

Gli scoiattoli alloctoni e altre specie invasive: impatti ed esperienze di gestione a confronto - Progetto LIFE U-SAVEREDS

Perugia, 11-13 Aprile 2018

Alien squirrels & diseases: implications and threats

C. Romeo

Department of Veterinary Medicine, Università degli Studi di Milano (claudia.romeo@unimi.ti)

DIPARTIMENTO DI MEDICINA VETERINARIA

Alien species & parasites

1. PARASITE LOSS

Invaders often lose part of their parasite community

during invasion (e.g. founder effect, drugs during captivity, no intermediate hosts, etc.) \rightarrow

They will **benefit** from this loss in terms of fitness

(Torchin & Mitchell, Front Ecol Environ, 2004)

Improved performances in the new range compared to the native range

> ENEMY-RELEASE HYPOTHESIS

DEGLI STU

SQUIRRELPOX VIRUS mediates the competition between red & grey squirrels in Great Britain & Ireland

Grey squirrel: healthy carrier (prevalence ~60%) Red squirrel: lethal in most cases

replacement accelerated up to ~ 25 times

Photo credit: Sarah McNeil

Squirrelpoxvirus in Italy?

- •Serology (n=285) + molecular (n=66) (2011-2014)
- ELISA: 4 positive reactors (crossreactions!)
 PCR: all negative

 \rightarrow

however, **passive surveillance** is recommended

(Romeo et al., An Cons, under review)

Did alien squirrel introduced to Italy **lose**, **acquire** or **carry along** any parasite species?

Grey squirrel: 7 sites (2011-2013)

Pallas' squirrel: 1 site (2011-2014)

Direct parasitological survey through PM examination of carcasses

Rich Host Community = Rich Parasite Community

POOR PARASITE COMMUNITY

e.g. a single gastrointestinal, scarcely pathogenic helminth species: *Trypanoxyuris sciuri* (> 80% prevalence)

UNIVERSITÀ DEGLI STUDI DI MILANO

Vulnerability to **Spillover**?

(Romeo et al., Parasitol Res, 2013)

Endoparasites – *Helminths*

Taxon	Prevalence	Mean Intensity	n=26
Strongyloides robustus	56.5%	16.9 ± 2.1	
Trichostrongylus calcaratus	6.5%	1.9 ± 0.3	
Trichuris muris	4.2%	1.3 ± 0.2	
<u>Trypanoxyuris sciuri</u>	1.9%	80 ± 2.5	
Aonchotheca annulosa	1.5%	2.2 ± 0.6	

(Romeo et al., PloS ONE 2014)

	Taxon	Prevalence	Mean Intensity
	Trypanoxyuris sciuri	5.5%	2.3 ± 1.3
n=73	Trichuris muris	5.5%	1
	Strongyloides callosciureus	2.7%	1
A second		(Mazzamuto et al	I., Ann Zool Fenn 2016)

Endoparasites – Helminths

- •4 **red-only** sites (n=60)
- •5 red-grey sites (n=49)

- •Extensive livetrapping (2011-2013)
- •Faecal examination for *S. robustus* + tape tests for *T. sciuri*

(Romeo et al., Parasitol Res 2015)

In areas co-inhabited by grey squirrels, red squirrels have a higher probability of being infected by both *S. robustus* and *T. sciuri* (p<0.05)

(Romeo et al., Parasitol Res 2015)

UNIVERSITÀ DEGLI STUDI DI MILANO

Endoparasites – Helminths

Spillover of *S. robustus* from grey to red squirrels

WHAT IS THE MPACT ON RED SOUIRRELS?

S. robustus has **high prevalence** in red squirrels which shed **viable eggs** RED SQUIRRELS ACT AS COMPETENT HOSTS

In the presence of grey squirrels, red squirrels also suffer increased infection by *T. sciuri*

Endoparasites - Coccidia

Eimeria morphotype	S	OPG	Prevalence (%)	
E1	0	102 - 79 394	7.8	Sv
E2		116 - 66 550	95.6	Sv Sv
	· Chillion	112 - 115 833	95.7	20 SC
\bigcirc		<10 ² -1 068	4.1	
E3		<10 ²	20.9	Sv.
		<102	34.8	Euro S
69				SC

 Most of red & grey squirrels are infected by coccidian (e.g. E2 > 90%)

•Pallas' squirrels likely lost their coccidian parasites

Molecular analysis revealed that E2 are actually **two distinct species**: *E. sciurorum* in red squirrels and N. American *E. lancasterensis* in grey squirrels

DATA SUGGEST NO INTERSPECIFIC TRANSMISSION

(Hofmannová et al., Eu J Protistol, 2016)

Endoparasites – Cryptosporidium

Squirrel species	Prevalence	Таха	0
RED (n=123)	10.7%	Ferret genotype	000 0
GREY (n=162)	3.7%	Chipmunk genotype I Skunk genotype C. ubiquitum	່ວ ^ວ ິງ
PALLAS' (n=72)	2.8%	Chipmunk genotype I	600

DATA SUGGEST NO INTERSPECIFIC TRANSMISSION

Ectoparasites

n=231

Taxon	Prevalence	Mean Intensity
Ceratophyllus sciurorum	26.5%	2.7 ± 0.3
Neaohaemathopinus sciuri	17.7%	3.6 ± 0.8
Ixodes acuminatus	1.7%	1
Ctenocephalides felis	0.4%	1

(Romeo et al., PloS ONE 2014)

	Taxon	Prevalence Me	ean Intensity
TO	<u>Ceratophyllus sciuroru</u>	<u>m</u> 50%	1.0 ± 0.1
	135 <u>Ixodes ricinus</u>	47%	3.0± 0.7
DIM		(Mazzamuto et al., Ani	n Zool Fenn 2016)

Ectoparasites

Potential alteration of *C. sciurorum* seasonal distribution in areas co-inhabited by grey squirrels

Conclusions & future perspectives

Thank you for your attention!

DIPARTIMENTO DI MEDICINA VETERINARIA

٠