

Project co-financed by the European Regional Development Fund

Ocean Energy assessment and forecast for the Southern European Seas based on

Copernicus data

Rome April 16th 2018

Gianmaria Sannino / Head of the Climate Modelling and Impacts Laboratory @ ENEA

Copernicus Marine Service and market opportunity for the Italian Blue Growth sector

Ocean Energy: Ongoing Activities @ ENEA

PELAGOS: Promoting innovative nEtworks and cLusters for mArine renewable energy synerGies in mediterranean cOasts and iSlands.

https://pelagos.interreg-med.eu/

SET-Plan: ENEA is Italian representative at the WG 'Ocean Energy' of the European Strategic Energy Technology Plan (SET-Plan).

European Energy Research Alliance: ENEA is the Italian representative in the Joint Programm 'Ocean Energy'. www

 SOCLIMPACT: DownScaling CLImate imPACTs and decarbonisation pathways in EU islands, and enhancing socioeconomic and non-market evaluation of Climate Change for Europe, for 2050 and beyond (H2020 Project)

Global ocean energy

The RE resource in the ocean comes from six distinct sources, each with different origins and requiring different technologies for conversion

• Waves: derived from the transfer of the kinetic energy of the wind to the upper surface of the ocean.

Tidal Range (tidal rise and fall): derived from the gravitational forces of the Earth-Moon-Sun system.

• **Tidal currents**: water flow resulting from the filling and emptying of coastal regions as a result of the tidal rise and fall.

• Ocean Currents: derived from wind-driven and thermohaline ocean circulation.

Ocean Thermal Energy Conversion (OTEC): derived from temperature differences between solar energy stored as heat in upper ocean layers and colder seawater, generally below 1,000 m.

 Salinity Gradients (osmotic power): derived from salinity differences between fresh and ocean water at river mouths.

Global ocean energy

The RE resource in the ocean comes from six distinct sources, each with different origins and requiring different technologies for conversion

• Waves: derived from the transfer of the kinetic energy of the wind to the upper surface of the ocean.

Tidal Range (tidal rise and fall): derived from the gravitational forces of the Earth-Moon-Sun system.

Tidal currents: water flow resulting from the filling and emptying of coastal regions as a result of the tidal rise and fall.

Ocean Currents: derived from wind-driven and thermohaline ocean circulation.

Ocean Thermal Energy Conversion (OTEC): derived from temperature differences between solar energy stored as heat in upper ocean layers and colder seawater, generally below 1,000 m.

■ Salinity Gradients (osmotic power): derived from salinity differences between fresh and ocean water at river mouths.

Wave energy is the largest untapped form of renewable energy in the world. It is on track to produce 10% (**500 GW**) of the global energy demand in the upcoming decades. The global installed capacity of wind and solar power at the end of 2014 was 360 GW and 150 GW respectively.

The estimates of global potential of **tidal energy** generation vary, but it is widely agreed that tidal stream energy capacity could exceed **120 GW** globally.

EU wave energy potential

TABLE 1: REGIONAL THEORETICAL POTENTIAL OF WAVE ENERGY

REGION	Wave Energy TWh/yr
Western and Northern Europe	2,800
Mediterranean Sea and Atlantic Archipelagos (Azores, Cape Verde, Canaries)	1,300
North America and Greenland	4,000
Central America	1,500
South America	4,600
Africa	3,500
Asia	6,200
Australia, New Zealand and Pacific Islands	5,600
TOTAL	29,500

Source: Mørk et al. (2010)

EU tidal energy sources

Source: Aqua-RET (2012)

Copernicus Marine and Ocean Energy Europe

Copernicus Marine Service and Ocean Energy Europe Partnership Kick-Off Cocktail in Brussels

Registration mandatory by April 19th http://bit.ly/CmemsOeeCocktail

April 23 2018 at 17:30 Breydel Auditorium DG Grow Avenue d'Auderghem 45, 1000 Brussels, Belgium SAVE THE DATE: April 23, 2018

Main Research Centers and Energy Authority

Main Italian Universities involved in OE

Large Enterprises

Large Enterprises and SMEs

Italian R&D activities: Position paper published

Ocean Energy exploitation in Italy: ongoing R&D activities

Position Paper/September 2017

Gianmaria Sannino, Giovanna Pisacane

ENE

Edited by

G. Sannino and G. Pisacane, ENEA

Contributors:

R. Archetti (UNIBO - DICAM), F. Arena (Uni. Mediterranea RC - NOEL), S. Barberis (RINA Consulting SpA), D. Borello (Uni. Sapienza), L. Cappietti (UNIFI), A. Carillo (ENEA), L. Castellini (Umbra Group SpA), M. Cippitelli (GENERMA Srl), D. Coiro (UNINA, SEAPOWER Scarl), G. De Santis (Enel Green Power SpA), M. Fontana (Università di Trento), A. Giacomi (Enel Green Power SpA), A. Gulisano (Wave for Energy Srl), R. M. Iannolo (Wavenergy.it Srl), M. Keber (Fincantieri Oil & Gas), F. Lagasco (RINA Consulting SpA), T. Lamberti (H2Boat Scarl), M. Marcelli (Università della Tuscia – LOSEM), G. Mattiazzo (POLITO), G. Passoni (POLIMI), M. Pe-viani (RSE - Research on Energy Systems), A. Romolo (Uni. Mediterranea RC - NOEL), F. Salvatore (CNR), S. Scanu (Università della Tuscia – LOSEM), M. V. Struglia (ENEA), A. Traverso (UNIGE– DIME), R. Vertechy (UNIBO), D. Vicinanza (Uni. Campania)

2017 ENEA - National Agency for New Technologies, Energy and Sustainable Economic Development ISBN: 978-88-8286-355-5

Googling: position papoer ocean energy enea

http://www.enea.it/it/seguici/pubblicazioni/pdf-volumi/v2017_ocean-energy-italy.pdf

ENEN

Global ocean energy

The RE resource in the ocean comes from six distinct sources, each with different origins and requiring different technologies for conversion

Waves: derived from the transfer of the kinetic energy of the wind to the upper surface of the ocean.

Tidal Range (tidal rise and fall): derived from the gravitational forces of the Earth-Moon-Sun system.

Tidal currents: water flow resulting from the filling and emptying of coastal regions as a result of the tidal rise and fall.

Ocean Currents: derived from wind-driven and thermohaline ocean circulation.

Ocean Thermal Energy Conversion (OTEC): derived from temperature differences between solar energy stored as heat in upper ocean layers and colder seawater, generally below 1,000 m.

■ Salinity Gradients (osmotic power): derived from salinity differences between fresh and ocean water at river mouths.

Mediterranean wave energy forecast validation

Where to install the converter

Mediterranean wave energy forecast validation

Ocean Data View

Where to install the converter

Wave energy in the Mediterranean Sea

Distribution of average power per unit crest in the Mediterranean between 2001 and 2010.

$$J = \frac{\rho g^2}{64\pi} T_e H_s^2$$

Liberti, Carillo, Sannino, Ren. Energy. 2013

Traditional approach: using the Italian Wave measuring Network (Rete Ondametrica Nazionale, RON) managed by Institute for Environmental Protection and Research (ISPRA)

Buoy	First Record	Last Record	3hr Records	Expected	Efficiency
			after $1/1/2001$	3hr records	(%)
Alghero	01/07/1989	05/04/2008	15283	21210	72.1
Catania	01/07/1989	05/10/2006	12549	16827	80.2
Crotone	01/07/1989	15/07/2007	14962	19093	78.4
La Spezia	01/07/1989	31/03/2007	10952	18240	60.0
Mazara del Vallo	01/07/1989	04/04/2008	15323	21207	72.3
Monopoli	01/07/1989	05/04/2008	15641	21209	73.7
Ortona	01/07/1989	24/03/2008	12786	21113	60.6
Ponza	01/07/1989	31/03/2008	14479	21169	68.4
Cetraro	28/02/1999	05/04/2008	16630	21209	78.4
Ancona	10/03/1999	31/05/2006	10212	15812	64.6
Capo Comino	01/01/2004	12/09/2005	3813	5664	67.3
Capo Gallo	01/01/2004	31/03/2008	9001	12408	72.5
Capo Linaro	02/01/2004	12/09/2006	5441	7872	69.1
Punta della Maestra	02/01/2004	24/11/2004	2616	7872	62.8
Cagliari	06/02/2007	02/03/2008	1986	3120	63.7

Wave energy assessment for the Mediterranean Sea

Our approach: using a relatively high resolution wave model

www.cresco.enea.it

Wave energy assessment for the Mediterranean Sea

Numerical Wave model description

Model computational domain and bathymetry

Model implemented: WAM (Wave prediction Model)

Resolution 1/16° x 1/16° (about 7Km)

ALGHERO

Correlation between buoy and model *Hs* at **Alghero**. Dashed line is the best fit line between model and buoy data points.

Period considered 2001-2010

Model implemented: WAM (*Wave prediction Model*)

Resolution 1/16° x 1/16° (about 7Km)

CROTONE

Correlation between buoy and model *Hs* at **Crotone**. Dashed line is the best fit line between model and buoy data points.

Period considered 2001-2010

Model implemented: WAM (*Wave prediction Model*)

Resolution 1/16° x 1/16° (about 7Km)

LA SPEZIA

Correlation between buoy and model *Hs* at **La Spezia**. Dashed line is the best fit line between model and buoy data points.

Period considered 2001-2010

Model implemented: WAM (Wave prediction Model)

Resolution 1/16° x 1/16° (about 7Km)

PONZA

Correlation between buoy and model *Hs* at **Ponza**. Dashed line is the best fit line between model and buoy data points.

Period considered 2001-2010

Model implemented: WAM (*Wave prediction Model*)

Resolution 1/16° x 1/16° (about 7Km)

MAZARA del VALLO

Correlation between buoy and model *Hs* at **Mazara del Vallo**. Dashed line is the best fit line between model and buoy data points.

Period considered 2001-2010

Model implemented: WAM (Wave prediction Model)

Resolution 1/16° x 1/16° (about 7Km)

Numerical Wave model vs buoy: statistics

Buoy	Bias	Rmse	Slope	Si
	(m)	(m)		
Alghero	-0.005	0.311	0.985	0.278
Ancona	-0.214	0.361	0.725	0.477
Catania	-0.178	0.308	0.747	0.501
Crotone	0.004	0.276	0.993	0.374
La Spezia	-0.143	0.283	0.851	0.354
Mazara del Vallo	0.013	0.257	1.022	0.253
Ortona	-0.150	0.284	0.753	0.460
Ponza	-0.103	0.273	0.892	0.328
Monopoli	-0.124	0.307	0.836	0.427
Cetraro	-0.070	0.241	0.897	0.341
Capo Gallo	0.019	0.255	1.040	0.339

Statistics of buoy and model significant wave height (Hs) comparison.

Period considered 2001-2010

Numerical wave model validation (Direction)

Numerical Wave model vs buoy: statistics

Numerical wave model validation (Direction)

Numerical Wave model vs buoy: statistics

ENEA

Numerical wave model validation (Direction)

Numerical Wave model vs buoy: statistics

$$\bar{S} = \frac{1}{n} \sum_{i=1}^{n} \sin(y_i - x_i),$$
$$\bar{C} = \frac{1}{n} \sum_{i=1}^{n} \cos(y_i - x_i),$$
$$\bar{R} = (\bar{C}^2 + \bar{S}^2)^{\frac{1}{2}},$$
$$bias^\circ = \arctan(\bar{S}/\bar{C}),$$
$$var^\circ = (1 - \bar{R}).$$

Buoy	$Bias^{\circ}$	Var°
	(Deg.)	
Alghero	4.51	0.036
Ancona	9.41	0.230
Catania	14.81	0.053
Crotone	8.09	0.085
La Spezia	2.94	0.056
Mazara del Vallo	11.00	0.057
Ortona	13.48	0.101
Ponza	8.76	0.116
Monopoli	5.00	0.121
Cetraro	6.39	0.063
Capo Gallo	-5.21	0.026

Circular statistics of buoy and model wave average spectral direction comparison.

Period considered 2001-2010

Numerical Wave model vs satellite altimeter

Ground tracks of satellites considered in model validation. Thick grey lines identify **Jason-1** and **Jason-2** tracks. Black lines partially overlying the grey ones symbolize **Topex-Poseidon** tracks while thin dashed lines represent **Envisat** and **ERS-2** tracks

Satellite	Repeat Cycle	Used Period	Track Separation
	(days)		at Equator (km)
Topex-Poseidon	10	Jan. 2001 - Oct. 2005	315
Jason-1	10	Jan. 2002 - Dec. 2010	315
Jason-2	10	Jun. 2008 - Dec. 2010	315
Envisat	35	Oct. 2002 - Oct. 2010	80
ERS-2	35	Jan. 2001 - Dec. 2006	80
		Jan. 2008 - Dec. 2010	

Characteristics of satellites used in this study.

Numerical Wave model vs satellite altimeter

Scatter plot of model vs. Jason-1 *Hs* for the entire Mediterranean. Value pairs are grouped in 0.25 m wide bins, corresponding areas are painted according to the number of entries in each bin. Dashed line is the best fit line between model and satellite data points.

Satellite	Repeat Cycle	Used Period	Track Separation
	(days)		at Equator (km)
Topex-Poseidon	10	Jan. 2001 - Oct. 2005	315
Jason-1	10	Jan. 2002 - Dec. 2010	315
Jason-2	10	Jun. 2008 - Dec. 2010	315
Envisat	35	Oct. 2002 - Oct. 2010	80
ERS-2	35	Jan. 2001 - Dec. 2006	80
		Jan. 2008 - Dec. 2010	

Characteristics of satellites used in this study.

Distribution of average power per unit crest in the Mediterranean between 2001 and 2010.

$$J = \frac{\rho g^2}{64\pi} T_e H_s^2$$

Liberti, Carillo, Sannino, Ren. Energy. 2013

Wave energy assessment for the Mediterranean

Seasonal average energy flux

Yearly average variability

Distribution of the Coefficient of Variation (COV) of the yearly average power fluxes for years 2001-2010 around Italy.

 σ Standard deviation (yearly)

 $COV = \frac{\sigma}{\mu}$

 μ Averaged yearly value

Distribution of average wave power flux along Sicily and west Sardinia

Distribution of average wave power flux per unit crest on western Sardinia and Sicilian coastline. Values are calculated on a line located 12 km off the coast.

Distribution of yearly average wave energy along west Sardinia

Distribution of wave energy as a function of significant wave period and significant wave height at specific points. Lower left panel shows the average yearly energy associated with sea states identified by *Te* and *Hs* couples. Dotted lines mark reference power levels. Upper panel shows the energy distribution as a function of *Te* only; right panel as a function of *Hs* only. Red lines in the upper and right panels are the cumulative energy as a percentage of the total. Red dots on the cumulative lines mark each 10*th* percentile. Rose plot in the upper right panel shows energy distribution over wave incoming direction. Each circle represents 20% fractions of the total energy.
Distribution of yearly average wave energy along west Sardinia

Distribution of wave energy as a function of significant wave period and significant wave height at specific points. Lower left panel shows the average yearly energy associated with sea states identified by *Te* and *Hs* couples. Dotted lines mark reference power levels. Upper panel shows the energy distribution as a function of *Te* only; right panel as a function of *Hs* only. Red lines in the upper and right panels are the cumulative energy as a percentage of the total. Red dots on the cumulative lines mark each 10*th* percentile. Rose plot in the upper right panel shows energy distribution over wave incoming direction. Each circle represents 20% fractions of the total energy.

Distribution of yearly average wave energy along west Sardinia

Distribution of wave energy as a function of significant wave period and significant wave height at specific points. Lower left panel shows the average yearly energy associated with sea states identified by *Te* and *Hs* couples. Dotted lines mark reference power levels. Upper panel shows the energy distribution as a function of *Te* only; right panel as a function of *Hs* only. Red lines in the upper and right panels are the cumulative energy as a percentage of the total. Red dots on the cumulative lines mark each 10*th* percentile. Rose plot in the upper right panel shows energy distribution over wave incoming direction. Each circle represents 20% fractions of the total energy.

WAM/SWAN (1/120°x/120°)

PANTELLERIA

PANTELLERIA

Distribution of yearly average wave energy near PANTELLERIA

Distribution of wave energy as a function of significant wave period and significant wave height at specific points. Lower left panel shows the average yearly energy associated with sea states identified by *Te* and *Hs* couples. Dotted lines mark reference power levels. Upper panel shows the energy distribution as a function of *Te* only; right panel as a function of *Hs* only. Red lines in the upper and right panels are the cumulative energy as a percentage of the total. Red dots on the cumulative lines mark each 10*th* percentile. Rose plot in the upper right panel shows energy distribution over wave incoming direction. Each circle represents 20% fractions of the total energy.

Mediterranean wave energy forecast validation

Where to install the converter

Mediterranean wave energy forecast validation

40 50 60 70 80 90 100 110 120 130 cr

HOW much energy will be delivered in the electric grid?

Forecast valid for 01:00 GMT 27 May 2015 Init 00:00 GMT 27 May 2015

 Significant wave height [m]

 0.08
 0.57
 1.07
 1.56
 2.05
 2.55

- Model implemented: WAM (Wave prediction Model)
- Resolution 1/32° x 1/32° (about 3.5Km)
- Forced by SKIRON data

Forced by SKIRON data

western sardinia Forecast valid for 19 Apr 2018 at 19h Init 16 Apr 2018 at 00h

western sardinia

Forecast valid for 19 Apr 2018 at 19h Init 16 Apr 2018 at 00h

northwestern sicily

Forecast valid for 20 Apr 2018 at 20h Init 16 Apr 2018 at 00h

northwestern sicily

Forecast valid for 20 Apr 2018 at 20h Init 16 Apr 2018 at 00h

38N

lampedusa island

Forecast valid for 20 Apr 2018 at 20h Init 16 Apr 2018 at 00h

significant wave height [m]

lampedusa island

Forecast valid for 20 Apr 2018 at 20h Init 16 Apr 2018 at 00h

pantelleria island

Forecast valid for 20 Apr 2018 at 23h Init 16 Apr 2018 at 00h

significant wave height [m]

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Forecast valid for 20 Apr 2018 at 23h Init 16 Apr 2018 at 00h

elba island

Forecast valid for 20 Apr 2018 at 23h Init 16 Apr 2018 at 00h

elba island

Forecast valid for 20 Apr 2018 at 23h Init 16 Apr 2018 at 00h

Mediterranean wave energy forecast validation

Ground tracks of satellites considered in model validation. Black lines identify **Jason-2** and gray lines are for **Saral/Altika**.

Mediterranean wave energy forecast validation

Satellite	forecast	samples	Bias (m)	Rmse (m)	si	slope	d
Jason-2	day 1	100,399	0.20	0.40	0.34	0.83	0.93
	day 2	101,036	0.22	0.44	0.37	0.81	0.92
	day 3	99,386	0.24	0.50	0.42	0.78	0.89
Saral/Altika	day 1	74,709	0.19	0.38	0.36	0.82	0.93
	day2	74,896	0.20	0.42	0.39	0.80	0.91
	day 3	74,691	0.21	0.46	0.44	0.78	0.89

Statistics of satellite and model significant wave height (*Hs*) comparison.

Mediterranean wave energy forecast: next improvements

Copernicus data for model validation

Global ocean energy

The RE resource in the ocean comes from six distinct sources, each with different origins and requiring different technologies for conversion

• Waves: derived from the transfer of the kinetic energy of the wind to the upper surface of the ocean.

Tidal Range (tidal rise and fall): derived from the gravitational forces of the Earth-Moon-Sun system.

Tidal currents: water flow resulting from the filling and emptying of coastal regions as a result of the tidal rise and fall.

Ocean Currents: derived from wind-driven and thermohaline ocean circulation.

Ocean Thermal Energy Conversion (OTEC): derived from temperature differences between solar energy stored as heat in upper ocean layers and colder seawater, generally below 1,000 m.

■ Salinity Gradients (osmotic power): derived from salinity differences between fresh and ocean water at river mouths.

Tidal energy assessment for the Mediterranean

The RE resource in the ocean comes from six distinct sources, each with different origins and requiring different technologies for conversion

Tidal currents: water flow resulting from the filling and emptying of coastal regions as a result of the tidal rise and fall.

Tidal energy assessment for the Mediterranean

MITgcm – Explicit Tides (M2,S2, K1, O1) – Lateral Tide + Tidal Potential Average resolution 1/48° (2.3 Km) Minimum resolution 230m (Gibraltar and Turkish Straits) 100 Vertical Levels Initialized with Copernicus data!

Tidal energy forecast for the Mediterranean

Hour 0 from beginning (day=1)

Banco AVVENTURA - Sicily Channel

Banco AVVENTURA - Sicily Channel

Tidal energy forecast for the Mediterranean

19°E

20°E

39,00

Tidal energy forecast for the Mediterranean

NEMO DATA

Messina strait, 1 mbsl

12:30 GMT 19 Mar 2018

20180320_h-INGV--PSAL-MFSea

t=00

ENEA MITO Messina strait, 1 mbsl

00:00 GMT 19 Mar 2018

Hour 0 from beg

Tidal energy assessment for the Mediterranean

The RE resource in the ocean comes from six distinct sources, each with different origins and requiring different technologies for conversion

Tidal currents: water flow resulting from the filling and emptying of coastal regions as a result of the tidal rise and fall.

Tidal energy assessment for the Mediterranean

The RE resource in the ocean comes from six distinct sources, each with different origins and requiring different technologies for conversion

Tidal currents: water flow resulting from the filling and emptying of coastal regions as a result of the tidal rise and fall.

Tidal energy assessment for the Strait of Messina

Messina tidal model

Tabella 22. Produzioni fattorie – sistema GEM

GEM										
				Area				Potenza	Energia	Ore
Località			Vmax	impianto	Densità	Numero	Potenza max	installata	annua	equivalenti
riferimento	Lat.	Lon.	(m/s)	(km^2)	(unità/km^2)	unità	unità (kW)	(kW)	(MWh)	(h)
Punta Pezzo	38°14'00"N	15°38'00"F	2 95	0 5538	36	19	1001 1	19021.47	46240.5	2431.0
T unta T 6220	30 1400 14	15 50 00 2	2.55	0.5550	50	15	1001.1	15021.47	40240.5	2451.0
				Area				Potenza	Energia	Ore
Località			Vmax	impianto	Densità	Numero	Potenza max	installata	annua	equivalenti
riferimento	Lat.	Lon.	(m/s)	(km^2)	(unità/km^2)	unità	unità (kW)	(kW)	(MWh)	(h)
Adiacenze NW di										
T. Cavallo	38°15'00"N	15°40'40"E	1.60	1.1068	36	39	1001.1	39044.1	17959.4	460.0
Spiaggia tra										
Ganzirri e Torre										
Faro	38°15'24"N	15°37'54"E	2.17	0.8004	36	28	1001.1	28031.6	26144.6	932.7
Adiacenze di S.										
Agata	38°14'54"N	15°36'24"E	1.83	1.1819	36	42	1001.1	42047.5	28394.3	675.3
Adiacenze di Pace	38°14'09"N	15°35'12"E	1.61	2.0578	36	74	1001.1	74083.6	26420.6	356.6
								Etot=	145159.5	MWh
						ta_wake=	0.712	Etot_wake=	103353.6	MWh

Image IBCAO

ENEA for International Cooperation and Development

OpERATE

Ocean Energy Resources Assessment for Maldives

Gianmaria Sannino

gianmaria.sannino@enea.it

Additional Slides

10 Reasons why we need ocean energy

European companies are the clear global leaders in ocean energy. They are in prime position to capture a global market estimated to be worth €33bn annually in 2050'.

with other renewables reduce its €400bn fossil fuel import bill Ocean energy works well with other forms Ocean energy production of renewable energy offers a solution for Europe's generation, such as wind and solar, by generating overreliance on fossil fuel electricity at different imports, by providing time periods. an indigenous, secure source of energy. The EU spends more than C1bn per day on fossil fuel imports, €400bn annually

Source: European Commissie

Dcean Energy

Europe

Ocean Energy can help stabilise

an electricity grid based on increasing amounts of variable

renewables

Ocean Energy Europe

energy supply and

ENEL

10 Reasons why we need ocean energy

10 Reasons why we need ocean energy

** Technology convergence needed **

The Plan recommends to concentrate efforts on a **limited number of promising technologies** for energy conversion from tidal streams and waves, targeting a reduction in the LCoE for tidal stream energy converters to at least **15 ct€/kWh by 2025** and **10 ct€/kWh by 2030**, and a similar, although slower, reduction in the LCoE for wave energy converters to **20 ct€/kWh by 2025**, 15 ct€/kWh by 2030 and **10 ct€/kWh by 2035**.

EUROPEAN COMMISSION

Wave energy assessment for the Mediterranean

NEMO DATA

Gibraltar, 1 mbsl

00:30 GMT 19 Mar 2018

20180319_h-INGV--TEMP-MFSeas2-MEDATL-b20180327_an-sv03.00.nc

t=12

ENEA MITO

Gibraltar, 1 mbsl init 00:00 GMT 28 Mar 2018

Hour 0 from beginning (day=1)

Wave energy in the North Sea

Storms December 2013 – February 2014

Wave energy in the North Sea: waves from the shore

Effect of wave energy in the North Sea

Downscaling climate impacts and decarbonisation pathways in EU islands, and enhancing socioeconomic and non-market evaluation of Climate Change for Europe, for 2050 and beyond

SoClimPact project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement No 77661

Downscaling climate impacts and decarbonisation pathways in EU islands, and enhancing socioeconomic and non-market evaluation of Climate Change for Europe, for 2050 and beyond.

The project aims at modelling and assessing downscaled CC impacts and low carbon transition pathways in European islands and archipelagos for 2030-2100, complementing current available projections for Europe, and nourishing actual economic models with non-market assessment.

Specific objectives

1

Develop a thorough understanding on how ClimateChangewillimpacttheEUislandslocated in different regions of the world, considering their specific vulnerability, thus improving the existing climate impact models for Europe by:

2

Contribute to the improvement of the economic valuation of climate impacts and related policies for Europe, by adapting Discrete Choice Experiments (DCE) methods to measure and analyse, on one hand, the non-market costs of different Climate Change scenarios, and on the other hand, the benefits of climate actions (mitigation and adaptation).

3

Tides

Increase the effectiveness of the economic modelling of climate impact chains, through the implementation of an integrated methodological framework (GINFORS, GEM-E3 and non-market indicators), in the analysis of climate-induced socioeconomic impacts in 11 EU islands case studies, under different climate scenarios for 2030-2100, with a cross-sectorial perspective (EU Blue Economy sectors), providing a step further to the results of the PESETA project.

4

Facilitate climate-related policy decision making for Blue Growth, by ranking and mapping the more appropriate and viable mitigation and adaptation pathways and risk management strategies, and building a common framework for the governance of Blue Economy sectors and a permanent regional information exchange system (REIS) for Europe and EU islands.

5

Deliver, through innovative decision-making support tools, downscaled and accurate information to policy makers, practitioners and other relevant stakeholders, about the environmental and socio-economic consequences of global Climate Change in the EU Blue Economy, and formulate sciencebased recommendations to incentivise the EU islands' medium to long-term low-carbon transition, thus strengthening sciencepolicy interface, increase social awareness, and contribute to the competitiveness of the European coastal and maritime industry.

Work Plan

WP1

Ethics.

WP 2

Project coordination and management.

WP 3

Climate Change vulnerability assessment framework and complex impact chains.

WP4

Modelling climate impacts in 11 EU islands case studies.

WP 5

Measuring non-market costs of CC and benefits of climate actions for Europe.

WP 6

Modelling socio-economic impacts for EU islands in Blue Economy sectors, over the longer term 2030 -2100.

WP7

Ranking and mapping transition pathways in islands and enabling networking and information system for regional and EU policy design.

WP 8

Communication and Dissemination. Raising social awareness and supporting decision making processes of policymakers and practitioners.

(+34) 928458234 (+34) 928454960