>Calc. tot</th>
<th>S.O.</th>
<th>CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>%</td>
<td>%</td>
<td>USDA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>23</td>
<td>18</td>
<td>FS</td>
<td>7,0</td>
<td>0,123</td>
<td>tracce</td>
<td>3,03</td>
<td>1,76</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N (tot)</th>
<th>C/N</th>
<th>P (ass)</th>
<th>Ca (Scam)</th>
<th>Mg (Scam)</th>
<th>K (Scam)</th>
<th>Na (Scam)</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
</tr>
<tr>
<td>0,162</td>
<td>10,9</td>
<td>39</td>
<td>1700</td>
<td>326</td>
<td>270</td>
<td>53</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CSC Ca</th>
<th>Mg</th>
<th>K</th>
<th>Na</th>
<th>Ca</th>
<th>Mg</th>
<th>K</th>
<th>Na</th>
<th>T. sat</th>
<th>R Mg/K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meq/100g</td>
<td>Sat %</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12,1</td>
<td>4</td>
</tr>
<tr>
<td>8,5</td>
<td>2,72</td>
<td>0,69</td>
<td>1,9</td>
<td>70,0</td>
<td>22,4</td>
<td>5,7</td>
<td>1,9</td>
<td>100</td>
<td>3,9</td>
</tr>
</tbody>
</table>

Foto 2 - Minipit relativo alla SE in costruzione in Lombardia (loc. Maleo, LO) su suoli golenali del F. Adda. (Foto G. Sauli)
B1 - Maleo scheda post operam. Successivamente alle operazioni di costruzione dei rilevati sono stati prelevati campioni relativi ai primi 20 cm di suolo, per monitorare le loro caratteristiche e qualità. I campioni sono stati analizzati in laboratorio (Progetto esecutivo Terna spa 2010).

<table>
<thead>
<tr>
<th>Campione</th>
<th>Sceletro</th>
<th>Sabbia (%)</th>
<th>Limo (%)</th>
<th>Argilla (%)</th>
<th>Tessitura</th>
<th>pH (H_2O)</th>
<th>Conducibilità</th>
<th>Calcarea tot</th>
<th>S.O.</th>
<th>N</th>
<th>C/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maleo T1</td>
<td>trascurabile</td>
<td>74</td>
<td>16</td>
<td>10</td>
<td>FS</td>
<td>7,7</td>
<td>debol. alcalina</td>
<td>0,358</td>
<td>trascurabile</td>
<td>1,8</td>
<td>1,51</td>
</tr>
<tr>
<td>Maleo T2</td>
<td>trascurabile</td>
<td>68</td>
<td>19</td>
<td>13</td>
<td>FS</td>
<td>7,3</td>
<td>neutra</td>
<td>0,640</td>
<td>moderata</td>
<td>3,04</td>
<td>elevato</td>
</tr>
<tr>
<td>Maleo T3</td>
<td>trascurabile</td>
<td>64</td>
<td>21</td>
<td>15</td>
<td>FS</td>
<td>7,2</td>
<td>neutra</td>
<td>0,455</td>
<td>trascurabile</td>
<td>3,69</td>
<td>molto elevato</td>
</tr>
<tr>
<td>Maleo T4</td>
<td>trascurabile</td>
<td>66</td>
<td>20</td>
<td>14</td>
<td>FS</td>
<td>7,5</td>
<td>debol. alcalina</td>
<td>0,416</td>
<td>trascurabile</td>
<td>2,24</td>
<td>medio</td>
</tr>
<tr>
<td>Maleo T5</td>
<td>trascurabile</td>
<td>66</td>
<td>21</td>
<td>13</td>
<td>FS</td>
<td>7,5</td>
<td>debol. alcalina</td>
<td>0,403</td>
<td>trascurabile</td>
<td>1,87</td>
<td>medio</td>
</tr>
</tbody>
</table>

Note

- **Maleo T1**: Si tratta di un suolo franco sabbioso, debolmente calcareo, debolmente alcalino, non salino, scarsamente dotato in sostanza organica, povero in azoto e con un rapporto carbonio azoto medio.
- **Maleo T2**: Si tratta di un suolo franco sabbioso, non calcareo, neutro, moderatamente salino, ricco in sostanza organica, mediamente dotato in azoto e con un rapporto carbonio azoto elevato.
- **Maleo T3**: Si tratta di un suolo franco sabbioso, non calcareo, neutro, non salino, molto ricco in sostanza organica, ben dotato in azoto e con un rapporto carbonio azoto medio.
- **Maleo T4**: Si tratta di un suolo franco sabbioso, non calcareo, debolmente alcalino, non salino, mediamente dotato in sostanza organica, mediamente dotato in azoto e con un rapporto carbonio azoto medio.
- **Maleo T5**: Si tratta di un suolo franco sabbioso, non calcareo, debolmente alcalino, non salino, mediamente dotato in sostanza organica, mediamente dotato in azoto e con un rapporto carbonio azoto medio.

Conclusioni: I suoli in superficie sono risultati mediamente adatti agli interventi di rivegetazione.
3.1.2 Modalità di scotico, accumulo, rimessa in posto e ammendamento dei suoli

È importante sottolineare che un’adeguata tecnica di ripristino ambientale possa consentire l’instaurarsi di condizioni pedologiche accettabili in tempi brevi, che sono la premessa per il successo degli interventi di rivegetazione.

Una raccomandazione generale è che, quando si operano scavi partendo dalla superficie di un suolo naturale, devono essere separati lo strato superficiale (relativo agli orizzonti più ricchi in sostanza organica ed attività biologica) e gli strati profondi.

In generale vengono presi in considerazione i seguenti strati:

1. dalla superficie fino a 10-20 centimetri di profondità;
2. dallo strato precedente fino ai 50 (100) centimetri, o comunque sino al raggiungere il materiale inerte non pedogenizzato;
3. materiale non pedogenizzato che deriva dal disfacimento del substrato.

All’atto della messa in posto i diversi strati non devono essere fra loro mescolati (in particolare i primi due con il terzo). È bene anche che nella messa in posto del materiale terroso sia evitato l’eccessivo passaggio con macchine pesanti e che siano prese tutte le accortezze tecniche per evitare compattamenti o comunque introdurre limitazioni fisiche all’approfondimento radicale o alle caratteristiche idrologiche del suolo.

Nella fase di stoccaggio del suolo si devono evitare in particolare eccessi di mineralizzazione della sostanza organica. A tal fine gli accumuli temporanei di terreno vegetale non devono superare i 2 (3) metri di altezza con pendenza in grado di garantire la loro stabilità.

Per le scarpate la miscelazione di diversi materiali terrosi, l’incorporazione di eventuali ammendanti e la concimazione di fondo devono essere effettuati prima della messa in posto del materiale. Per garantire il successo degli interventi a verde e di tutela del suolo e per evitare l’esplosione di infestanti non gradite, debbono essere applicate alcune tecniche quali: pacciamature, semine con miscele ricche in leguminose, irrigazione e sistemazioni idraulico-agrarie in genere.

Esempio di scavi e stoccaggi preventivi del suolo vegetale. Le immagini seguenti si riferiscono alla fase di inizio del cantiere della nuova SE di Ittiri (SS).
3.1.3 Utilizzo di suoli autoctoni

Per gli interventi di rivegetazione, vale in genere il principio di riutilizzare, ove possibile, i suoli autoctoni del sito che vengono comunque scoticati per la realizzazione delle infrastrutture (il cosiddetto “terreno vegetale”).

Ciò per una serie di motivi evidenti:
- migliori caratteristiche fisico – chimiche, organiche e di vitalità in genere;
- coerenza con le condizioni climatiche e vegetazionali;
- minori costi di approvvigionamento e trasporto e quindi minore emissione di inquinanti.

Non è invece sempre vero l’assunto secondo cui l’uso di suoli autoctoni eviterebbe l’esposizione di specie invasive, la cui presenza è legata piuttosto all’uso precedente del suolo utilizzato. Ad esempio suoli provenienti da terreni agricoli hanno in genere buone caratteristiche ma si portano dietro semi e rizomi di infestanti tipici delle colture. La progettazione e realizzazione degli interventi di rivegetazione dovrà tener conto di maggiori oneri gestionali di sfalci periodici di pulizia nei primi anni, sino ad affrancamento di arbusti ed alberi.

3.1.4 Ricostruzione di suoli da matrici di inerte terroso

Quando gli scavi si sviluppano su substrati a prevalenti litologie affioranti (casi tipici i calcari affioranti in zone carsiche, i suoli su arenarie e flysch, i suoli su roccie granitiche in Sardegna) non sono possibili in genere operazioni di scoticco. I suoli presenti vanno inevitabilmente rimescolati con le
litologie di scavo, da cui provengono anche spesso sacche di terre minerali (tipiche le “terre rosse” del Carso triestino e di certe zone della Puglia o i suoli forestali su graniti affioranti in certe regioni mediterranee). L’unico sistema sinora collaudato per ricavare comunque una frazione di inerte terroso fine e separarlo dalla matrice litologica derivante dagli scavi, è quello di sottoporre a vaglio l’inerte roccioso, migliorandone tra l’altro le sue caratteristiche geotecniche e di drenaggio nel riutilizzo per inerte da rilevati.

Il materiale terroso fine ricavato può risultare di quantità e qualità insufficienti all’utilizzo come copertura di suolo organico delle scarpate, in tal caso va reperito altro terreno. In caso di riscontrate carenze, il suolo va eventualmente arricchito con sostanze ammendanti.

3.1.5 Suoli artificiali (antropogenici o tecnogenici)

Nel caso di totale non disponibilità di suoli ricavabili dagli scavi locali può essere necessario costruire dei suoli completamente artificiali da matrici di inerti disponibili (limi di lavaggio, inerti minerali a granulometria fine, ecc.) che vanno arricchiti con altri materiali ammendanti comunemente usati in vivaistica (lapillo, pomice, torbe, compost, fertilizzanti, concimanti).

3.2 Analisi floristico-vegetazionale

Una corretta progettazione degli interventi a verde e di IN, coerente con il contesto ambientale di riferimento, richiede la conoscenza dello stato ante-operam dei luoghi dal punto di vista floristico-vegetazionale. Ciò implica la conoscenza delle specie vegetali e delle fitocenosi presenti nell'area e delle dinamiche in atto.

3.2.1 Elenco floristico

La conoscenza floristica (che limitiamo in questo ambito alla flora vascolare) ha lo scopo di individuare tutte le specie (erbacee, arbustive, arboree) presenti allo stato spontaneo nelle aree di intervento.

Oltre ad essere fondamentale per la successiva analisi a livello di comunità, la conoscenza delle singole specie vegetali è anche necessaria ad individuare quelle più idonee ad essere utilizzate per le diverse tipologie di impianto da inserire nel progetto. Talvolta tuttavia la scelta definitiva delle specie potrà avvalersi anche delle indagini vegetazionali, in quanto farà riferimento alla vegetazione potenziale più che a quella reale presente nelle zone di intervento.

La scelta sarà fatta in base alle caratteristiche bio-ecologiche delle specie, a quelle fisionomico-strutturali in relazione alla funzione richiesta (consolidamento, schermo visivo, ricostruzione ecosistemica, ecc.) e al tipo e allo stadio della cenosi che si intende reimplantare.

La conoscenza floristica è anche fondamentale al fine di individuare eventuali entità di pregio (specie endemiche, rare, minacciate, protette). Questa eventualità che dovrebbe essere stata già considerata nella procedura di valutazione di impatto, potrebbe costituire un’ulteriore indicazione per la progettazione degli interventi mitigativi.

L’acquisizione delle conoscenze floristiche può avvenire in base a fonti bibliografiche (check-list, cartografia floristica, monografie, ecc.) e/o tramite censimento ad hoc. Per maggiori approfondimenti sull’analisi botanica applicata agli interventi di mitigazione degli impatti delle infrastrutture lineari si rimanda alla relativa pubblicazione (Ercole et al., 2010).

Nella presente trattazione intendiamo invece concentrarci sulle modalità di scelta delle specie da destinarsi agli impianti nelle opere di rivegetazione e IN.

Vengono di seguito presentati a titolo esemplificativo due elenchi di specie, inseriti nella progettazione degli interventi a verde di due impianti in differenti contesti ambientali.
Nel caso della SE di Ittiri (SS) il contesto vegetazionale era costituito da un’area a pascolo confinante con un brandello di zona boscata a foresta mediterranea con presenza di notevoli esemplari di sughera e roverella e corredo di specie arbustive della gariga mediterranea con prevalenza di cisto. Sulla base dei rilievi floristici eseguiti in zona è stata costruita la lista che segue delle specie da impiegare negli interventi di rivetazione delle scarpate. L’impiego degli arbusti di gariga, con esclusione delle specie di macchia a sclerofille, è coerente anche con le condizioni di forte aridità estiva previste per le scarpate di progetto.

Specie arboree

<table>
<thead>
<tr>
<th>Specie</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Quercus pubescens</td>
<td>Roverella</td>
</tr>
<tr>
<td>Quercus suber</td>
<td>Sughera</td>
</tr>
</tbody>
</table>

Specie arbustive

<table>
<thead>
<tr>
<th>Specie</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Calicotome spinosa</td>
<td>Sparzio spinoso</td>
</tr>
<tr>
<td>Cistus monspeliensis</td>
<td>Cisto di Montpellier</td>
</tr>
<tr>
<td>Cytisus villosus</td>
<td>Citiso villoso</td>
</tr>
<tr>
<td>Daphne gnidium</td>
<td>Dittinella</td>
</tr>
<tr>
<td>Erica arborea</td>
<td>Erica arborea, scopa da bosco</td>
</tr>
<tr>
<td>Lavandula stoechas</td>
<td>Lavanda selvatica</td>
</tr>
<tr>
<td>Osyris alba</td>
<td>Ginestrella comune</td>
</tr>
<tr>
<td>Rubus ulmifolius</td>
<td>Rovo</td>
</tr>
</tbody>
</table>

Stazione elettrica di Maleo (LO)

L’area della nuova SE di Maleo è situata in zona golenale coltivata del F. Adda in un contesto di vegetazione igrofila dei boschi perialveali e formazioni forestali di origine antropica a Robinia e impianti a Pioppo ibrido. La vegetazione potenziale di riferimento è quella dei querco – carpineti della bassa pianura su cui si è basata la formulazione del seguente elenco di specie da utilizzare negli interventi. Non è stato utilizzato il Carpino bianco perché non presente in zona.

Specie arbustive ed alto arbustive autoctone

<table>
<thead>
<tr>
<th>Specie</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cornus mas</td>
<td>Corniolo</td>
</tr>
<tr>
<td>Cornus sanguinea</td>
<td>Sanguinella</td>
</tr>
<tr>
<td>Corylus avellana</td>
<td>Nocciolo</td>
</tr>
<tr>
<td>Crataegus monogyna</td>
<td>Biancospino</td>
</tr>
<tr>
<td>Euonymus europaeus</td>
<td>Fusaggin- Berretta da prete</td>
</tr>
<tr>
<td>Frangula alnus</td>
<td>Frangola, Alno nero</td>
</tr>
<tr>
<td>Hippocrepis emerus</td>
<td>Emero comune</td>
</tr>
<tr>
<td>Ligustrum vulgare</td>
<td>Ligustro</td>
</tr>
<tr>
<td>Prunus spinosa</td>
<td>Prugnolo</td>
</tr>
<tr>
<td>Rhamnus catharticus</td>
<td>Spino cervino</td>
</tr>
<tr>
<td>Salix caprea</td>
<td>Salicone</td>
</tr>
<tr>
<td>Salix purpurea</td>
<td>Salice rosso</td>
</tr>
<tr>
<td>Sambucus nigra</td>
<td>Sambuco</td>
</tr>
</tbody>
</table>

Specie arboree autoctone

<table>
<thead>
<tr>
<th>Specie</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Acer campestre</td>
<td>Acero campestre</td>
</tr>
<tr>
<td>Alnus glutinosa</td>
<td>Ontano nero</td>
</tr>
<tr>
<td>Fraxinus excelsior</td>
<td>Frassino maggiore</td>
</tr>
<tr>
<td>Populus alba</td>
<td>Pioppo bianco</td>
</tr>
<tr>
<td>Populus nigra</td>
<td>Pioppo nero</td>
</tr>
<tr>
<td>Populus x canescens</td>
<td>Pioppo grigio</td>
</tr>
<tr>
<td>Prunus avium</td>
<td>Ciliegio selvatico</td>
</tr>
<tr>
<td>Quercus robur</td>
<td>Farnia</td>
</tr>
<tr>
<td>Salix alba</td>
<td>Salice bianco</td>
</tr>
</tbody>
</table>
3.2.2 Analisi vegetazionale

Le realtà ambientali delle aree di intervento sono suscettibili in Italia di grosse differenze regionali in dipendenza dei gradienti latitudinali/altitudinali ma anche geopedologici e climatici che portano ad una notevole differenziazione degli ecosistemi e delle caratteristiche della vegetazione.

Lo scopo delle analisi è quello di individuare l’insieme delle specie autoctone di possibile impiego più coerenti con la vegetazione del sito intendendo non necessariamente quelle effettivamente presenti nell’area, ma più spesso quelle della vegetazione potenziale di riferimento.

Gli studi vegetazionali possono essere condotti su base fisionomica e/o fitosociologica. L’approccio fitosociologico e sindinamico saranno comunque fondamentali per comprendere lo stadio evolutivo e i rapporti seriali e successionali tra le fitocenosi presenti (per maggiori dettagli si veda Ercole et al., 2010). Infatti per progettare le cenosi da impiantare in ciascuna situazione stazionale bisognerà scegliere lo stadio della vegetazione più idoneo a cui fare riferimento. Ad esempio, nel caso di una linea elettrica che attraversi un bosco, il ripristino della fascia di taglio raso non potrà prevedere l'impianto di specie arboree, soprattutto per il pericolo di interferenze con i conduttori. Pertanto, per la scelta delle specie, bisognerà utilizzare come riferimento le associazioni “mantello”, cioè stadi successionali meno maturi e riprodurre formazioni di prato arbustato, tenendo conto anche di altre condizioni stazionali quali esposizione, inclinazione e substrato. Situazioni di impatto paesaggistico sulle fasce di taglio da determinati punti visuali possono essere risolte con siepi di alto arbustivo.

| *Tilia cordata* | Tiglio selvatico |
| *Ulmus minor* | Olmo campestre |
4. PROGETTAZIONE

4.1 Documenti di progetto

Nei progetti delle infrastrutture di trasporto elettrico (elettrodotti e relative stazioni elettriche) gli interventi a verde vanno collocati tra le "opere principali" e sono soggetti alle stesse fasi e modalità delle altre opere per le quali il testo base di riferimento è oggi il DPR 207/2010 (regolamento di applicazione del Dlgs 163/2006 e abrogativo del precedente DPR 554/99) artt. 14 – 43.

L'esperienza professionale maturata negli ultimi anni nel settore della progettazione delle opere a verde e di IN in ambito SIA e successive fasi procedurali, consente di dettagliare gli elenchi delle documentazioni che è necessario / utile produrre a supporto di tali progetti.

Quindi, poiché il progetto degli interventi a verde e IN fa parte del progetto generale dell'infrastruttura (si parla di progetto integrato) alcuni dei documenti ad esso relativi vanno inseriti in parti della documentazione generale, cioè non di diretta competenza, come ad esempio il Piano Sicurezza, il Capitolato d’appalto.

Gli elenchi delle documentazioni che seguono fanno anche riferimento alle proposte della “Linea guida alla progettazione degli interventi di ingegneria naturalistica nella Regione Marche” (AIPIN Marche 2010).

Progetto di fattibilità / mitigazioni da inserire in ambito SIA
- Relazione botanico-vegetazionale
- Corografia
- Fotomosaico
- Foto simulazioni da punti visuali significativi delle situazioni: *ante operam, post operam* con la sola infrastruttura, *post operam* con gli interventi di mascheramento a verde
- Relazione tecnica di progetto contenente, oltre alla descrizione degli aspetti prettamente ingegneristici dell'impianto elettrico, anche le tabelle delle specie legnose di impiego distinte tra arbustive ed arboree e la descrizione degli interventi a verde e di IN
- Planimetria dello stato di fatto
- Planimetria del progetto degli interventi a verde e di IN sulla base del progetto dell’infrastruttura (scale varie)
- Sezioni tipo degli interventi di rivegetazione e IN
- Indicazioni sulle manutenzioni

Progetto Preliminare
1. Premessa
2. Aspetti climatici
3. Aspetti geologici, geomorfologici (da SIA)
4. Vincolistica (da SIA)
5. Pedologia
6. Vegetazione naturale e potenziale
7. Relazione tecnica con proposte progettuali
8. Documentazione fotografica
9. Quadro economico
10. Corografia (scala 1:25.000)
11. Piano Catastale

Progetto Definitivo
1. Relazione geologica (da SIA e/o da progetto infrastruttura)
2. Relazione pedologica con analisi dei suoli e progetto interventi
3. Relazione botanico-vegetazionale con rilievi floristici e fitosociologici
4. Relazione tecnica di progetto contenente, oltre alla descrizione degli aspetti prettamente ingegneristici dell'impianto elettrico, anche i seguenti dati:
- tabelle delle miscele delle specie erbacee per le semine;
- tabelle delle specie legnose di impiego distinte tra arbustive ed arboree;
- sesti di impianto tipologici con percentuale delle singole specie di alberi/arbusti;
- descrizione degli interventi a verde, di IN.

5. Stima dei costi
6. Documentazione fotografica
7. Fotosimulazioni
8. Corografia (25.000)
9. Fotomosaico
10. Planimetria catastale dell’area di intervento
11. Planimetria dello stato di fatto
12. Planimetria del progetto degli interventi di IN sulla base del progetto dell’infrastruttura
13. Sezioni degli interventi a verde e di IN sulla base delle sezioni del progetto dell’infrastruttura
14. Sezioni tipo e particolari costruttivi per gli interventi a verde e di IN

Progetto esecutivo

1. Relazione pedologica (se non già contenuta nel progetto definitivo)
2. Relazione botanico-vegetazionale (se non già contenuta nel progetto definitivo)
3. Relazione tecnica di progetto contenente:
 - tabelle delle miscele delle specie erbacee per le semine;
 - tabelle delle specie legnose di impiego distinte tra arbustive ed arboree;
 - piani di scarpata per ogni singola superficie di intervento (sesti di impianto con indicate le specie di alberi/arbusti);
 - descrizione degli interventi a verde, di IN
4. Analisi nuovi prezzi
5. Elenco prezzi
6. Computo metrico estimativo
7. Documentazione fotografica
8. Corografia (25.000)
9. Planimetria catastale dell’area di intervento con le aree di ingombro degli interventi a verde
10. Planimetria catastale dell’area di intervento con l’ubicazione delle eventuali alberature d’alto fusto esistenti da salvaguardare/trapiantare
11. Planimetria del progetto degli interventi di IN sulla base del progetto dell’infrastruttura (scale esecutive in genere 1:1.000 – 1:500)
12. Sezioni degli interventi a verde e di IN sulla base delle sezioni del progetto dell’infrastruttura
13. Sezioni tipo e particolari costruttivi per gli interventi di rivegetazione, IN
14. Voci tecniche di capitolo da inserire nel Capitolo speciale d’appalto
15. Elementi per il Piano di sicurezza (parte di competenza)
16. Elementi per il Programma di manutenzione (parte di competenza)
17. Piano di monitoraggio Ambientale (parte di competenza)
18. Cronoprogramma riferito al crono programma del progetto dell’infrastruttura
19. Quadro incidenza percentuale della manodopera
4.2 Tecniche di rivegetazione e ingegneria naturalistica applicate al trasporto elettrico

Vengono descritte sinteticamente le tecniche di possibile utilizzo nell’ambito delle infrastrutture di trasporto elettrico. Per maggiori dettagli si rimanda alla copiosa bibliografia di riferimento (Cap. 6).

4.2.1 Tecniche antierosive

Semine e idrosemine

Si tratta dello spargimento manuale e meccanico di una miscela di sementi, di origine certificata, su superfici destinate alla rivegetazione, in accordo con le condizioni ecologiche stazionali. Lo spargimento meccanico avviene mediante l’impiego di un’idrosematrice dotata di botte, nella quale vengono miscelati sementi, collanti, concimi, ammendanti e acqua. La miscela così composta viene sparsa sulla superficie mediante pompe a pressione di tipo e caratteristiche tali da non danneggiare le sementi stesse. Le idrosemine a spessore prevedono l’aggiunta di fibre organiche (torba, pasta di cellulosa, ecc.)

Le semine con specie commerciali vanno considerate di pronto intervento con funzione antierosiva. Nel medio–lungo periodo avviene gradualmente l’ingresso delle specie locali e la completa sostituzione del mix originario.

Viene di seguito riportato un esempio di miscela di specie commerciali preparatoria per scarpate in zona mediterranea, che è stata inserita nel progetto della SE di Ittiri (SS).

<table>
<thead>
<tr>
<th>Specie</th>
<th>% in peso</th>
</tr>
</thead>
<tbody>
<tr>
<td>Famiglia Gramineae</td>
<td></td>
</tr>
<tr>
<td>Lolium perenne</td>
<td>20</td>
</tr>
<tr>
<td>Dactylis glomerata</td>
<td>10</td>
</tr>
<tr>
<td>Cynodon dactylon</td>
<td>20</td>
</tr>
<tr>
<td>TOT Gramineae</td>
<td>50</td>
</tr>
<tr>
<td>Famiglia Leguminosae</td>
<td></td>
</tr>
<tr>
<td>Trifolium pratense</td>
<td>10</td>
</tr>
<tr>
<td>Trifolium repens</td>
<td>8</td>
</tr>
<tr>
<td>Lotus corniculatus</td>
<td>8</td>
</tr>
<tr>
<td>Medicago lupulina</td>
<td>8</td>
</tr>
<tr>
<td>Onobrychis viciifolia</td>
<td>4</td>
</tr>
<tr>
<td>Hedysarum coronarium</td>
<td>12</td>
</tr>
<tr>
<td>TOT Leguminosae</td>
<td>50</td>
</tr>
<tr>
<td>Totale</td>
<td>100</td>
</tr>
<tr>
<td>Quantità gr/m2</td>
<td>50</td>
</tr>
</tbody>
</table>
Semine con fiorume

Si intende lo spargimento manuale di un miscuglio di sementi e relativi steli derivato da fiorume, ossia fienagione raccolta trebbiando a più riprese comunità prative naturali o seminaturali locali nel periodo della produzione dei semi. Il fiorume viene impiegato su superfici destinate alla rivegetazione ove si voglia ottenere un rapido riformarsi delle cenosi prative dei siti di intervento ed è particolarmente adatto per semine su suoli ricchi di scheletro. Viene abbinato, laddove ve ne sia la necessità, allo spargimento di concimanti organici e/o inorganici.

Rivestimento con stuoie organiche o geostuoie sintetiche tridimensionali

Questa tecnica consiste nel rivestire le scarpate soggette ad erosione superficiale con stuoie organiche o tridimensionali sintetiche, costituite da filamenti sintetici aggrovigliati in modo da trattenere le particelle di materiale inerte terroso.

Le stuoie vengono assicurate al terreno mediante l’infissione di picchetti e interrate in solchi appositamente approntati sia a monte che a valle del versante. Le stuoie vengono abbinate ad un intasamento con materiale inerte terroso e ad una semina o idrosemina; possono essere messe a dimora anche talee ed arbusti autoctoni. Talvolta le stuoie sono abbinate a reti metalliche (rivestimento vegetativo).
Trapianto di zolle erbose dalle aree di intervento

Si tratta di un rivestimento antierosivo di scarpate mediante prelievo e successivo trapianto di zolle erbose di prato polifita naturale. Le zolle vengono disposte sul pendio a scacchiera o a strisce, e lo spazio tra una zolla e l’altra viene ricoperto con terreno vegetale e seminato.

4.2.2 Tecniche stabilizzanti

Messa a dimora di arbusti da vivaio

Viene effettuata la messa a dimora di giovani arbusti autoctoni in zolla o in vasetto, di produzione vivaistica. La messa a dimora avviene in buche appositamente predisposte, di dimensioni opportune ad accogliere l'intera zolla o tutto il volume radicale della pianta. La piantagione deve avvenire secondo un sesto d'impianto irregolare e con specie diverse disposte a mosaico. Per i primi anni le piante devono essere dotate di palo tutore, pacciamatura alla base per ridurre la concorrenza con le specie erbacee e cilindro in rete per protezione dalla fauna.
Messa a dimora di alberi da vivaio

Si tratta della messa a dimora di giovani alberi autoctoni in zolla o in vasetto, di produzione vivaistica. La messa a dimora avviene in buche appositamente predisposte e di dimensioni opportune ad accogliere l’intera zolla o tutto il volume radicale della pianta. La piantagine deve avvenire secondo un sesto d'impianto irregolare e con specie diverse disposte a mosaico. Per i primi anni le piante devono essere dotate di palo tutore, pacciamatura alla base per ridurre la concorrenza con le specie erbacee e cilindro in rete per protezione dalla fauna.

Trapianto di arbusti ed alberi dalle aree di intervento

Eventuali specie arbustive od arboree autoctone presenti all’interno delle aree di prevista occupazione del cantiere, in particolare per le stazioni elettriche, vanno segnalate a priori su cartografie di dettaglio e di esse va previsto il trapianto e la contemporanea messa a dimora nell’ambito delle aree destinate alla rivegetazione (ove compatibile con le operazioni di movimento terra) o in aree individuate ad hoc quando la contemporaneità del trapianto non è possibile all’interno del cantiere. Le operazioni di trapianto vanno eseguite nei periodi tardo autunnale – inverno (dopo la filloptosi) asportando possibilmente la pianta con l’intera zolla (arbusti, alberi di piccole dimensioni) o, nel caso di piante di più grandi dimensioni, salvaguardando la maggior quantità possibile di radici. Nel caso di necessità di espianto fuori stagione (vanno comunque esclusi periodi estivi di forte
riscaldamento/aridità e periodo di gelo invernale), vanno adottate misure compensative quali: forti potature della parte aerea, eventuale impiego di antitraspiranti o defoglianti, irrigazioni frequenti post trapianto, altre da concordarsi con la Direzione Lavori.

L’espianto e la rimessa a dimora devono avvenire in contemporanea. L’area di impianto va predisposta prima dell’espianto con una buca di dimensioni proporzionali (minimo 5 m di diametro per grandi alberi); le radici vanno potate a taglio netto che va sigillato con prodotto cicatrizzante, il riempimento va effettuato con suolo organico, arricchito con ammendanti, fertilizzanti e ormoni specifici per talee legnose. La parte aerea va eventualmente potata in maniera più o meno drastica a seconda delle dimensioni della pianta, della stagione, delle condizioni in genere dell’intervento. Nel caso di alberature vanno previsti pali tutori di dimensione proporzionale alle dimensioni della pianta o tiranti in fune d’acciaio opportunamente fissati al suolo.

Fig. 2 – Sezione tipo della messa a dimora di alberi. (Archivio Naturstudio Scarl)

Viene di seguito proposta una sequenza fotografica relativa a trapianti di alberature effettuati per le SE di Ittiri (SS) e di Chignolo Po (PV).

Foto 12 - Prelievo dell’esemplare da trapiantare. SE di Ittiri (SS). (Foto M. Testone, novembre 2009)
Foto 13 - Espianto con mezzo meccanico. SE di Ittiri (SS). (Foto M. Testone, novembre 2009)

Foto 14 - Preparazione dell'area di impianto. SE di Ittiri (SS). (Foto M. Testone, novembre 2009)

Foto 15 - Trapianto dell'esemplare arboreo. SE di Ittiri (SS). (Foto M. Testone, novembre 2009)

Foto 16 - Messa a dimora dell'esemplare arboreo. SE di Ittiri (SS). (Foto M. Testone, novembre 2009)

Foto 17 - Fasi finali dell'operazione di trapianto. SE di Ittiri (SS). (Foto M. Testone, novembre 2009)

Foto 18 - Vista dell'area dopo il trapianto. SE di Ittiri (SS). (Foto G. Sauli, dicembre 2009)
Foto 19 – Roverella trapiantata. SE di Ittiri (SS). (Foto G. Sauli, dicembre 2009)

Foto 20 - Fascia di trapianto di roverelle, sughere e arbusti prelevati dall'area di cantiere. SE di Ittiri (SS). (Foto G. Sauli, dicembre 2009)

Foto 21 e Foto 22 - Alcune fallanze per mancata irrigazione di soccorso nella prima stagione estiva. SE di Ittiri (SS). (Foto G. Sauli, giugno 2011)

Foto 23 – Interferenza tra l’area di cantiere ed alberature d’alto fusto esistenti. SE di Chignolo Po (PV). (Foto G. Sauli, estate 2010)

Foto 24 – Potature preparatorie ai trapianti in stagione sfavorevole. SE di Chignolo Po (PV). (Foto G. Sauli, settembre 2010)
Foto 25 – Operazioni di trapianto di Querce d’alto fusto. SE di Chignolo Po (PV). (Foto G. Sauli, settembre 2010)

Foto 26 – Operazioni di trapianto di Querce d’alto fusto. SE di Chignolo Po (PV). (Foto G. Sauli, settembre 2010)

Foto 27 – Potatura e sigillatura delle radici delle querce trapiantate. SE di Chignolo Po (PV). (Foto G. Sauli, settembre 2010)

Foto 28 – Verifica statica delle querce trapiantate. SE di Chignolo Po (PV). (Foto G. Sauli, gennaio 2011)

Foto 29 – Verifica statica delle querce trapiantate. SE di Chignolo Po (PV). (Foto G. Sauli, gennaio 2011)
Foto 30 - Verifica dell’attecchimento delle querce trapiantate. SE di Chignolo Po (PV). (Foto G. Sauli, giugno 2011)

Foto 31 - Verifica dell’attecchimento delle querce trapiantate. SE di Chignolo Po (PV). (Foto G. Sauli, maggio 2011)

Fascinate, viminate vive e graticciate

Queste tecniche vengono impiegate per la stabilizzazione di un pendio su pendenze massime di 30°-35° e con necessità di stabilizzazione e interruzione del ruscellamento superficiale. La messa in opera di tali tecniche potrà avvenire solo durante il periodo di riposo vegetativo.

Le fascinate sono realizzate tramite la messa a dimora di fascine vive di specie legnose con capacità di propagazione vegetativa (verghe di Tamerici e Salici, legate assieme con filo di ferro) all’interno di un solco, assicurate con picchetti battuti attraverso le fascine o di fronte ad esse.

Le viminate vive sono date da un insieme di verghe di specie legnose con capacità di propagazione vegetativa, intrecciate attorno a paletti di legno. Possono essere realizzate a file parallele lungo il versante oppure possono essere disposte diagonalmente a formare rombi, qualora sia necessario trattenere il terreno vegetale e ridurre il ruscellamento superficiale dell’acqua lungo il pendio.

Le graticciate sono composte da verghe di specie legnose con capacità di propagazione vegetativa, non intrecciate, fissate a valle da paletti in legno aventi a tergo un rincalzo di inerte locale.

Fig. 3 – Viminata viva seminterrata. (Archivio Naturstudio Scarl)
Foto 32 - Fascinate vive appena realizzate su suoli sabbiosi. Leprignana, Fregene (RM). (Foto G. Sauli, aprile 2007)

Foto 33 - Avvenuto ricaccio di fascinate vive su suoli sabbiosi, Leprignana, Fregene (RM). (Foto G. Sauli, settembre 2007)
Gradonate e cordonate vive

Le *gradonate vive* vengono realizzate tramite lo scavo di gradoni o terrazzamenti a file parallele su pendii con messa a dimora all’interno del gradone di ramaglia di piante legnose con capacità di riproduzione vegetativa (salici, tamerici, ecc.) e/o piante radicate di latifoglie e successiva copertura con materiale proveniente dagli scavi superiori. Nella tecnica delle *cordonate*, la messa a dimora di talee e ramaglia di salici avviene su un tronco posto sul margine esterno dello scavo. Parallelo al primo tronco è posto entro lo scavo stesso un secondo tronco di rinforzo alla struttura.
4.2.3 Tecniche combinate e di sostegno

Grate vive

Si tratta di strutture in tondame ottenute mediante la posa su scarpate in erosione di tronchi verticali e orizzontali disposti perpendicolarmente tra loro. I tronchi orizzontali sono sovrapposti a quelli verticali e sono chiodati ad essi.

All’interno delle camere così ottenute, vengono poste talee di salici e/o arbusti radicati e il tutto viene ricoperto con inerte terroso locale.
Palificate vive di versante

Strutture in tronchi costituite da un’incastellatura di tronchi a formare camere nelle quali vengono inserite talee di salici. L’opera è completata dal riempimento con materiale terroso inerte e pietrame. Il pietrame posto a chiudere le celle verso l’esterno garantisce la struttura dagli svuotamenti, le talee inserite in profondità sono necessarie per garantire l’attecchimento delle piante, che negli ambienti mediterranei soffrono per le condizioni di aridità.
Palificata vive spondali

L’opera, costituita da un’incastrastura di tronchi a formare camere nelle quali vengono inserite fascine e talee di salici, posta alla base della sponda, è completata dal riempimento con materiale terroso inerte e pietrame nella parte sotto il livello medio. Il pietrame e le fascine poste a chiudere le celle verso l’esterno garantiscono la struttura dagli svuotamenti, le talee inserite in profondità sono necessarie per garantire l’attecchimento delle piante che negli ambienti mediterranei soffrono per le condizioni di aridità.

Terre rinforzate verdi

Queste opere di sostegno sono realizzate mediante l'abbinamento di materiali di rinforzo orizzontale in georeti sintetiche o metalliche plastificate, inerti di riempimento e rivestimento in stuoie sul fronte esterno, tali da consentire la crescita delle piante. Sotto il profilo statico, la stabilità della struttura è garantita dal peso stesso del terreno consolidato internamente dai rinforzi; la stabilità superficiale dell'opera è assicurata dalle stuoie sul paramento e dalle piante.
4.3 Progettazione delle diverse tipologie di intervento ed esempi di realizzazione

Si riporta di seguito una casistica di interventi esemplari a verde e di IN corredata da stralci di elaborati di progetto documentazioni fotografiche di opere realizze.

4.3.1 Stazioni elettriche di nuova realizzazione

Le stazioni elettriche di nuova progettazione sono generalmente realizzate su aree piane in zone planiziali o collinari. Le superfici di occupazione variano in genere da 3 a 10 ha. Vengono considerate due morfologie principali di intervento:

- in zone planiziali agricole;
- in zone collinari.

In entrambi i casi una moderna progettazione deve prevedere fasce esterne alle recinzioni degli impianti industriali della stazione, da destinare ad opere di mascheramento mediante interventi di rivegetazione.

Siepi, sieponi e fasce boscate

Nelle nuove realizzazioni sono realizzabili tipologie di mascheramento perimetrale a verde, a seconda dello spazio disponibile, mediante:

- fasce ad arbusti da utilizzarsi nelle zone di ingresso dei conduttori, dove non vanno piantate specie arboree per motivi di possibile interferenza con i cavi;
- sieponi di specie arbustive ed altoarbustive autoctone ove lo spazio a disposizione sia limitato (inf. a 10 m) e tenendo conto comunque della necessità di realizzare una pista perimetrale in fondo inerbito o in ghiaia di sgombro in adiacenza alla recinzione della stazione. Il sesto di impianto e la disposizione delle varie specie vanno realizzati a mosaico per creare varietà ecotonale e visuale. Va tenuto conto anche delle caratteristiche biotecnche delle specie per la formazione di sieponi: ad esempio per le regioni del nord Italia il Carpino bianco (*Carpinus betulus*) è un’ottima specie stabilizzante e coprente che mantiene a lungo le foglie anche d’inverno;
- anche in situazioni particolari di mancanza di spazio vanno comunque evitate le siepi monospecifiche con specie esotiche a morfologia geometrica e realizzate invece siepi polispecifiche con essenze arbustive autoctone disposte in modo alternato;
- siepi a tetto, fasce boscate e fasce boscate tampone ad arbusti ed alberi locali. Va proposta la disposizione ad altezze crescenti a partire dalla recinzione verso l’esterno (prato – bassi arbusti – alti arbusti – alberi) per vari motivi di sicurezza e non interferenza.
- Anche in questo caso sesti di impianto e disposizione delle varie specie vanno realizzati a mosaico. Vanno evitate disposizioni a file e forme geometriche di impianto, che si discostano eccessivamente dalle morfologie naturali. Per soddisfare la necessità di sfalci meccanici per il controllo delle invasive, si possono prevedere file curve o a spirale;
- per aree piane dove si intendono impiantare cenosi arboree può essere utilizzata la disposizione a “macchia seriale”, che prevede una striscia esterna a soli arbusti ed una interna ad alberi di dimensioni varie e crescenti. Lo scopo è quello di ricreare le condizioni ecotonalì; inoltre se si adotta una forma circolare si esalta l’effetto di protezione interna creando habitat per specie faunistiche silvicole.
Fig. 8 – Fascia ad arbusti misti autoctoni. (Archivio Naturstudio Scarl)

Fig. 9 - Siepone boscato con specie arbustive, alto arbustive ed arboree alternate. (Archivio Naturstudio Scarl)
Fig. 10 - Fascia boscata tampone realizzata mediante messa a dimora di arbusti ed alberi verso l’esterno e di soli arbusti verso l’interno dell’area della stazione per non creare interferenze con la zona di recinzione e la fascia di sgombro perimetrale. (Archivio Naturstudio Scarl)

In alcuni casi vengono ancora oggi realizzati muri perimetrali in calcestruzzo con funzione antincendio ed antiintrusione in aree dove sussistono particolari problematiche in tal senso. In tali situazioni possono essere realizzati, esternamente al perimetro, siepi e fasce boscate di mascheramento.
Interventi di mascheramento su terrapieni rivegetati

Nella costruzione di nuove SE in zone piane va presa in considerazione la realizzazione di terrapieni perimetrali con funzione duplice:

- di mascheramento efficace dalla prospettiva di punti visuali esterni, in quanto si realizzano terrapieni collocati in adiacenza agli impianti, di facile e rapido rinverdimento mediante
formazione di cotici erbosi da semine e miglioramento nel tempo a carico di arbusti ed alberi messi a dimora sulle scarpate e sulla testa dei terrapieni stessi;
• di deposito e riciclaggio dei materiali di scotico e scavo nell’ambito dello stesso cantiere, con risparmio dei costi di trasporto e messa a discarica.

Importante anche effettuare l’analisi pedologica del suolo di scotico per determinarne le caratteristiche ed in particolare la granulometria e la percentuale di sostanza organica in funzione del riutilizzo come terreno vegetale.

Si riportano di seguito a titolo di esempio, le risultanze di interventi di mascheramento di Stazioni Elettriche di recente costruzione mediante realizzazione di terrapieni e zone piane perimetrali rivegetati. In particolare si farà riferimento ai seguenti due casi:

1 - **SE di Maleo (LO)** dove sono stati scoticati circa 50 cm di suoli agrari a granulometria prevalente sabbiosa (65 – 75 %) e buon contenuto di sostanza organica (2 – 3 %). Questi suoli risultano adatti al riutilizzo tal quale come suolo di copertura dei terrapieni di mascheramento e zone piane perimetrali (vedi planimetria) e alla costruzione dei terrapieni stessi miscelando con inerte ghiaioso di cava per migliorarne la stabilità (angolo di scarpata 27° -30°).

2 - **SE di Chignolo Po (PV)** dove invece il suolo di scotico è risultato franco limoso argilloso (52 + 23 % di limo e argilla) con medio-bassa percentuale di sostanza organica (2 %). Questo suolo è risultato quindi poco adatto alla formazione dei rilevati, per i quali è stato necessariamente alternato a strati con inerte di cava, e per niente adatto come terreno vegetale di copertura. Si è dovuto pertanto approvvigionare dall’esterno terreno a matrice sabbiosa con conseguente necessità di provvedimenti antierosivi (stuoie di juta).

La disposizione e la morfologia dei terrapieni (talvolta chiamati erroneamente “dune”) dipende dal tipo di suolo, dalle disponibilità di spazio, dalle strade di accesso e perimetrali, dall’esame attento delle possibili interferenze con le linee aeree e interrate in arrivo/partenza dalla SE. Oltre all’altezza dei terrapieni (5-6 m), va considerato anche il futuro sviluppo delle piante arboree che vengono messe a dimora in testa ad essi. Infatti per tutte le superfici in scarpata e in piano nelle fasce perimetrali destinate al verde, vanno progettate e realizzate piantagioni di arbusti ed alberi alternando fasce ad arbusti, fasce boscate e zone semplicemente inerbite in funzione delle possibili interferenze, ma anche nell’ottica di ricreare fisionomie più naturaliformi possibile.

Esperienze datate di terrapieni boscati di mascheramento di impianti industriali hanno dato validi risultati sia in termini visuali che naturalistici.
Fig. 11 – Planimetria e sezioni tipo di interventi di mascheramento e rivegetazione della nuova Stazione Elettrica di Maleo (LO). (Progetto esecutivo Terna Spa - 2010)

Fig. 12 – Sezione e sesto di impianto tipo di intervento di rivegetazione di terrapieno di mascheramento di stazione elettrica di Maleo (LO). (Progetto esecutivo Terna Spa - 2010)
Foto 44 - Situazione *ante operam*. SE di Maleo (LO) (Foto G. Sauli)

Foto 45 - Simulazione fotografica della costruzione della sola stazione. SE di Maleo (LO)

Foto 46 - Simulazione fotografica delle risultanze visuali degli interventi a verde previsti. SE di Maleo (LO)

Foto 47 – Formazione di rilevati di mascheramento con utilizzo dei materiali di scotico misti a inerte di cava. SE di Maleo (LO) (Foto G. Sauli, inverno 2011)

Foto 48 – Completamento terrapieni di mascheramento con stuoie antierosive in juta. Nuova S.E. di Chignolo Po (PV). (Foto G. Sauli, estate 2011)
Foto 49 – Piantagioni di arbusti ed alberi su terrapieno e aree piane. Visibili gli shelter di protezione antifauna. Nuova stazione elettrica di Maleo (LO) - (Foto G. Sauli, dicembre 2011)

Foto 50 – Inerbimenti e messa a dimora di arbusti ed alberi. Stazione elettrica di Chignolo Po (PV) (Foto A. Corneo, dicembre 2011)

Foto 51 – Rilevato vegetato ad arbusti ed alberi dopo 10 anni in ambito industriale (depuratore Consorzio Laguna UD). (Foto G. Sauli, luglio 2007)

Foto 52 – Effetto di mascheramento di impianto industriale mediante terrapieno vegetato in località Tolmezzo UD. (Foto G. Sauli, giugno 2003)
Rivegetazione di scarpate perimetrali

Si riportano a titolo di esempio i casi della nuova SE di Ittiri (SS) collegata con una nuova linea elettrica con la esistente stazione di Codrongianos (SS) e quello della nuova SE di Bisaccia (AV) anche a servizio dei numerosi parchi eolici dell’area.

SE di Ittiri (SS)

Fig. 13 – S.E. di Ittiri (SS). Planimetria degli interventi di rivegetazione in zona stenomediterranea. (Progetto esecutivo Terna Spa - 2009)
Fig. 14 – S.E. di Ittiri (SS). Sezioni tipo degli interventi di rivegetazione in zona stenomediterranea. (Progetto esecutivo Terna Spa - 2009)

Foto 53 - Panoramica area futura stazione Ittiri (SS), vista da Est. Situazione ante operam. (Foto G. Sauli)

Foto 54 - Panoramica area della futura stazione di Ittiri (SS), vista da Est. Fotosimulazione a stazione costruita e verde sviluppato. (Foto G. Sauli)

Foto 55 - Panoramica reale della stazione elettrica di Ittiri (SS) costruita. Stato al 24.6.2011 prima degli interventi a verde. (Foto G. Sauli)
Foto 56 – Nuova stazione elettrica di Ittiri (SS), scarpata esp. Ovest prima degli interventi a verde. (Foto G. Sauli, giugno 2011)

Foto 57 – Stazione elettrica di Ittiri (SS), scarpate prima degli interventi a verde, sughereta e gariga a cisti dell’area circostante. (Foto G. Sauli, giugno 2011)

SE di Bisaccia (AV)
La stazione è inserita in un contesto collinare con comunità erbacee riferibili al prato-pascolo e prevede la realizzazione di ampi rilevati a bassa pendenza (colmate) che saranno oggetto di interventi a verde.

Foto 58- SE di Bisaccia (AV) in costruzione. Panoramica da nord con ampie scarpate in rilevato a valle. (Foto G. Sauli, febbraio 2010)
4.3.2 Adeguamento di Stazioni Elettriche esistenti

Nel caso di opere di adeguamento di stazioni esistenti, il progetto degli interventi a verde deve tenere conto delle morfologie e delle infrastrutture preesistenti nel sito (strade, centri abitati, ecc.), anche in ottemperanza ad eventuali prescrizioni degli Enti coinvolti. Sarà pertanto necessario utilizzare al massimo tutte le superfici perimetrali disponibili, anche esterne alle recinzioni.

Siepi perimetrali

Si riportano alcune immagini di siepi perimetrali di stazioni elettriche esistenti, realizzate con specie arbustive esotiche. Tale sistema di mascheramento visuale collocato all’interno della recinzione non viene di solito più utilizzato nelle nuove costruzioni, dove vengono destinati agli interventi a verde e di mascheramento spazi più ampi esternamente all’impianto.
Interventi su scarpate esistenti

Vengono di seguito presentati gli interventi a verde di mascheramento progettati nell’ambito dei lavori di adeguamento delle stazioni elettriche di Scilla (RC), in cui sono stati progettati una serie di interventi migliorativi della situazione esistente sulla base di prescrizioni del Comune, e di Codrongianos (SS), di cui è stato progettato il mascheramento mediante realizzazione di una fascia boscata esterna.
SE di Scilla (RC)

Fig. 15 - Fascia boscata su scarpata esistente realizzata mediante semina e semplice messa a dimora di alberi ed arbusti autoctoni. (Progetto fattibilità Terna Spa - 2008)

Foto 64 – SE di Scilla. Stato *ante operam* della scarpata lato strada. (Foto G. Sauli)

Fig. 16 – Alternativa progettuale 1. Mascheramento del muro di sostegno lato strada con rilevato in terra verde armata. (Progetto fattibilità Terna Spa - 2008)

Fig. 17 – Alternativa progettuale 2. Mascheramento del muro di sostegno lato strada con muro a secco in pietra locale parzialmente fugato in modo da garantire la formazione di microhabitat. (Progetto fattibilità Terna Spa - 2008).

Foto 67 - SE di Scilla. Simulazione fotografica delle risultanze visuali degli interventi di mitigazione previsti. Alternativa progettuale 2: soluzione con rivestimento in muro a secco in pietra locale, piantagione di arbusti autoctoni e fascia boscheta tampone all’interno della recinzione.
4.3.3 Linee elettriche di nuova costruzione

Per motivi dimensionali, i tralicci delle linee elettriche sono sempre di difficile inserimento nel paesaggio e i mascheramenti con la vegetazione sono scarsamente efficaci. Per le nuove linee ci si orienta prevalentemente sull’utilizzo di tipi di traliccio di recente progettazione che ne migliorano l’inserimento paesaggistico e ne riducono l’ingombro al suolo. Fra questi vi sono i pali monostelo, che possono essere verniciati in colori coerenti con il contesto paesaggistico e i tralicci tipo Foster.
Foto 70 – Pali monostelo in zona Lago d’Orta (NO). (Foto G. Sauli, dicembre 2009)

Foto 71 – Pali monostelo a mezza costa in Loc. Omegna (VB). (Foto G. Sauli, dicembre 2009)

Foto 72 - Miglioramento dell’impatto paesaggistico mediante gradazione cromatica decrescente su pali di aerogeneratore. Analogamente, questa soluzione cromatica, con gradazioni decrescenti sulle tonalità del verde e del grigio, è applicabile anche ai pali monostelo delle nuove linee elettriche. (Foto G. Sauli)

Foto 73 - Traliccio tipo Foster località Scandicci (FI). (Foto G. Sauli, gennaio 2010)
Filari e fasce boscate di mascheramento visuale per linee in zone di pianura

Per le linee che attraversano zone di pianura, in alcuni casi possono essere realizzati interventi a verde di mascheramento mediante filari di alberi che raggiungono nell’età adulta anche dimensioni notevoli, come il pioppo cipressino, tipico del paesaggio padano veneto.
Laddove possibile, è auspicabile la realizzazione di fasce di vegetazione boscata abбинate ai filari di pioppi cipressini.

Foto 74 - Filari di Pioppo cipressino in pianura veneta. (Foto G. Sauli, maggio 2011)

Foto 75 – Area di costruzione di una linea a pali monostelo, stato ante operam. Idrovia Padova-Venezia (Vigonovo -VE). (Foto G. Sauli)

Interventi alla base dei singoli tralicci

Come già detto nei capitoli introduttivi, gli interventi di rivegetazione nelle aree dei tralicci non sono in genere proponibili per una serie di motivi che possono essere così riassunti:
- i terreni occupati rimangono di proprietà dei privati ai quali non si può vincolare l’uso del suolo che è in genere agricolo;
- non sono in genere gradite dai proprietari specie legnose perché contrastano con la destinazione d’uso agricolo (ombreggiamento, radicazione invasiva);
- vanno al contrario messi in conto eventuali interventi manutentivi di eliminazione delle infestanti;
- vi sono motivi gestionali che richiedono la completa accessibilità alle basi dei tralicci stessi;
- vi sono altresì motivi di sicurezza legati al pericolo di incendi;
- nelle zone collinari e montane può essere talvolta necessario adottare tecniche di IN per stabilizzare/consolidare scarpate a monte o a valle dei tralicci.

Solo in alcuni casi particolari, in zone di elevato valore naturalistico e su richiesta degli Enti competenti possono essere realizzati interventi specifici di rivegetazione alla base dei tralicci.

Tipologie di basamento dei tralicci

Le moderne tipologie di tralicci sono fondate su singoli plinti ed i piedi collocati spesso ad altezze variabili (zoppicature). Viene in genere mantenuta l’accessibilità all’interno della base per lavori di sfalcio e fresatura del suolo. In certi casi si usa ancora cementare l’intera base come nel caso dei pali “gatto”. I pali monostelo presentano il vantaggio di un minore ingombro alla base.
Foto 77 - Base di traliccio e particolare delle zoppicature, SE di S. Severo. (Foto G. Sauli, febbraio 2010)

Foto 78 - Zoppicature di altezza differenziata. Traliccio posizionato in un’area collinare ad oliveti in località S. Barbara (Scandicci, FI). (Foto G. Sauli, gennaio 2010)

Foto 79 - Zoppicature di altezza differenziata. Traliccio in località S. Barbara (Scandicci, FI). (Foto G. Sauli, gennaio 2010)

Foto 81 - Base cementata di palo “gatto”, Omegna (VB). (Foto G. Sauli, dicembre 2009)

Foto 82 - Base cementata di palo “gatto”, Omegna (VB). (Foto G. Sauli, dicembre 2009)
Interventi di riqualificazione dei cantieri e delle piste dei tralicci

Nelle aree dei cantieri di deposito, manovra, trasporto, tesatura e relative piste, vanno per prima cosa effettuati interventi di ricomposizione dei suoli, in genere anche con riporti di terreno vegetale e semine.

Foto 83 – Basamento di un palo monostelo, Omegna (VB). (Foto G. Sauli, dicembre 2009)

Foto 84 – Piste di accesso ai minicantieri, da ripristinare a fine lavoro; S. Barbara (Scandicci, FI). (Foto G. Sauli, gennaio 2010)

Foto 85 – Postazione di lavoro per tesatura; S. Barbara (Scandicci, FI). (Foto G. Sauli, gennaio 2010)

Foto 86 – Trasporto dei conduttori tramite piste temporanee; S. Barbara (Scandicci, FI). (Foto G. Sauli, gennaio 2010)

Foto 87 – Minicantiere per la demolizione di un vecchio traliccio; S. Barbara (Scandicci, FI). (Foto G. Sauli, gennaio 2010)
4.3.4 Dismissione di linee esistenti

Nel processo di razionalizzazione delle reti, la costruzione di nuove linee è sempre accompagnata dalla dismissione di tratti più lunghi di vecchie linee. Le superfici dei basamenti vengono ricondotte all’uso del suolo circostante (agricolo, prato). In genere va effettuato il riporto di terreno vegetale ed eseguite delle semine di protezione.

Anche in questo caso l’ipotesi, avanzata da alcuni progettisti, di rivegetare con essenze arbustive, non è percorribile per il fatto che tali superfici devono essere riportate all’uso del suolo previsto dai proprietari.

Foto 89 – Operazioni di demolizione di tralicci in aree a prato; Borgomanero (NO). (Foto G. Sauli, dicembre 2009)

Foto 90 - Operazioni di demolizione di tralicci in aree a prato; Borgomanero (NO). (Foto G. Sauli, dicembre 2009)

Foto 91 – Lavori di demolizione con uso di elicottero sulla linea Loc. Omegna (VB). (Foto G. Sauli, dicembre 2009)
Foto 92 - Base di un traliccio demolito con ricomposizione del suolo; Loc. Omegna (VB). (Foto G. Sauli, dicembre 2009)

Foto 93 – Base di un traliccio demolito con ricomposizione suolo; Loc. Omegna (VB). (Foto G. Sauli, dicembre 2009)

Foto 94 - Demolizioni e nuove costruzioni in parallelo con ricomposizione del suolo; Borgomanero (NO). (Foto G. Sauli, dicembre 2009)

Foto 95 – Area di un vecchio sito; Borgomanero (NO). (Foto G. Sauli, dicembre 2009)

Foto 96 - Demolizione e nuova costruzione in zona collinare. (Foto G. Sauli)
5. MONITORAGGIO E MANUTENZIONE DEGLI INTERVENTI DI RIVEGETAZIONE -

Gli interventi a verde e di IN prevedono l’adozione di attività di monitoraggio e manutenzione.

5.1 Obiettivi del monitoraggio e tempistica

Il monitoraggio delle opere eseguite prevede numerose analisi (botaniche, biometriche, naturalistiche) finalizzate a verificare sia agli aspetti strutturali e di attecchimento delle piante, sia quelli di integrazione nel contesto floristico, vegetazionale e paesaggistico:

1. verifica della percentuale di attecchimento;
2. verifica della funzionalità e dell’efficacia dei presidi antifauna, dischi pacciamanti, pali tutori;
3. monitoraggio degli eventuali danni da fauna selvatica/domestica;
4. livello di copertura al suolo;
5. rilievi floristici per determinare lo stato di ripresa della vegetazione spontanea del piano dominato (arbustivo);
6. rilievi floristici per determinare lo stato di ripresa della vegetazione spontanea delle specie di sottobosco;
7. verifica della presenza di specie infestanti e ruderali;
8. analisi della composizione floristica dello strato arbustivo in riferimento ai sesti di impianto iniziali;
9. analisi della composizione floristica dello strato arboreo e rilievo dendrologico in riferimento ai sesti di impianto iniziali;
10. calcolo del numero di fallanze per specie di arbusti ed alberi;
11. verifica della necessità/opportunità di effettuare delle potature di irrobustimento;
12. sfoltimento programmato;
13. analisi percettiva dell’effettivo livello schermante dovuto alla vegetazione di progetto da eseguirsi tramite rilievo fotografico.

La periodicità consigliata delle verifiche è: I anno, II anno, V anno

Il responsabile del programma di monitoraggio/manutenzione avrà i seguenti compiti:
- effettuare i monitoraggi botanici, biometrici e naturalistiche con lo scadenario previsto (I, II, V anno);
- in base alle risultanze delle verifiche e alle necessità di interventi di manutenzione redigere un elenco di attività da svolgere a carico di ditta specializzata;
- controllare la corretta esecuzione di tali interventi, identificare eventuali misure correttive non previste;
- redigere rapporti periodici da sottoporre agli Enti preposti.

5.2 Tipologie e periodicità degli interventi di manutenzione

5.2.1 Manutenzione nelle stazioni elettriche

Il programma degli interventi di manutenzione riguarderà tutte le opere eseguite, ma in particolare nel caso delle stazioni sarà rivolto prevalentemente alle fasce boscate di mascheramento e prevederà in linea di massima i seguenti interventi:
- sfalci periodici;
- irrigazioni di soccorso per almeno le prime 2 stagioni;
• eventuali risemine manuali di rincalzo;
• concimazioni;
• sostituzione delle fallanze;
• risistemazione/sostituzione/eliminazione dei presidi antifauna, dei pali tutori, dei dischi pacciamanti e sostituzione delle specie deperienti;
• eliminazione delle specie legnose non pertinenti con gli habitat target;
• eventuale infittimento delle aree ripristinate a verde tramite ulteriore piantagione di specie legnose autoctone;
• eradicazione delle specie erbacee infestanti e ruderali;
• eventuale piantagione/riassetto dei presidi di mascheramento visuale al fine di ottenere l’effetto “cortina verde” desiderato;
• interventi di potatura;
• allontanamento a discarica di tutto il materiale vegetale derivante da sfalci e potature.

Gli interventi di manutenzione seguono ovviamente la periodicità dei monitoraggi e vengono pertanto effettuati generalmente nel I, nel II e nel V anno a seguito dell’impianto.
Per ciascun anno sono previste le seguenti attività:

I anno:
- sfalci periodici (min. 2 x anno);
- irrigazioni di soccorso;
- concimazioni;
- eradicazione delle specie erbacee infestanti e ruderali;
- sostituzione delle fallanze;
- risistemazione/sostituzione dei presidi antifauna, dei pali tutori, dei dischi pacciamanti e sostituzione delle specie deperienti;
- eliminazione delle specie legnose non pertinenti con gli habitat target;
- allontanamento a discarica di tutto il materiale vegetale derivante dagli sfalci e potature.

II anno:
- sfalci periodici (min 2 x anno);
- irrigazioni di soccorso;
- concimazioni;
- eradicazione delle specie erbacee infestanti e ruderali;
- sostituzione delle fallanze residue;
- eventuale risistemazione/sostituzione dei presidi antifauna, dei pali tutori e dei dischi pacciamanti;
- eventuali potature di irrobustimento;
- eventuali infoltimenti per determinate specie;
- allontanamento a discarica di tutto il materiale vegetale derivante dagli sfalci e potature.

V anno:
- eventuali sfalci periodici;
- eventuale infittimento delle aree ripristinate a verde tramite ulteriore piantagione di specie legnose autoctone;
- eventuale piantagione/riassetto dei presidi di mascheramento visuale al fine di ottenere l’effetto “cortina verde” desiderato;
- interventi di potatura;
- rimozione delle recinzioni di protezione;
- allontanamento a discarica di tutto il materiale vegetale derivante dagli sfalci e potature.
5.2.2 Manutenzione lungo le linee

Per linee che attraversano zone boscate, spesso a mezzacosta in montagna, sono necessari periodici interventi di manutenzione finalizzati alle possibili interferenze fra gli alberi e i conduttori. Le strategie da mettere in atto per limitare queste interferenze sono:

- adottare tralicci molto alti in modo da superare con le catenarie le dimensioni degli alberi ed eliminare così le possibili interferenze con i conduttori;
• adottare tralicci più bassi e più numerosi, di minore impatto visuale ed effettuare il taglio raso sotto le linee (vedi foto seguenti). In questo caso aumenta però l’impatto visuale dovuto al taglio del bosco. Nel caso del taglio raso è inevitabile la ricrescita dalle ceppaie e la necessità quindi di interventi periodici di manutenzione. Nelle fasce di taglio può essere effettuata una gestione a vegetazione mantello, con le specie arbustive di corredo del bosco alternate a zone a prato, mantenendo la coerenza con il dinamismo della vegetazione locale;
• effettuare interventi periodici di potatura delle specie arboree ad altezze tali da non interferire con i conduttori (10 – 15 m), ma in modo da mantenere la struttura a bosco. Questa strategia è applicabile ad esempio a linee che attraversano aree golenali boscate di corsi d’acqua di pianura;
• effettuare interventi di capitozzatura o taglio di singole alberature. Nel caso di resinose è talvolta necessario intervenire con il taglio dell’intera pianta, in quanto la sola capitozzatura ne rovinerebbe completamente il portamento (Foto 107 e 108).
Foto 104 – Esemplare di pino che interferisce con la linea elettrica. In questi casi è improponibile la capitozzatura in quanto le resinose non "ricacciano" dalla ceppaglia e verrebbe rovinato per sempre il portamento della chioma. Va quindi applicata la tecnica del taglio raso. S. Barbara, Scandicci (FI). (Foto G. Sauli, dicembre 2010)

Foto 105 - Altro caso di resinose che interferiscono con le catenarie della linea elettrica. Va applicata la tecnica del taglio raso e non la capitozzatura. S. Barbara, Scandicci (FI). (Foto G. Sauli, dicembre 2010)
6. BIBLIOGRAFIA DI RIFERIMENTO

Ministero Dell'ambiente, Servizio Via Commissione Via., 1997. Linee guide per capitoliati speciali per interventi di ingegneria naturalistica e lavori di opere a verde. Prestampa AIPIN-TS.

Ministero dell’Ambiente e della Tutela del territorio e del Mare, ISPRA, 2008. Linee guida per la mitigazione dell’impatto delle linee elettriche sull’avifauna.

Ministero dell’Ambiente e della Tutela del Territorio, Ministero dell’Economia e delle Finanze, 2006. Linee guida per capitoliati speciali per interventi di ingegneria naturalistica. PODIS.

Sauli G., Ponis A., 2010. Mitigazioni a verde con tecniche di rivegetazione e ingegneria naturalistica nel settore delle strade. ISPRA Manuali e linee guida 65.4/2010

7. GLOSSARIO

Ammendamento (di suoli) Aggiunta di sostanze in grado di migliorare e/o correggere la costituzione fisico-mecanica e la reazione di un terreno.

Biotecnica delle specie vegetali Proprietà delle piante atte all’impiego come materiale da costruzione negli interventi di ingegneria naturalistica, quale, ad es., capacità antierosive delle erbacee, tipo di radicazione e sviluppo in altezza e larghezza delle legnose, comportamento pioniero, possibilità di riproduzione per via vegetativa tramite talea legnosa in pieno campo, ecc.

Compensazione naturalistica Interventi naturalistici di miglioramento o ricostruzione relativamente a flora-vegetazione, fauna, habitat in zone non strettamente collegate con le opere di progetto.

Compensazione ambientale Realizzazione di azioni positive per l'ambiente a riequilibrio di impatti negativi residui prodotti da interventi in progetto, una volta verificata la loro non eliminabilità.

Fascia boscosa tampone (filtro) Zona boscosa ricostruita a fianco di infrastrutture lineari o puntuali con funzione di mascheramento visuale, reinserimento paesaggistico, filtro per determinati inquinanti (polveri, luci, ecc.).

Fiorume Miscuglio naturale di sementi derivato dalla fienagione o da un taglio di erbe opportunamente scelto su prati stabili naturali.

Georete sintetica Rete (cioè tessuto con i nodi alle intersezioni trama-ordito) realizzata in materiali sintetici.

Macchia seriale Un buon modello d’impianto è quello detto a macchia seriale che prevede l’impiego di arbusti coetanei e di soggetti arborei aventi età e dimensioni diverse. Al fine di migliorare le potenzialità ecotonali (creare le condizioni di margine per la fauna selvatica e le specie erbacee) dell’impianto è indispensabile prevedere una striscia piantata solo ad arbusti lungo tutto il perimetro del nuovo impianto boschivo. Se è possibile la forma dell’impianto deve essere il meno geometrica possibile, al fine di massimizzare lo sviluppo del perimetro e quindi avere maggior potenzialità ecotonali, inoltre se si adotta una forma che tende alla circolarità si ottiene anche la possibilità di un buon effetto interno (habitat per specie prettamente silvicole). Lo schema d’impianto propone la costituzione di un impianto boschivo, in cui il 50% è rappresentato da specie arboree ed il restante 50% da specie arbustive, ed una piantagione realizzata attraverso la tecnica delle “macchie seriali”. Queste ultime si configurano come delle aree elementari, all’interno delle quali sono messe a dimora le specie arboree in zolla/radice nuda contornate dalle specie arbustive in contenitore e perifericamente le specie arboree ed arbustive in fitocella. Tali aree elementari sono poi ripetute su tutta la superficie da riforestare. Questo modulo permette di avere una macchia seria disetanea, la quale garantisce un aspetto pregevole estetico già dai primi anni dell’impianto. Tale tipologia di modulo permette alla fauna territoriale di trovare disponibilità di cibo e quindi un ambiente ottimale per insediarsi e riprodursi.

Mantello formazione lineare arbustiva ecotonale (vedi anche ecotono) che si sviluppa ai margini del bosco, nella fascia di transizione tra vegetazione arborea e vegetazione erbacea della prateria. Al mantello partecipano specie pioniere (vedi) e sciame (vedi). Vedi anche Orlo.

Mitigazione naturalistica Interventi di tipo naturalistico, cioè di messa a dimora di piante, creazione di habitat, realizzazione di strutture di defragmentazione faunistica, ecc., strettamente collegati con l’opera progettata e gli impatti potenzialmente indotti in fase di realizzazione e gestione.

Pacciamatura (disco pacciamante) Impiego di materiali atti ad impedire lo sviluppo delle erbe infestanti e consentire lo sviluppo delle specie legnose piantate. Vengono utilizzati filtri organici.

Pianta alloctona Pianta nativa di altra area geografica rispetto a quella in cui risiede (esotica).

Pianta autoctona Pianta nativa dell’area geografica in cui risiede (indigena).
Pianta pioniera Si definisce specie pioniera o pianta pioniera una specie vegetale che si insedia per prima su terreni di recente formazione, come quelli derivati da frane o colate laviche, o terreni in cui la vegetazione sia stata distrutta da incendi.

Progetto integrato progetto che tiene subito conto delle esigenze di riambientazione che diventano in certi casi pregiudiziali alle scelte infrastrutturali integrandosi con esse.

Rete ecologica insieme di aree e fasce con vegetazione naturale, spontanea o di nuova realizzazione, tra loro connesse in modo da garantire funzioni diverse, tra cui la libera circolazione di piante e animali e lo scambio genico tra le popolazioni. A tal fine è necessario mantenere connessioni tra le aree protette, ovvero fasce di territorio che consentono il superamento delle barriere dovute allo sviluppo delle attività umane. Gli orientamenti più attuali sono rivolti alla realizzazione di reti ecologiche in cui i nodi sono rappresentati da aree naturali e seminaturali con il ruolo di serbatoi della biodiversità e la trama è costituita da elementi lineari naturali o semi-naturali che permettono un collegamento fisico tra gli habitat dei nodi, in modo da consentire lo scambio genico tra le popolazioni e sostenere la biodiversità.

Rinaturazione (rinaturalizzazione) Per rinaturazione (o rinaturalizzazione) si intende l’insieme degli interventi, strutturali e non strutturali, e delle azioni atti a ripristinare le caratteristiche ambientali e biocenotiche, nonché la funzionalità ecologica, di un ecosistema in relazione alle sue condizioni potenziali, determinate dalla sua ubicazione geografica, dal clima, dalle caratteristiche geologiche e geomorfologiche del sito e della sua storia naturale pregressa.

Rivegetazione La rivegetazione è un processo che consiste nella ricostituzione della vegetazione nel caso in cui il soprassuolo abbia subito una distruzione, parziale o totale, dovuta ad incendi, ovvero eventi capaci di far variare notevolmente l’equilibrio dinamico del popolamento. La rivegetazione viene attuata però anche al fine di conferire maggiore stabilità a suoli erosi ed in particolare ai versanti: le piante svolgono infatti un’importante azione di difesa del suolo contrastando l’azione erosiva degli eventi atmosferici. L’interazione fisica delle radici delle piante con il terreno permette di proteggere gli stratì superiori dall’erosione causata dal dilavamento, riducendo il trasporto solido a valle, e di conferire stabilità al suolo. Inoltre la vegetazione, assorbendo elevate quantità d’acqua che vengono successivamente rilasciate in atmosfera per mezzo della traspirazione, contribuisce ad una significativa riduzione dei deflussi, con il risultato di un’azione regintentails sui fenomeni di piena.

Rivestimento vegetativo in rete metallica abbinata con geostuoie tridimensionali sintetiche o stuioie organiche rivegetate con semine e messa a dimora di talee e arbusti

Serie di Vegetazione: l’insieme di comunità vegetali o stadi che possono svilupparsi all’interno di uno spazio ecologicamente omogeneo, con le stesse potenzialità vegetali (tessella o tessera), e che sono tra loro in rapporto dinamico. Include perciò tanto la vegetazione rappresentativa della tappa matura o testa di serie quanto le comunità iniziali o subseriali che la sostituiscono. È sinonimo di *sigmetum*, unità di base della Fitosociologia dinamica o Sinfitosociologia.

Siepe a tetto è una siepe realizzata con sezione piramidale mediante messa a dimora a fasce di bassi arbusti, alti arbusti ed alberi autoctoni con funzione di intrappolamento dei filetti del vento per far precipitare il particolato. Le siepi a tetto sono in genere realizzate a lato strada anche in aree urbanizzate e necessitano di sporadici interventi di potatura per il mantenimento della morfologia “a tetto”.

Stuoia organica Stuoia in fibre organiche (paglia, cocco, juta, agave, ecc.) cucite con fili di cotone o supportate su reticelle plastiche, abbinate a semine con funzione antierosiva a ricoprire suoli nudi su scarpe o in abbinamento con strutture (es. reti su Terre rinforzate).

Suoli tecnogenici (o antropogenici) Suoli ricostruiti da matrici minerali locali con aggiunta di altre sostanze (fibre vegetali, sostanza organica, concimanti, pomici, lapilli, ecc.) che sostituiscono il terreno vegetale quando tale materiale non è disponibile.

Terreno vegetale Parte più superficiale di un profilo di suolo, più umica e comprendente il reticolo radicale e la pedofauna.

Trapianto dal selvatico di zolle erbose o ecocelle Porzioni di vegetazione autoctona, delle dimensioni di 0,5-1 m², composte dal terreno compenetrato di radici, vegetazione erbacea, pedofauna
e microrganismi, vengono prelevate dal selvatico e successivamente trapiantate in più punti di aree denudate e prive di vegetazione.

Vegetazione naturale l’insieme di varie forme vegetali insediate in un dato ambiente di cui caratterizzano l’aspetto e riflettono le condizioni ecologiche.

Vegetazione pioniera vegetazione in grado di colonizzare superfici o ambienti creando i presupposti per l’insediamento di specie ecologicamente più esigenti.

Vegetazione potenziale: vegetazione stabile che esisterebbe in un dato territorio come conseguenza della successione (vedi) progressiva, in assenza di utilizzo antropico.

Vegetazione reale: vegetazione che può essere osservata direttamente sul territorio. Si riportano dettagliatamente anche associazioni piccole o piccolissime (che occupino anche solo poche decine di metri quadrati).