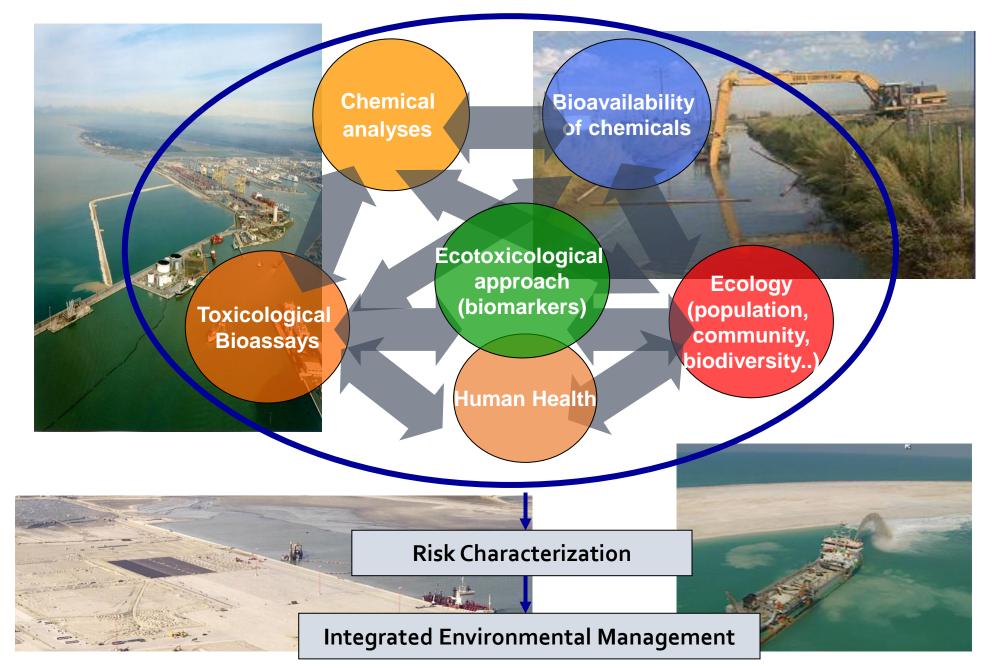


VALUTAZIONI INTEGRATE NELLA DEFINIZIONE DELLA QUALITÀ AMBIENTALE: LINEE DI EVIDENZA, INDICI DI PERICOLO ED APPROCCIO "WEIGHT OF EVIDENCE"

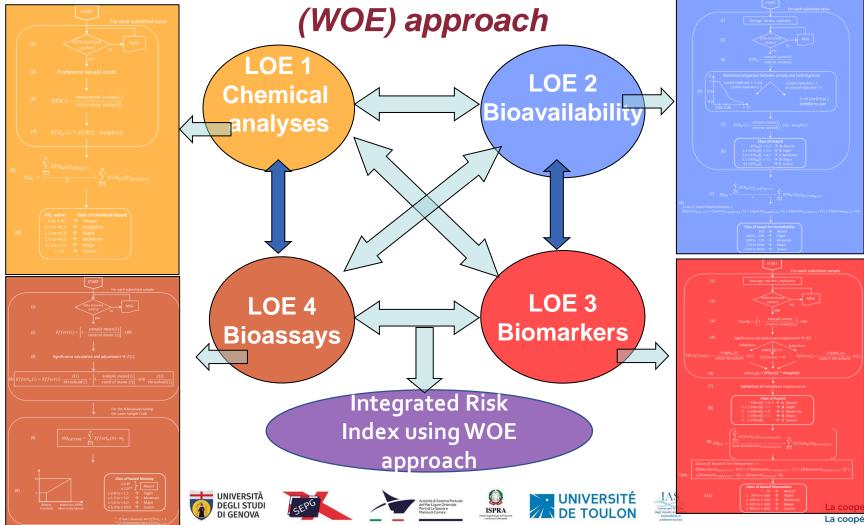
Francesco Regoli



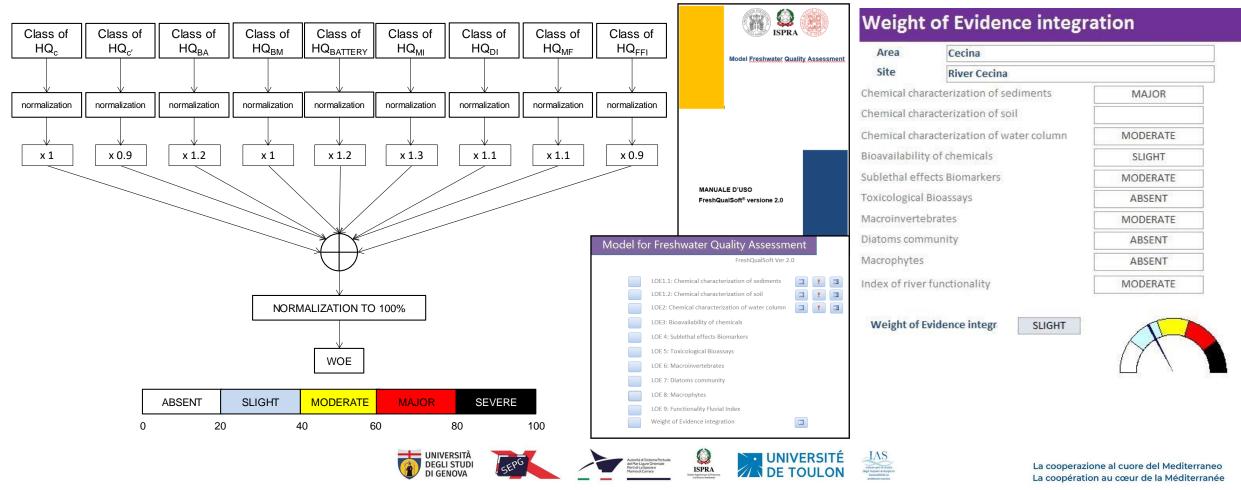
Università Politecnica delle Marche Ancona

INTEGRATED MODELS FOR RISK ASSESSMENT

CRITICAL ISSUES IN RISK ASSESSMENT


- Interpretation and significance of complex datasets of heterogeneous results
- Qualitative and quantitative evaluations: indices and scales development

- Integration of different typologies of data
- Synthetic risk characterization/communication


Quantitative risk assessment model on Weight of Evidence

Validation of Weight of Evidence (WOE) model for freshwater environments

ORIGINAL RESEARCH published: 15 November 2019 doi: 10.3389/fmars.2019.00688

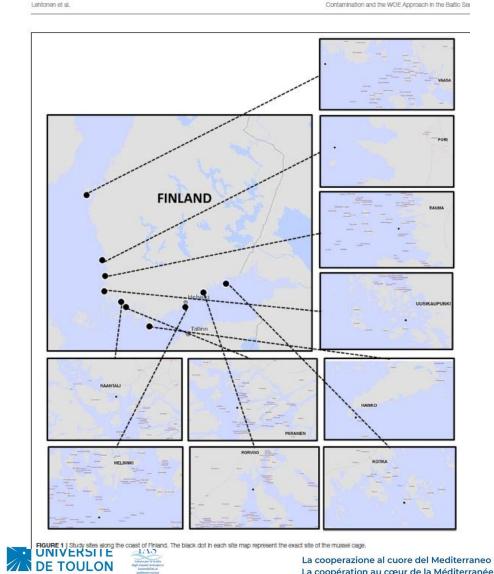
Fonds européen de développement régional Fondo Europeo di Sviluppo Regionale

Contamination and the WOE Approach in the Baltic Sei

La coopération au cœur de la Méditerranée

Check for Lipsteine

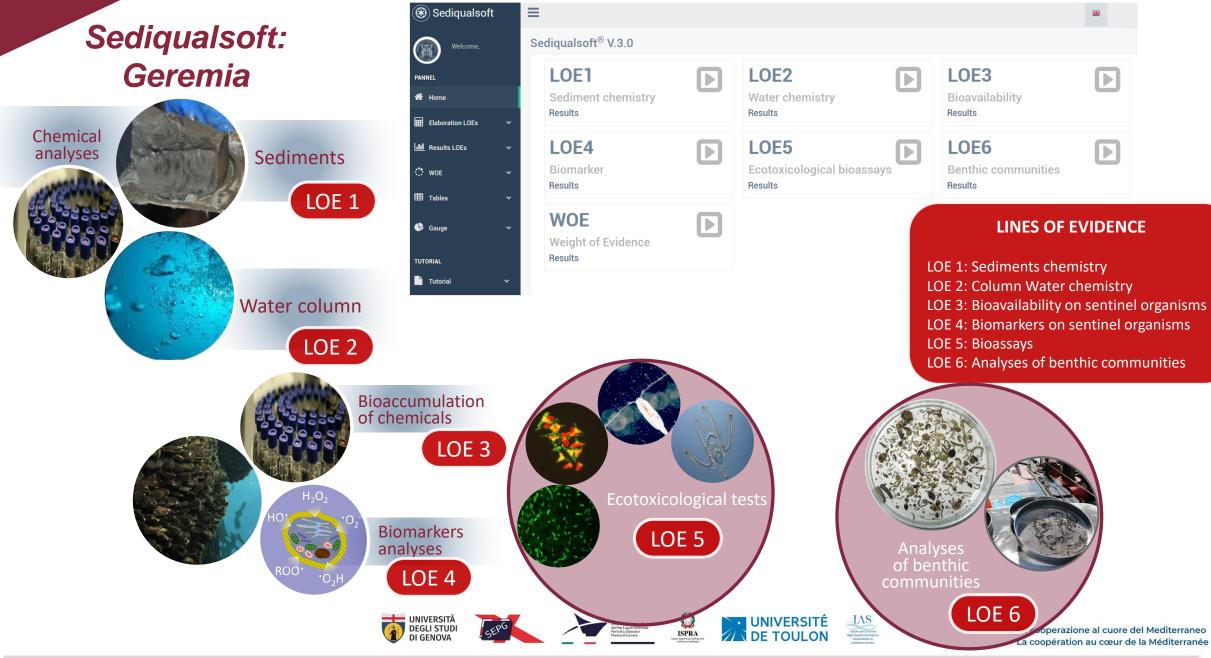
Mussel Caging and the Weight of **Evidence Approach in the** Assessment of Chemical **Contamination in Coastal Waters of** Finland (Baltic Sea)


Kari K. Lehtonen^{1*}, Giuseppe d'Errico², Samuli Korpinen¹, Francesco Regoli², Heidi Ahkola³, Tanja Kinnunen¹ and Anu Lastumäki¹

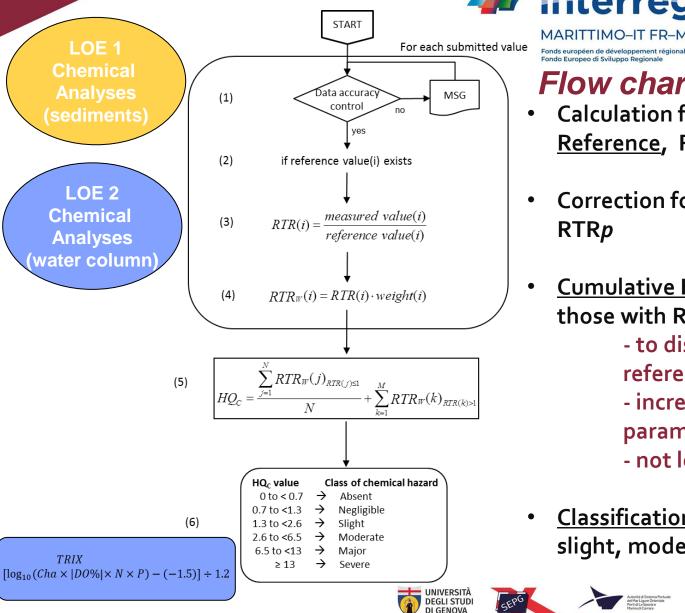
Lehtonen et al.

Contamination and the WOE Approach in the Baltic Sea

TABLE 3 | Elaborations with levels of hazard assigned to the different LOEs and the final WOE.


Site	Chemical characterizati	Bloavallability on	Biomarkers	Benthic communities	Near-bottom oxygen	Eutrophication	n Weight of I	Evidence integration
Kotka	HQ: 0.284 Absent -	HQ: 63.417 Major BaP-DBahA- BkF; PER	HQ: 4.229 Moderate CAT-GST	HQ: 67.174 Major	Absent	Major	MODERATE	
Porvoo	HQ: 0.311 Absent	HQ: 63.030 Major ANT-FLU; PER	HQ: 4.642 Moderate GST-LPO- CAT; GR	HQ: 46.078 Moderate	Slight	Major	MODERATE	
Heisinki	HQ: 2.271 Slight 100% Zn	HQ: 14.842 Slight	HQ: 2.517 Moderate -; GST	HQ: 31.326 Slight	Absent	Major	SUGHT	
Hanko	HQ: 0.28 Absent	HQ: 29.925 Moderate -; 1-MetNAPH	HQ: 2.714 Moderate GR-GST; -	HQ: 46.377 Moderate	Absent	Moderate	SLIGHT	
Parainen	HQ: 1.7 Slight 100% Zn	HQ: 59.329 Major BbF-BaP; PER	HQ: 2.008 Slight LPO;-	HQ: 48.291 Moderate	Absent	Major	MODERATE	
Naantali	HQ: 2.829 Moderate 100% Zn	HQ: 80.710 Major FLU; PER- OSn	HQ: 2.402 Moderate GST-CAT; -	HQ: 49.020 Moderate	Absent	Major	MODERATE	
Uusikaupunki	HQ: 1.566 Slight 100% Zn	HQ: 1.985 Slight	HQ:2.42 Moderate CAT-GST; -	HQ: 9.520 Absent	Slight	Moderate	SUGHT	
Rauma	HQ: 6.18 Moderate 81.5% Zn	HQ: 64.589 Major -; PER-BaP	HQ: 2.125 Slight CAT; -	HQ: 33.676 Slight	Absent	Moderate	MODERATE	
Port	HQ: 0.293 Absent	HQ: 0 Absent	HQ: 0 Absent	HQ: 50.986 Moderate	Absent	Slight	SLIGHT	
Vaasa	HQ: 2.199 Slight 100% Zn	HQ: 4.296 Slight	HQ: 1.0 Slight	HQ: 59.938 Moderate	Absent	Slight	SLIGHT	

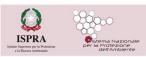
ISPRA


frontiers

in Marine Science

Flow chart and calculation of chemical HQ

- Calculation for each parameter concentration of the <u>Ratio To</u> <u>Reference</u>, RTR
- Correction for <u>typology of pollutants</u> (i.e. hazardous or priority), RTRp
- <u>Cumulative HQ</u> differently weights for parameters with RTR<1 and those with RTR>1
 - to discriminate even moderately polluted sites (close to reference values)
 - increase according to number and magnitude of exceeding parameters


La cooperazione al cuore del Mediterraneo

La coopération au cœur de la Méditerranée

- not lowered by "not exceeding" parameters

Activité Stateme Hynaite Mei de Activité Mei d

 <u>Classification of HQ</u> in 1 of 5 classes of hazard (absent-negligible, slight, moderate, major, severe)

Chemical analyses

1	В	C	D	E	F	G	н	1	W	Х	Y	Z	AA	AB	AC	AD	AE	AF	AG	AH	AI	AJ	
1	Longitude	Area	Site	Date	Sampling code	Core code	Level code	Sample code	As	Ba	Be	Cd	Со	Cr tot	Cr VI	Cu	Fe	Hg	Me Hg	Mn	Ni	Pb	Sb
2	8,922483	Genova	Diga foranea imboccatura levante	13/12/2018	GR-GE-I-SE-01			GR-GE-I-SE-01	8,78078			0,74035		64,5955		32,9257	21523,9	0,18			43,9031	52,9487	
3	8,919	Genova	Porto antico	13/12/2018	GR-GE-I-SE-02			GR-GE-I-SE-02	5,6098			0,34246		80,1061		51,585	18479,5	0,46			46,3194	63,2455	
4	8,875117	Genova	Foce Polcevera	13/12/2018	GR-GE-I-SE-03			GR-GE-I-SE-03	10,4238			0,46893		149,192		84,5771	41556,8	0,23			127,04	63,0451	
5	8,933853	Genova	Diga foranea imboccatura levante	16/05/2019	GR-GE-II-SE-01			GR-GE-II-SE-01	8,03118			0,43679		59,1385		46,1169	21556,5	0,17			44,8172	74,3146	
6	8,921642	Genova	Porto antico	16/05/2019	GR-GE-II-SE-02			GR-GE-II-SE-02	13,9585			0,40952		77,7851		78,2099	18854,6	1,36			46,0034	92,1128	
7	8,874175	Genova	Foce Polcevera	16/05/2019	GR-GE-II-SE-03			GR-GE-II-SE-03	5,45135			0,37115		133,141		88,5697	40330,9	0,23			131,111	59,6732	
8	9,849547	/ La Spezia	Molo Fornelli	20/11/2017	MF1			MF1															
9	9,849579	la Spezia	Molo Fornelli	20/11/2017	MF2			MF2															
10	9,849583	8 La Spezia	Molo Fornelli	20/11/2017	MF3			MF3															
11	9,849546	i La Spezia	Molo Fornelli	20/11/2017	MF4			MF4															
12	9,84578	8 La Spezia	Tra Molo garibaldi e Molo Fornelli	14/05/2019	GR-SP-II-SE-01			GR-SP-II-SE-01	23,7409			0,084		92,3921		62,7097		0,27349			59,1383	41,5757	

REFERENCE VALUES (Marine sediments) L1 (DM 173/2016) L2 (DM 173/2016) ERL (Effect Range Low) (Long et al., 1995) ERM (Effect Range Median) (Long et al., 1995) TEL (Threshold Effect Level) (Mac Donald, 1994, Long et al. (1995) PEL (Probable Effect Level) (Mac Donald, 1994, Long et al. (1995) SQA (D. Lgs 172/2015), SL/SQHV (ANZECC, 2009) Column A, (Allegato 5, parte IV, Titolo V, D. Lgvo 152/2006) Column B ("…") EASY TO UPDATE WITH **OTHER REFERENCES**

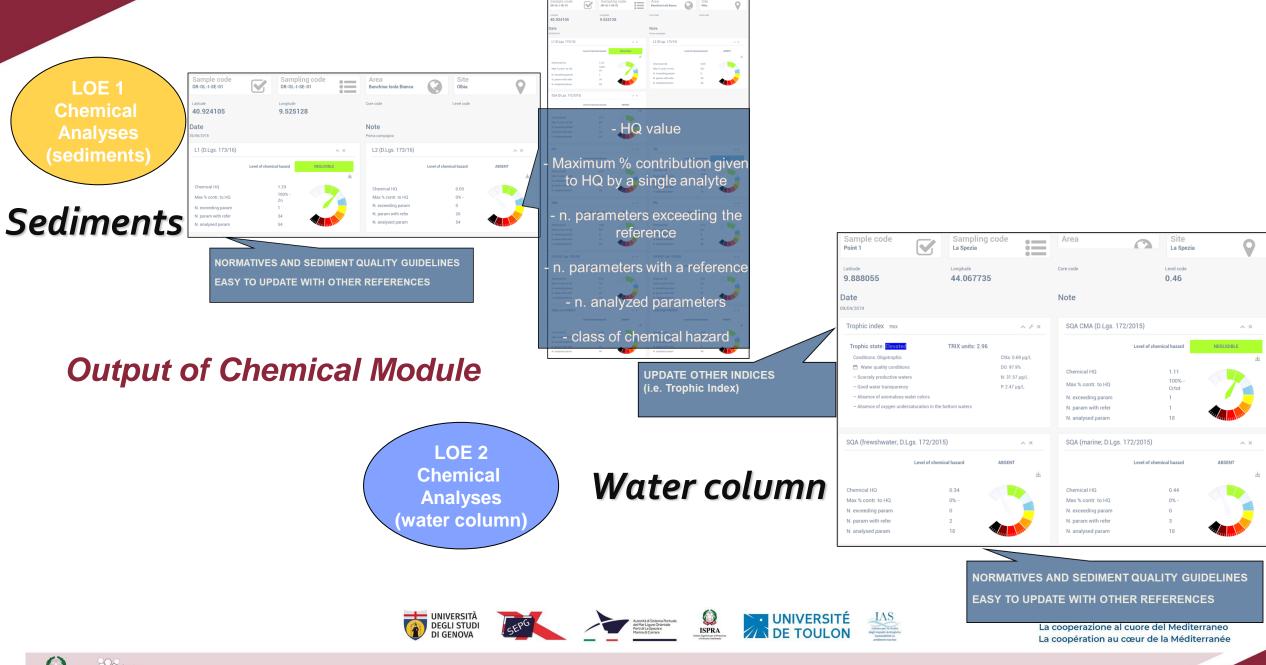
159 analytes including Trace metals, aliphatic hydrocarbons, PAHs, PCBs, pesticides, organo-tin dioxins and dioxin-like compounds, aromatic solvents, halogenated, nitro-aromatics, phenols, aromatic ammine, ...

UNIVERSITÀ DEGLI STUDI DI GENOVA

DI GENOVA

LOE 2 **Chemical** Analyses (water column)

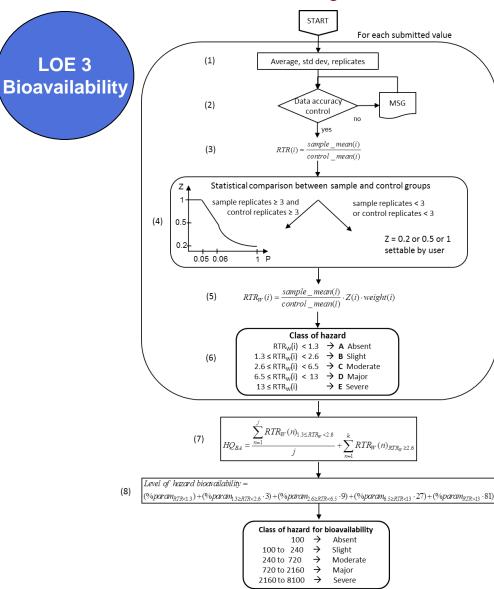
(Fe)	-				
1 A s	10	1	57 Diclorvos	0,01	1
2 C d 1	0,08	1,3	58 Dimeto ato	0,5	1
3 C d 2	0,08	1,3	59 Diaron	0,2	1,1
4 C d 3	0,09	1,3	60 Endosulfan	0,005	1,3
5 C d 4	0,15	1,3	61 Eptaclor	0,005	1
6 C d 5	0,25	1,3	62 Esaclorobenzene (HCB)	0,005	1,3
7 C d		1,3	63 Esaclorobutadiene	0,05	1,3
8 Cr totale		1	64 Esaclorocicloesano	0,02	1,3
9 Hg	0,03	1.3	65 Fenitrotion	0,01	1
10 Ni	20	1,1	66 Fention	0,01	1
11 Pb	7,2	1,1	67 Fluorantene	0,1	1,1
12 1,1,1 Tricloroetano	10	1.1	68 Isoproturon	0,3	1,1
13 1,2 dichloroethane	10	1,1	69 Linuron	0,5	1
14 1,2 dichloromethane	20	1,1	70 Malation	0,01	1
15 1,2 Diclorobenzene	2	1	71 MCPA	0.5	1
16 1,3 Diclorobenzene	2	1	72 Mecoprop	0.5	1
17 1.4 Diclorobenzene	2	1	73 Metamidofos	0.5	1
18 1-Cloro-2-nitrobenzene	1	1	74 Mevinfos	0.01	1
19 1-Cloro-3-nitrobenzene	1	1	75 N affalene	2,4	1,1
20 1-Cloro-4-nitrobenzene	1	1	76 Octilienolo	0.1	1.1
21 2 Cloroanilina	1	1	77 O meto ato	0,5	1
22 2,4 D	0,5	1	78 O ssidemeton-metile	0.5	1
23 2,4,5 T	0,5	1	79 Paration etile	0,01	1
24 2,4,5-Tricloro fenolo	1	1	80 Paration metile	0,01	1
25 2,4,6-Tricloro fenolo	1	1	81 PCB-101	0.1	1
26 2.4-Dicloro fenolo	1	1	82 PCB-118	0,1	1
27 2-Clorofenolo	4	1	83 PCB-126	0.1	1
28 2-Clorotoluene	1	1	84 PCB-128	0,1	1
29 3 Cloroanilina	2	1	85 PCB-138	0,1	1
30 3,4-Dicloro anilin a	0,5	1	86 PCB-153	0,1	1
31 3-Clorofenolo	2	1	87 PCB-156	0,1	1
32 3-Ciprotoluene	1	1	88 PCB-169	0,1	1
33 4 Cloroanilina	1	1	89 PCB-180	0,1	1
34 4-Clorofenolo	2	1	90 PCB-28	0.1	1
35 4-C lorotoluene	1	1	91 PCB-52	0,1	1
36 4-N onlifenolo (N onlifenolo)	0.3	1.3	92 PCB-77	0,1	1
37 Alachlor	0,3	1,1	93 PCB-81	0,1	1
38 Alcani, C10-C13, cloro	0,4	1,3	94 Pentaclorobenzene	0,007	1,3
39 Aldrin	-,-	1	95 Pentaclorofenolo	0.4	1,1
40 Antracene	0,1	1,3	96 pp DDT	0,01	1,1
41 Atrazina	0,6	1,1	97 S DDT	0,025	1,1
42 Azinfos etile	0.01	1	98 S PCB	1	1
43 Azinfos metile	0.01	1	99 S PCDD, PCDF, PCB diossina simili (TE-I)	0.1	1
44 Bentazone	0,5	1	100 Simazina	i	1,1
45 Benzene	10	1,1	101 TBT (Sn)	0,0002	1,3
46 B enzo(a)pirene	0.05	1.3	102 Terbutilazina	0.5	1
17 Benzo(b)fluorantene + Benzo(k)fluorantene	0,03	1,3	103 Tetracloroetilene	10	1,1
48 Benzo (g,h,i)perilene + Indeno(1,2,3,c,d)pirene	0,002	1,3	104 Tetracloruro di C	12	1,1
49 Brominated diphenyl ether	0,0005	1,1	105 Toluene	5	1
50 Chlorfenvinphos	0,1	1,1	106 Triclorobenzeni	0.4	1,1
51 Chlorpyriphos	0,03	1,1	107 Tricloroetlene	10	1,1
52 ciclodiene + Aldrin + Diledrin + Endrin + Isodrin	0,01	1,1	108 Triclorometano	2.5	1,1
53 Clorobenzene	3	1	109 Trifenilstagno	0.0002	1
54 Cloronitrotolueni	1	1	110 Triflularin	0,03	1,1
55 Demeton	0,1	1	111 Xilene	5	1
56 Di(2-ethylhexyl)phthalate	1,3	1,1			
10 Baccall	- 1-	-1-			
ÉIAS					
			La cooperazione al cuore del Me	ditorra	000
degli impani Antopici e Sotenibiliki in					
amblente marino			La coopération au cœur de la Me	aditerra	née


SQA Weighiting

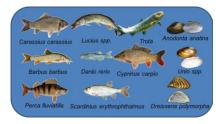
CHEM ICALS (µg L⁻¹)

LOE 1

Chemical

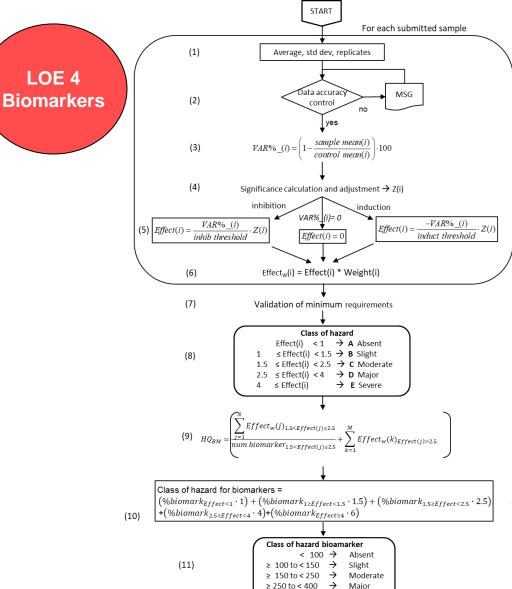


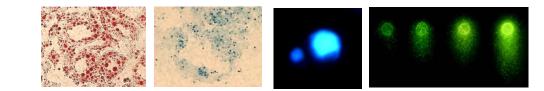
🐠 Interreg GEREMIA


MARITTIMO-IT FR-MARITIME

Flow chart and calculation of bioavailability HQ

LOE 3




- Calculation for each parameter of increased concentration, corrected for typology of pollutants (i.e. hazardous or priority) and statistical significance (RTRw)
- Assignment of each parameter to 1 of 5 classes of effect (absent, slight, moderate, major, severe)
- The cumulative HQ differently weights these parameters according to the entity of variation (is not an average)
- Level of cumulative HQ is summarized by the % distribution of parameters in the classes of effect

Sample code GR-OL-I-MT-01	Sampling code I campagna GR-OL-I-MT-01	Area Olbia		Site Banchina I	sola Bianca	9
Latitude 40.925851	Longitude 9.531496	Core code		Level code		
Date		Note				
26/07/2018		Banchina Isola Bianca				
Bioavailability	~ ×	Level of hazar	d for bioavailability			~ ×
Reference area	Olbia				SLIGHT	
Reference site	Banchina Isola Bianca					业
Experimental condiction	Transplanted	Bioavailability HC	a	6.12		
Exposure time		N. param in class	s ABSENT	36		12
Specie	Mytilus_galloprovincialis	N. param in class	s SLIGHT	6		
Tissue	Whole tissues	N. param in class	s MODERATE	1		
		N. param in class	s MAJOR	0		
		N. param in class	s SEVERE	0		

Flow chart and calculation of biomarkers HQ

 \geq 400 to \leq 600 \rightarrow Severe

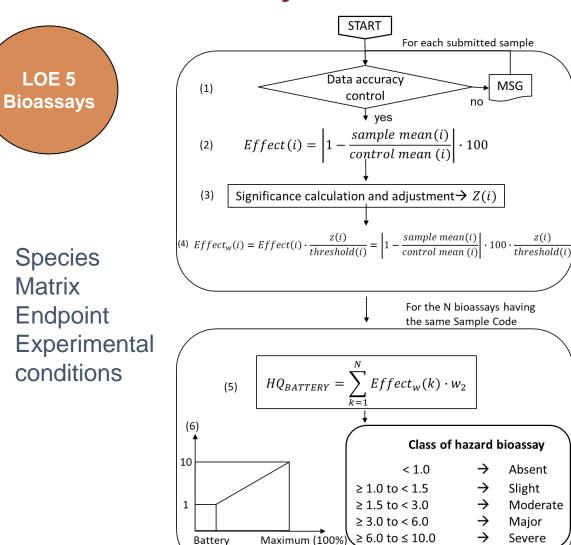
GEREMIA

Interreg

Fonds européen de développement régional

Fondo Europeo di Sviluppo Regionale

MARITTIMO-IT FR-MARITIME


- For each biomarker, the variation is compared to Threshold, corrected for statistical significance and importance of biomarker (weight)
- Assignment of each biomarker response to 1 of 5 classes of effect
- Calculation and classification of cumulative HQ in a level of hazard according to % distribution of biomarkers in the 5

classes	Sample code gr-sp-III-MT-03	Sampling code Terza campagna GR-SP-III-MP 03	Area La Spezia	Site Cadimare	molo aeronautica militare
	Latitude 44.08315167	Longitude 9.824972222	Core code	Level code	
	Date		Note Seconda campagna		
	Biomarkers	~ ×	Level of hazard for biomarker		~ ×
	Reference sample Experimental condiction	CTRL14 MT04 Transplanted			SLIGHT 上
	Exposure time		Biomarker HQ	2.2	
	Specie	Mytilus_galloprovincialis	N. param in class ABSENT	4	
	Tissue	haemolymph	N. param in class SLIGHT	0	
			N. param in class MODERATE	1	
			N. param in class MAJOR	0	
			N. param in class SEVERE	0	

n marittimo-it fr-maritime

Flow chart and calculation of bioassays HQ

Fonds européen de développement régional Fondo Europeo di Sviluppo Regionale

effect in the battery

hreshold

- Each bioassay has a <u>Weight</u> depending on the biological endpoint, and a <u>Threshold</u> based on tested matrix, time of exposure, hormesis
- Variation of each bioassay is compared to its Threshold, corrected for the <u>statistical</u> <u>significance</u> and the <u>weight</u> of the assay
- A <u>cumulative HQ</u> for the battery is calculated by the summation of each effect vs the threshold of the battery; <u>classification of the HQ</u> in 1 of 5 classes of hazard, absent, slight, moderate, major, severe (from less of the battery threshold to 100% of effects).

Output Module bioassays

LOE 5 Bioassays

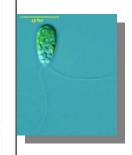
Single Bioassay Results

Level	of hazard	I for bioassays
-------	-----------	-----------------

Sample code GR-TL-II-SE-02		Area Tolone	Site La Tour Royale
Latitude 43.102303	Longitude 5.925276	Core code	Level code
Date		Note	
17/10/2019		II campagna	
Single Bioassay Result	ts: Vibrio_fischeri		
Endpoint	Bioluminescence	Effect	337.36
Exposure time	Acute	Effect Z	337.36
Matrix	Centrifuged sediment	Weighed Effect	0
Control mean	123.86	Specific HQ	0
Control Std Dev	5.63	Specific HQ norm (1:10)	0
Control Rep	3	Specific HQ threshold (10%)	1.44
Exposed mean	28.32	Specific HQ max (100%)	5.76
Exposed Std Dev	1.74		
Exposed Rep	2		
Single Bioassay Result	ts: Phaeodactylum_tricornutum		
Endpoint	Algal Growth	Effect	151.65
Exposure time	Chronic	Effect Z	151.65
Matrix	Elutriate	Weighed Effect	1.25
Control mean	420000	Specific HQ	1.29
Control Std Dev	13229	Specific HQ norm (1:10)	1.25
Control Rep	3	Specific HQ threshold (10%)	1.03
Exposed mean	677500	Specific HQ max (100%)	10.29
Exposed Std Dev	58790		
Exposed Rep	3		
Single Bioassay Result	ts: Paracentrotus_lividus		
Endpoint	development	Effect	14.01
Exposure time	Chronic	Effect Z	14.01
Matrix	Elutriate	Weighed Effect	0.93
Control mean	85.67	Specific HQ	0.87
Control Std Dev	0.58	Specific HQ norm (1:10)	0.93

Control Rep

Exposed mean


Exposed Std Dev Exposed Rep 3

73.67

0.58

3

9

 $\wedge x$

 $\sim x$

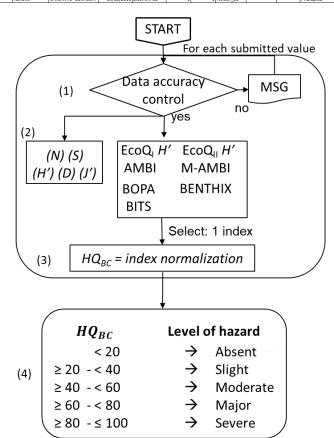
 $\sim x$

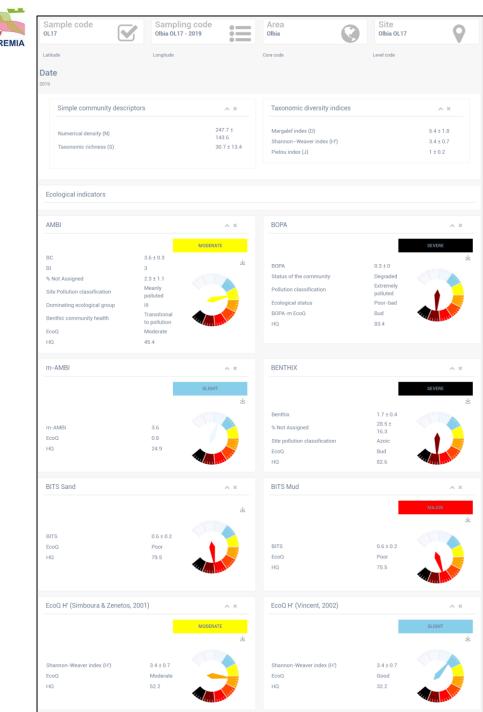
Specific HQ threshold (10%)

Specific HQ max (100%)

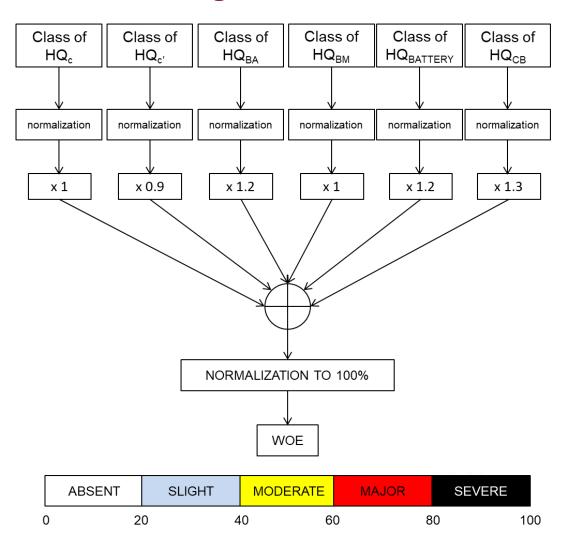
0.93 6.21

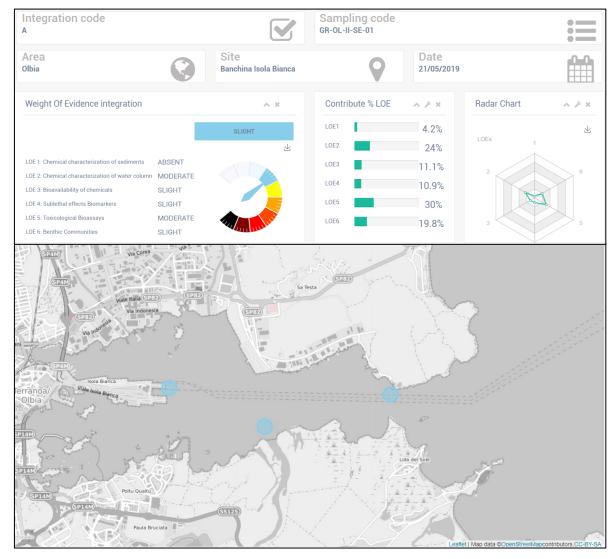
44		GERE
	MARITTIMO-IT FR-MARITIME	


Fonds européen de développement régional


Fondo Europeo di Sviluppo Regionale

Elaboration and data output


	Α	В	С	D	E	F	G	н	I	J	К	L	м	N	0	Р	Q	R
1	ID	Latitude	Longitude	Area_code	Site_code	Sampling_date	Sampling_code	Core_code	Core_level	Sample_code	Note	Immagine	Phylum	Class	Genus	Species	Family	abb
2	1			Adriatic	BARBARA C - BONACCIA	05/08/2010	piatt-eni-08	1	1	AM537_01			Anellida	Polichaeta		Ampharete acutifrons	Ampharetidae	17,
3	2			Adriatic	BARBARA C - BONACCIA	05/08/2010	piatt-eni-08	1	1	AM537_01			Anellida	Polichaeta		Aricidea albatrossae	Paraonidae	17
4	3			Adriatic	BARBARA C - BONACCIA	05/08/2010	piatt-eni-08	1	1	AM537_01			Anellida	Polichaeta		Cirratulus sp.	Cirratulidae	17
5	4			Adriatic	BARBARA C - BONACCIA	05/08/2010	piatt-eni-08	1	1	AM537_01			Anellida	Polichaeta		Glycera sp.	Glyceridae	17
6	5			Adriatic	BARBARA C - BONACCIA	05/08/2010	piatt-eni-08	1	1	AM537_01			Anellida	Polichaeta		Hesionidae	Hesionidae	17
7	6			Adriatic	BARBARA C - BONACCIA	05/08/2010	piatt-eni-08	1	1	AM537_01			Anellida	Polichaeta		Levinsenia sp.	Paraonidae	120
8	7			Adriatic	BARBARA C - BONACCIA	05/08/2010	piatt-eni-08	1	1	AM537_01			Anellida	Polichaeta		Marphysa bellii	Eunicidae	17
9	8			Adriatic	BARBARA C - BONACCIA	05/08/2010	piatt-eni-08	1	1	AM537_01			Anellida	Polichaeta		Notomastus latericeus	Capitellidae	17
10	9			Adriatic	BARBARA C - BONACCIA	05/08/2010	piatt-eni-08	1	1	AM537_01			Anellida	Polichaeta		Orbinia sp.	Orbiniidae	51
11	10			Adriatic	BARBARA C - BONACCIA	05/08/2010	piatt-eni-08	1	1	AM537_01			Anellida	Polichaeta		Paralacydonia paradoxa	Paralacydoniidae	17
12	11			Adriatic	BARBARA C - BONACCIA	05/08/2010	piatt-eni-08	1	1	AM537_01			Antropoda	Crustacea	Ostracoda	Ostracoda		17
13	12			Adriatic	BARBARA C - BONACCIA	05/08/2010	piatt-eni-08	1	1	AM537_01			Antropoda	Crustacea	Tainadacea	Leptochelia savignyi	Leptocheliidae	17
14	13			Adriatic	BARBARA C - BONACCIA	05/08/2010	piatt-eni-08	1	1	AM537_01			Echinodermata	Holoturidea		Myriotrochus sp.	Myriotrochidae	17
15	14			Adriatic	BARBARA C - BONACCIA	05/08/2010	piatt-eni-08	1	1	AM537_01			Mollusca	Bivalvia		Parvicardium minimum	Cardiidae	17
16	15			Adriatic	BARBARA C - BONACCIA	05/08/2010	piatt-eni-08	1	1	AM537_01			Mollusca			Dosinia lupinus	Veneridae	17
17	16			Adriatic	BARBARA C - BONACCIA	05/08/2010	piatt-eni-08	1	1	AM537_01			Mollusca			Loripes lacteus	Lucinidae	34
18	17			Adriatic	BARBARA C - BONACCIA	05/08/2010	piatt-eni-08	1	1	AM537_01			Mollusca			Mysella bidentata	Montacutidae	17
19	18			Adriatic	BARBARA C - BONACCIA	05/08/2010	piatt-eni-08	1	1	AM537_01			Mollusca			Kellia suborbicularis	Kelliidae	17
20	19			Adriatic	BARBARA C - BONACCIA	05/08/2010	piatt-eni-08	1	1	AM537_01			Nematoda			Nematoda		137
21	20			Adriatic	BARBARA C - BONACCIA	05/08/2010	piatt-eni-08	1	1	AM537 01			Prialupida			Priapulus sp.	Priapulidae	34



Integration of various LOEs into WOE and class of Risk

• Importance of multidisciplinary WOE approach for characterizing environmental quality and risk assessment

- WOE models represent a fundamental tool for summarizing and interpreting large datasets of heterogeneous data, singularly or in an integrative approach
- They do not use "pass-to-fail" approach, enhancing the capability to discriminate different environmental conditions
- The developed model is versatile, easy to update or adapt to local or national specificities
- Scientifically sound but user-friendly format, to support a more comprehensive process of risk assessment and "site-oriented" management decisions

UNIVERSITÀ DEGLI STUDI DI GENOVA

Thanks for the attention

Politecnica delle Marche Ancona

