

Consumi dei trasporti: politiche di efficienza energetica

27 ottobre 2022 - Villa Celimontana, Roma

Maria Lelli / ENEA TERIN-PSU-STMS

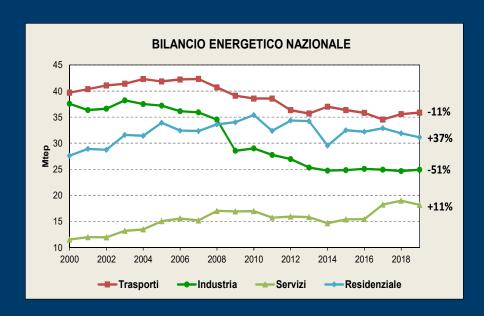
Sistemi e Tecnologie per la Mobilità Sostenibile

Tecnologie veicolari innovative

- Sistemi innovativi di propulsione per prototipi di vetture e autobus
- Tecnologie innovative di ricarica e accumulo di energia
- Sale prova:
 - ✓ Banco motori: termici, elettrici, etc.
 - ✓ Banco a rulli
 - ✓ Sala Prova batterie
 - ✓ Stazione sperimentale di ricarica per veicoli elettrici
 - ✓ Stazione di ricarica per miscele idrometano
 - √ Sala Prove supercap
 - ✓ Campo prove sicurezza batterie

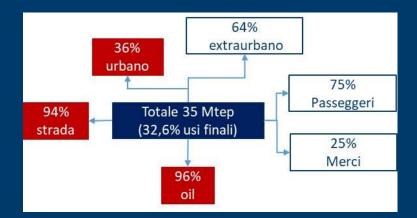
Sviluppo metodologie e strumenti modellistici innovativi

- Analisi, gestione e monitoraggio del traffico e della mobilità passeggeri e merci
- Pianificazione sistemi di trasporto
- Efficientamento operativo ed energetico del trasporto pax/merci
- Valutazione energetico ambientale di misure/scenari di intervento
- Nell'ambito della Direttiva Europea sull'Efficienza Energetica, Relazione Annuale e Rapporto Annuale EE
- Applicativi per:
 - ✓ Servizi di trasporto flessibile a domanda
 - ✓ Nuovi schemi di City Logistics
 - ✓ Mobility Management
 - ✓ Applicazioni ITS



INDICE

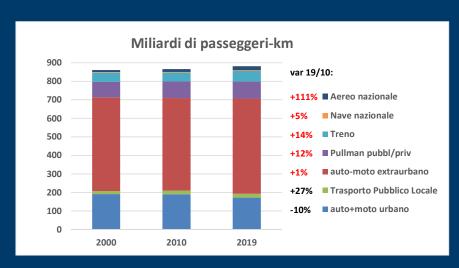
- 1. Criticità del sistema dei trasporti in Italia
- 2. Strategie ASI
- 3. Green deal e strategia italiana
- 4. Mobilità dei passeggeri: opportunità e barriere
- 5. Trasporto merci : opportunità e barriere
- 6. Conclusioni e considerazioni


CONSUMI TRASPORTI E CRITICITA'

- Consumi trasporti: 32,6% del totale
- Problema dei consumi del Residenziale
- Dalla produzione industriale ai Servizi

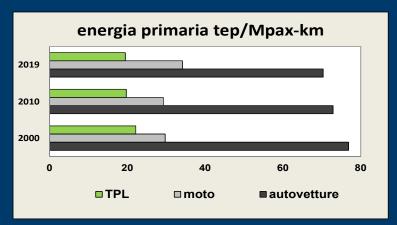
Cosa chi e dove:

- Prodotti petroliferi
- Dominio della strada
- Problema della mobilità passeggeri

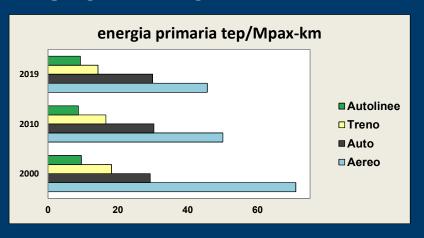


IMPATTI:

incidentalità – inquinamento - congestione – dipendenza energetica

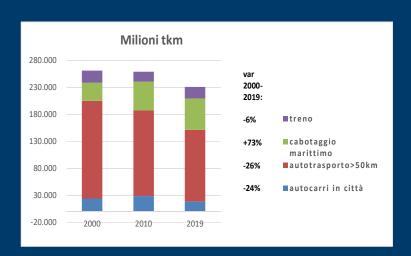


INEFFICIENZA nella MOBILITA' PASSEGGERI

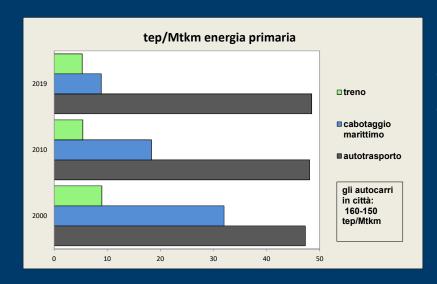


- % in ambito urbano dei pkm su mezzi a motore (22% del totale): 89% automoto
- Mancano gli spostamenti non motorizzati in città
- % in ambito extraurb: 75% auto-moto
- Crescono i pkm in treno (share 8%)
- Crescono molto quelli in aereo (share 3%)

INEFFICIENZA IN CITTA':

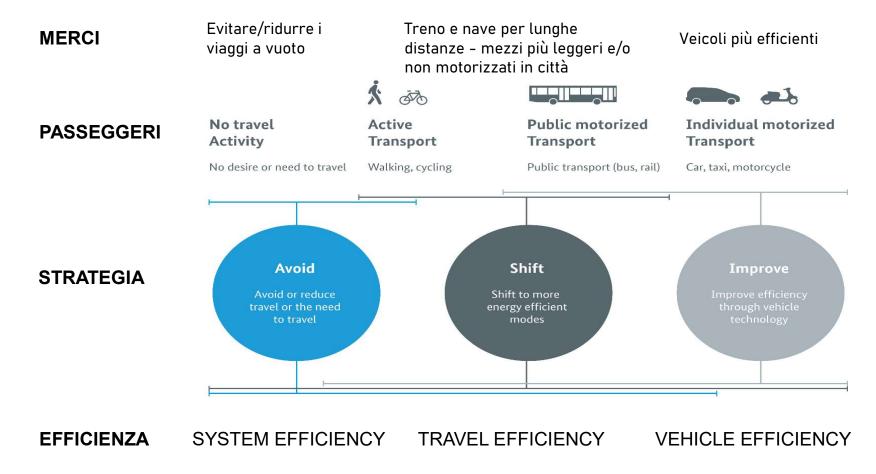


INEFFICIENZA SU MEDIA-LUNGA PERCORRENZA:



INEFFICIENZA nel TRASPORTO MERCI

- 🖖 🦠 in ambito urbano: 8% ma molta incertezza nella stima
- Mancano gli spostamenti non motorizzati in città ma trascurabili
- % autocarri in ambito extraurbano: scesi al 62% nel
 2019 (di cui il 54% share extraurbano del 36% sotto i 300 km)
- Cresce molto il cabotaggio marittimo (share 25%)
- Il treno in difficile ripresa (share 9%)


INEFFICIENZA AUTOTRASPORTO:

- In città il massimo dell'inefficienza
- La flessibilità dell'autotrasporto si paga in consumo:
 - o la nave in termini di organizzazione
 - Il treno anche in termini di rendimento energetico

STRATEGIA ASI e EFFICIENZA ENERGETICA

Strategia ASI «avoid-shift-improve»

POLITICHE

- Politiche regolatorie: regolamenti comunitari, misure di accesso/restrizione
- Politiche economiche: di incentivazione e di tassazione
- Infrastrutture e servizi

AVOID	SHIFT	IMPROVE
Land use: politiche abitative e organizzazione sociale e lavorativa	Offerta nuovi servizi e digitalizzazione	Miglioramento delle prestazioni energetiche dei motori a combustione interna
Logistica e digitalizzazione	Infrastrutture	Ibridizzazione ed elettrificazione

EFFICACIA DELLE POLITICHE/ESEMPI:

- Sostenibilità sociale ed economica: smart working divieti di accesso
- Capacità di attrarre domanda di mobilità dei nuovi servizi: qualità e programmazione
- Integrazione con altre politiche: generazione elettrica da fonti rinnovabili -Infrastrutture di ricarica – domanda generata

GREEN DEAL e FitFor55

- EE con RED e ETS ma anche zero pollution action plan, sostenibilità sociale, economia circolare, biodiversità e agricoltura...
- Revisione di direttive e regolamenti, nuovi piani di azione e regolamenti con cronoprogramma

SOSTENIBILE	SMART	RESILIENTE
Ridurre dipendenza da fonti fossili	Liberare pieno potenziale dei dati	infrastrutture europee e TEN-T multimodali con connettività ad alta velocità
Rendere disponibili scelte alternative all'autovettura	Al 2030 bigliettazione elettronica e digitalizzazione trasporto merci	Sistema di trasporto accessibile e conveniente, con condizioni migliori per i lavoratori dei trasporti
Internalizzare i costi esterni dei trasporti	Guida autonoma	Sicurezza: zero incidenti al 2050

SOSTENIBILITA':-90% gas serra dei trasporti al 2050

- TRASPORTO STRADALE PIU' PULITO regolamenti e infrastrutture di ricarica
- CARBURANTI PIU' PULITI Energie Rinnovabili, ReFuel EU Aviation e FuelEU Maritime
- ETS: revisione per aviazione, inserimento anche strada e navi

Strategia italiana

LONG-TERM STRATEGY (LTS)

- i) trasporto passeggeri: politiche per il contenimento del fabbisogno di mobilità e incremento della mobilità dolce e della mobilità collettiva, in particolare su rotaia;
- ii) trasporto merci: passaggio da gomma a ferro;
- iii) per il residuo fabbisogno di mobilità privata e merci: efficienza, diffusione dei biocarburanti, soprattutto biometano, incremento di veicoli elettrici.

modalità	Unità	CNIT 2019	Riferimento 2050	Green Deal 2050	GD vs Rif
Auto	Gpkm	732	615	525	-15%
Moto	Gpkm	39	40	37	-8%
Bus	Gpkm	112	114	150	32%
Treni passeggeri	Gpkm	57	82	98	20%
Aerei	Gpkm		130	105	-19%
Treni merci	Gtkm	21	30	37	23%
Navi	Gtkm	58	73	73	0%
Truck	Gtkm	112	165	134	-19%

OBIETTIVI PNRR

- Aumentare TPL e decarbonizzare flotta;
- Ridurre domanda di trasporto inquinante, soprattutto in città, piste ciclabili micromobilità e intemodalità;
- Sviluppare rete pubblica di ricarica veloce;
- Estensione al Sud dell'alta velocità, potenziamento connessioni trasversali e digitalizzazione hub logistici;
- · Idrogeno verde

MOBILITA' PASSEGGERI – strategia e potenzialità

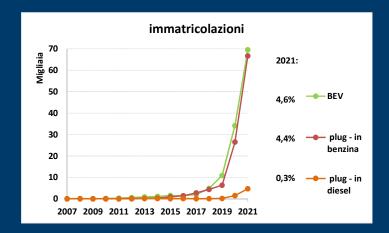
LTS per la mobilità passeggeri:

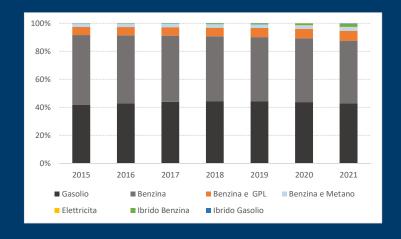
- ➤ ridurre la mobilità passeggeri con consumi energetici (telelavoro, ciclopedonalità);
- promozione dell'intermodalità, con spostamento dal trasporto su gomma privato verso quello pubblico e in particolare ferroviario;

▶ riduzione dei pkm per i voli aerei

parco circolante (Milioni)	2018	Riferimento 2050	Green Deal 2050
Auto ad alimentazione elettrica	0,02	11	19
Auto metano/biometano	1	3	0
Auto GPL	3,1	3	0
Auto tradiz e ibride (no plug in)	36,5	13	0
Auto idrogeno	-	0,4	4
Auto a green fuel sintetici	-	-	1
Totale	40,6	30	24

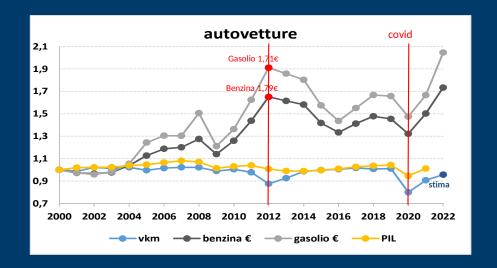
POTENZIALITA'


- L'efficienza energetica attraverso l'elettrificazione del parco autovetture è molto maggiore se l'energia elettrica è rinnovabile (energia primaria)
- L'autoproduzione e autoconsumo è auspicabile, soprattutto per aziende con grandi flotte (TPL) e per le Comunità Energetiche Rinnovabili
- La digitalizzazione abilita la riuscita di politiche di gestione della domanda di mobilità e efficienta il sistema di trasporto anche energeticamente (aumento del Load factor)
- · Ruolo delle città: PUMS, MAAS e Mobility Management


MOBILITÀ PASSEGGERI – barriere (1)

FLOTTA

- TASSO MOTORIZZAZIONE: 0,67
- PARCO AUTOVETTURE: 39,8 milioni, di cui 16% sopra i 15 anni, 28% < Euro 4, solo 0,3% elettriche e 2,6% ibride
- TASSO di RINNOVO: 4% all'anno



MOBILITÀ PASSEGGERI – barriere (2)

RIGIDITA' DEL SISTEMA


Risposta solo all'aumento dei prezzi dei carburanti (nel 2012, e ora?) e a provvedimenti emergenziali

EFFICACIA DELLE POLITICHE DI SHIFT

MODALE DA MONITORARE ATTENTAMENTE:

esempio dell'Alta velocità

TRASPORTO MERCI – strategia e potenzialità

LTS per il trasporto merci:

- >potenziamento del trasporto ferroviario merci
- ➤ drastica riduzione dei viaggi a vuoto nel trasporto merci su gomma, fino ad un livello pari al 10% al 2050
- ➤ Elettrificazione dove possibile e carburanti alternativi

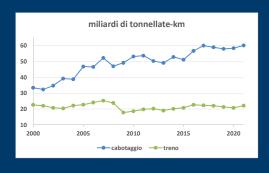
Miliardi tkm	%variazione GreenDeal/Riferimento
Treni merci	23%
Navi	0%
Truck	-19%

POTENZIALITA':

- ➤ elettrificazione della flotta VCL è tecnicamente possibile
- ➤ Shift su nave e treno: solo viaggi lunghi
- ➤ Necessario efficientare il trasporto su strada di media-lunga distanza
- ➤ Digitalizzazione abilita un miglioramento dell'organizzazione dei carichi e dei viaggi

TRASPORTO MERCI - barriere

FLOTTA:


> VEICOLI COMMERCIALI LEGGERI (>3,5t): 3,4 milioni, di cui 48%<2.5t e 45%<Euro IV, 90% gasolio, 0,2% elettr, 4% tasso di rinnovo

> VEICOLI PESANTI:

- HDV: 515 mila, di cui 99% a gasolio, 32%<7,5t, tasso di rinnovo 1-1,5%
- TRATTORI STRADALI: 200 mila, 27% < EurolV,, tasso di rinnovo 4,5-6,5%

	P	2021:	
5.000		 2021;	
4.000		2,0%	elettrici
3.000			
2.000	*********************	2,9%	ibridi gasolio-el
1.000	***************************************	 2,7%	— <u>∔</u> ibridi benzina-e

Percorrenza HDV	%tkm
fino a 50 km	7%
51-100 km	10%
101-150 km	10%
151-200 km	11%
201-300 km	20%
301-400 km	12%
401-500 km	7%
501 km e più	23%

VOLUMI:

- su strada il 65% delle tonnellate-km
- tkm: 38% su distanze inferiori ai 200 km
- Incertezza dei dati in città sia di veicoli che di volumi
- Per gli spostamenti su lunghe distanze:
 - CABOTAGGIO MARITTIMO (25% tkm): difficile da decarbonizzare, crescita dei volumi, efficientamento del servizio, Efficacia delle politiche di incentivazione
 - TRASPORTO FERROVIARIO: in ripresa grazie ai finanziamenti statali

CONCLUSIONI E CONSIDERAZIONI

✓ Riequilibrio modale necessario, ma di non facile attuazione

✓ Mobilità passeggeri:

- difficile cambiamento comportamentale, soprattutto in città
- Le città protagoniste della transizione
- Problema degli spostamenti privati anche per M/L distanze

✓ Trasporto delle merci in città:

- Distribuzione urbana e autotrasporto su media distanza da affrontare: rinnovo veicoli ma anche ottimizzazione e digitalizzazione
- E-commerce

✓ Problemi del monitoraggio:

- Rilevazione dei veicoli-km in città: i veicoli commerciali leggeri sfuggono a qualsiasi statistica, le tonnellate-km ancora di più
- Rilevazione dei pkm non motorizzati
- Dati dei Ministeri e loro società in-house non messi a sistema e di difficile reperimento

