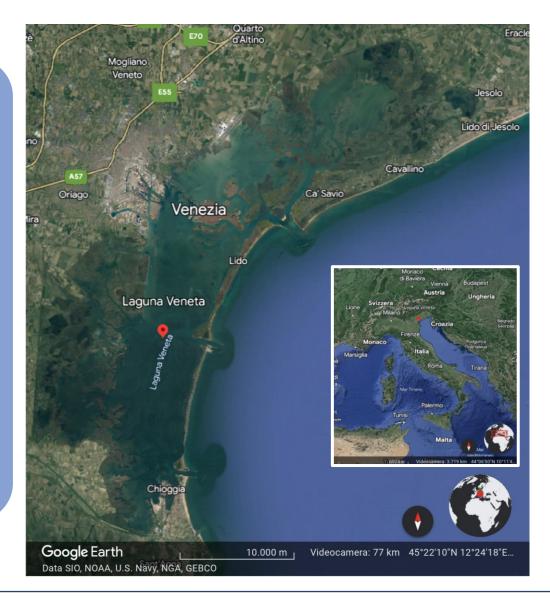


L'approccio WoE applicato alla gestione dei sediment in ambiente lagunare: Il caso della Laguna di Venezia

Maurizio Ferla¹, Antonella Ausili¹, Chiara Maggi¹, David Pellegrini¹, Fulvio Onorati¹

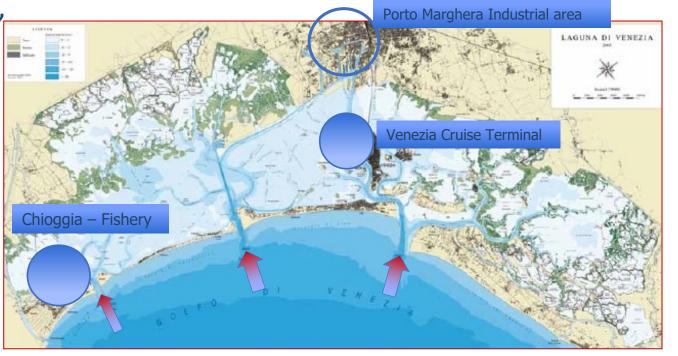

¹ Istituto Superiore per la Protezione e la Ricerca Ambientale 00144, Roma (Italy)

WORKSHOP - LA MOVIMENTAZIONE E IL RIUTILIZZO DEI SEDIMENTI IN ACQUE INTERNE, MARINE COSTIERE E NELLE LAGUNE: VERSO UNA GESTIONE CIRCOLARE

Genova, 24-26 ottobre 2023, Assemblea annuale dell'ANCI

Sommario

- La laguna di Venezia: pressioni naturali e antropiche
- Il degrado morfologico e la perdita di sedimenti
- La gestione dei sedimenti a partire dal Protocollo Fanghi '93
- Il nuovo regime regolatorio basato sull'approccio WoE. Il DM 22 maggio 2023 n° 86
- Ulteriori prospettive

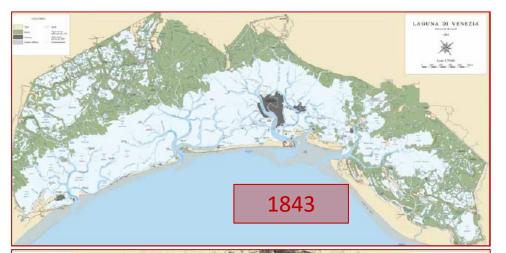


La laguna di Venezia 550 kmq, la più estesa nel Mediterraneo

 Piccole isole, estese piane di marea, barene, vali da pesca e una complessa rete di canali a marea

- Elevata eterogeneità nelle condizioni fisiche e biogeochimiche degli habitat
- 3 mt la profondità media
- Regime di marea astronomica semidiurno con ampiezza massime di 1 mt
- 20 corsi d'acqua di risorgiva scaricano in laguna le portate raccolte in un bacino idrografico di circa 2000 kmq

Attività portuali Pesca, Terminal turistici, Area Industriale

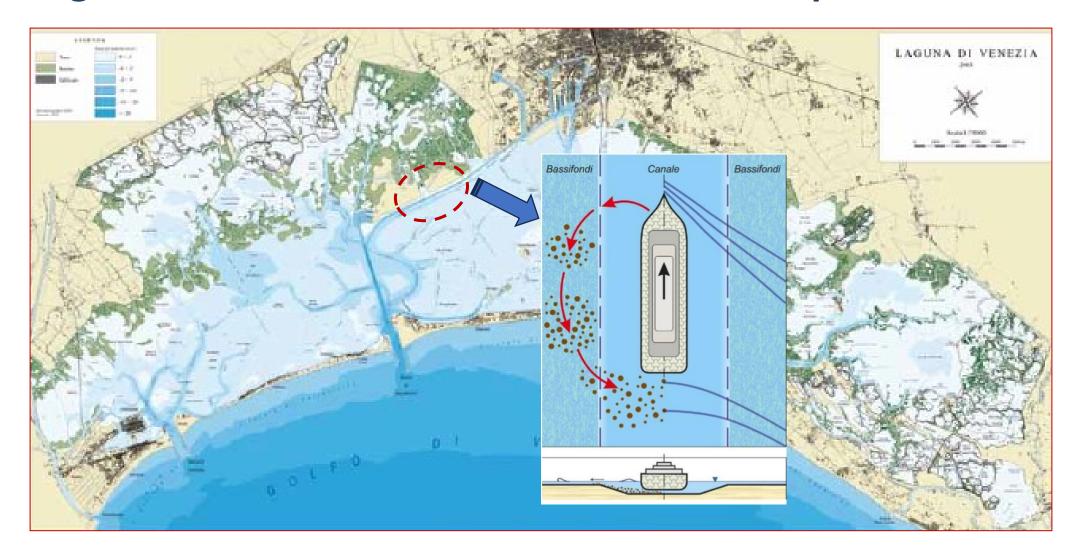

Il degrado morfologico e la perdita di sedimenti

Eventi estremi, RSLR e scarso/nullo apporto di sedimento dai corsi d'acqua sono alla base del decadimento morfologico

- 1,4 x 10⁶ mc/anno è la quantità di sedimento necessaria per mantenere l'attuale stato morfologico agli attuali tassi di RSLR rate (4.8 mm/anno)
- 8,0 x 10⁶ mc/anno è la quantità di sedimenti richiesta per mantenere l'attuale stato morfologico nel caso del peggiore scenario climatico (IPCC Scenario - RPC 8.5)

Criticità evidenti

- Domanda di una grande quantità di sedimenti
- Compatibilità fisica e qualitativa
- Aspetti di sostenibilità ambientale e finanziaria delle operazioni di ridistribuzione dei sedimenti all'interno della laguna



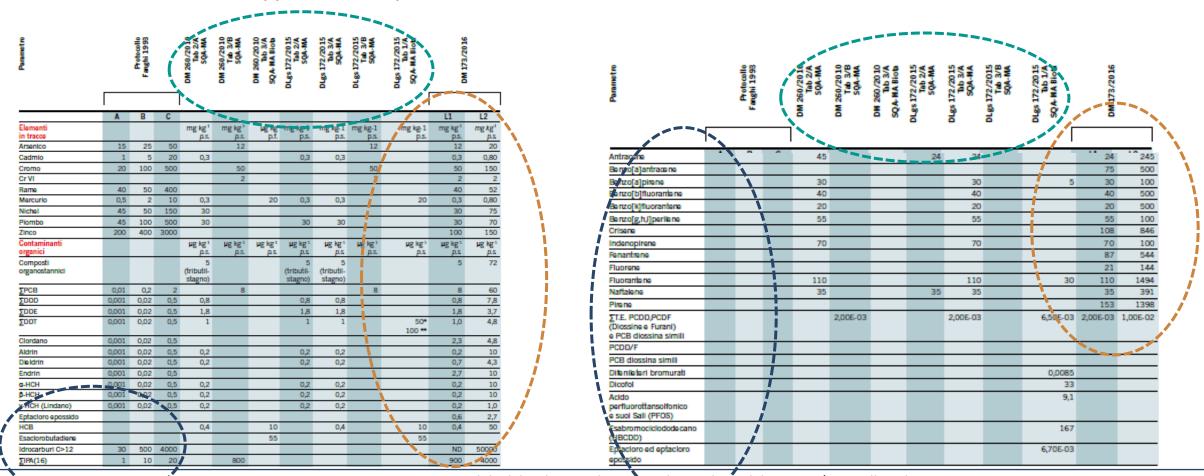
Source: Prof. L. D'Alpaos (DICEA, Università di Padova) – L'evoluzione morfologica della laguna di Venezia attraverso la lettura di alcune mappe storiche e delle sue carte idrografiche

La lagune di Venezia. Pressioni naturali e antropiche

La gestione dei sedimenti dragati. Il Protocollo Fanghi '93

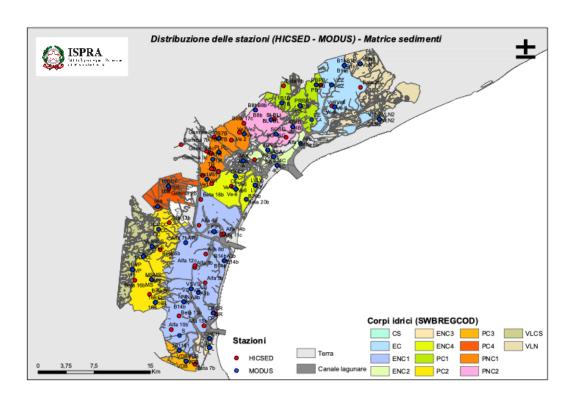
ELEMENTI E COMPOSTI	CLASSE "A" (mg/kg)	CLASSE "B"	CLASSE "C" (mg/kg)
		(mg/kg)	
Hg	0.5	2.0	10
Cd	1	5	20
Pb	45	100	500
As	15	25	50
Cr	20	100	500
Cu	40	50	400
Ni	45	50	150
Zn	200	400	3.000
Idrocarburi totali	30	500	4.000
IPA totali	1	10	20
PCB totali	0.01	0.2	2
Pesticidi org. clorurati	0.001	0.02	0.5

4 classi di rischio (soglie di concentrazione chimica)


- A Sedimenti per recupero morfologico
- B recupero di isole co separazione permanente dal corpo idrico e protezione dal rischio di inondazione durante le normali alte maree.
- C ampliamento/sollevamento di isole e permanente separazione dalla acqua lagunari anche con diaframmi profondi
- OVER C Gestione come rifiuto fuori dalla laguna o in discarica impermeabilizzata

Aggiornamento delle conoscenze e Direttive UE

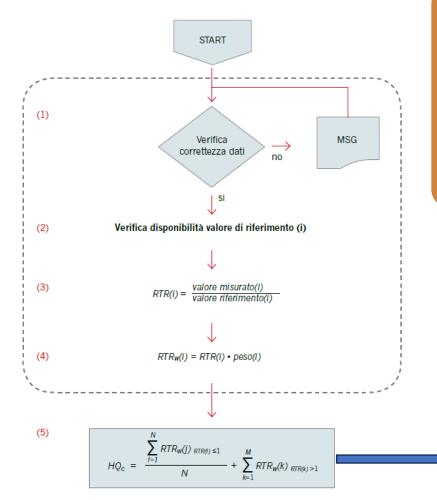
- Ampliamento della lista dei contaminanti (rispetto al Protocollo '93)
- Standard di qualità ambientale (SQA) secondo Direttiva Quadro Acque (colonna d'acqua, sedimenti e biota)
- L'introduzione dell'approccio WoE per i sediment marini con il DM 173/2016



L'approccio WoE.

Nuovi livelli soglia di concentrazioni chimiche (action level) per la laguna di Venezia

- Approfondite ed estese indagini scientifiche sul rischio ambientale condotte negli ultimi decenni rispetto ad un gruppo di stressori chimici (persistenti, tossici, bioaccumulabili)
- La sola classificazione chimica non consente di prevedere gli effetti ecotossici e di bioaccumulo
- Disponibilità di una considerevole mole di dati provenienti da attività di monitoraggio estese.
- Una serie di progetti specifici (ICLSEL, SIOSED, HICSED) hanno stabilito che non c'è alcuna evidenza scientifica che giustifica la separazione tra le classi A e B del Protocollo '93

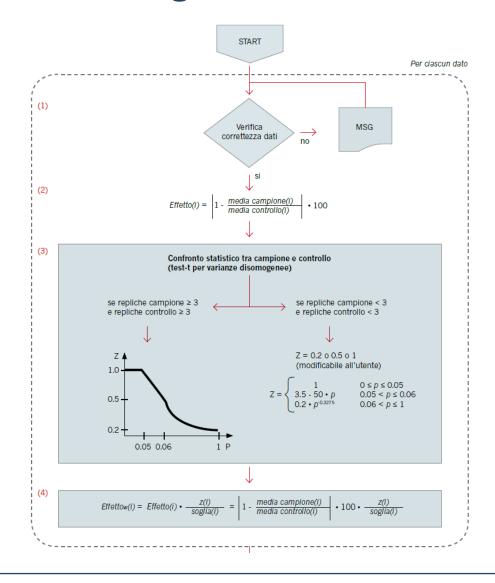


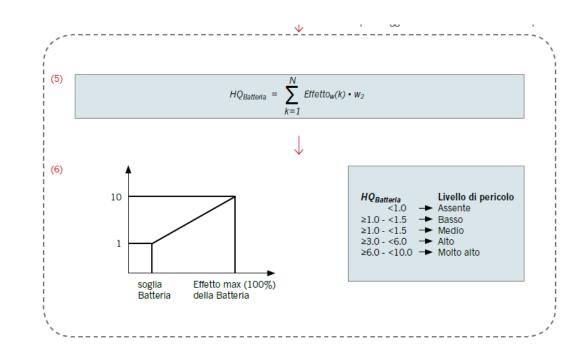
Gran parte dei sedimenti in classe B non evidenzia tossicità statisticamente rilevati rispetto alla maggior parte delle principali sostanze inquinanti

Chemical Hazard Quotient (HQc)

AAL1loc , L2loc adaptation

- 234 sediment samples
- 7124 chemical data (not omogeneosly distributet among the whole group of the pollutants)
- 892 biological text


Hazard class	
rd	
le	
n	
gh	


GRUPPO A	U.M.	L1 (SQA)	L2 (PEL sito specifico)	
As	mg/kg	12	19	
Cd	mg/kg	0,3	1,4	
Cu	mg/kg	40	62	
Hg	mg/kg	0,3	1,2	
Pb		30	50	
	mg/kg			
Zn	mg/kg	100	274	
Anthracene	μg/kg 24		79	
Benzo_a_antracene	μg/kg	75	329	
Benzo_a_pirene	μg/kg	30	199	
Benzo_b_fluorantene	μg/kg	40	192	
Benzo_k_fluorantene	μg/kg	20	133	
Crisene	μg/kg	108	328	
Benzo_g,h,i_perilene	μg/kg	55	180	
Fluorantene				
	μg/kg	110	366	
Fenantrene	μg/kg	87	245	
Fluorene	μg/kg	21	66	
Indeno_1,2,3_pirene	μg/kg	70	138	
Pirene	μg/kg	153 900	836	
IPAtot	μg/kg		1887	
НСВ ТВТ	μg/kg	0,4 5	4,8	
PCBtot	μg/kg μg/kg	8	15	
FCBtot	μg/ kg	 ° 	15	
Diossine, furani e PCB Dioxin Like	μg/kg (T.E.)	0,002	0,02	
GRUPPO B	U.M.	L1 (SQA)	L2 (PEL sito specific)	
Cr	mg/kg	50	-	
Ni	mg/kg	30	-	
Naftalene	μg/kg	35	-	
Cr VI	mg/kg	2,0	-	
DDD	μg/kg	0,8	-	
DDE DDT	μg/kg	1,8	-	
Clordano	μg/kg	1,0 2,3	-	
Aldrin	μg/kg	0,2	-	
Dieldrin	μg/kg μg/kg	0,7	-	
Endrin	μg/kg μg/kg	2,7	-	
∞-HCH	μg/kg	0,2	-	
β-НСН	μg/kg	0,2	-	
у-НСН	μg/kg	0,2	-	
Eptacloro epossido	μg/kg	0,6	-	
Idrocarburi C>12	μg/kg	-	-	

Ecotoxicological Hazard Quotient (Hqecotox)

Nuove linee guida per la gestione dei sedimenti nella laguna di Venezia e (DM 22 maggio 2023 n° 86)

- Indicazione tecnico-operative da adottare nelle indagini sui siti di dragaggio e deposito (barene, velme)
- Indicazioni sul piano di monitoraggio ambientale (idrodinamica, colonna d'acqua, torbidità, etc)
- Valutazione della qualità dei sedimenti secondo le nuove classi di rischio definite secondo l'approccio EoW integrando più linee di evidenza (chimica ed ecotossicologica, integrata con il bioaccumulo per la classe alfa)
- Coerenza con le Direttive EU (WFD, Waste Directive, Habitat & Birds Directives)
- Criterio del non peggioramento per i corpi idrici ove ricadono le aree di deposito

Quality risk classes and option for the management of sediments inside the lagoon of Venice

Risk class	Bioacc.	Ecotox	Chemical
Alpha (surface layer < 0.5 mt)	[X] "average" ≤ D.Lgs. 172/15	<u> </u>	[X] "media" ≤ SQA
Alpha (deep layers > 0,50 mt)		No hazard (HQ < 1)	[X] ≤ SQA + 20%
Beta		No hazard/Low (HQ < 1,5)	HQ (L2 _{Loc}) < 1 No hazard
Gamma		Medium (-1,5 ≤ HQ < 3)	HQ (L2Loc) ≤ Low
Delta		High 3≤ HQ<6	Low < HQ (L2 _{Loc}) ≤ High
Epsilon		- Very High HQ≥6	HQ(L2 _{Loc}) >High

Option of management

No restrictions in the reuse for morphological restoration Monitoring planning according to new guidelines

Reuse for morphological restoration

Not worsening the class risk of sediments in the deposit site and monitoring planning

Reuse for morphological restoration with an ovelay of better quality sediments (no direct connection to the nearby water bodies)

Permanent displacement in waterproof landfill area

Conclusioni

- Le nuove linee guida hanno suscitato importanti aspettative tra gli stakeholders
- Sviluppo di infrastrutture portuali
- Questioni ambientali riguardanti la salvaguardia della laguna
- E' stato individuato un periodo di prima implementazione di 2 anni nella prospettiva di acquisire nuovi dati e migliorare le conoscenze per meglio indirizzare la metodologia anche in vista di un aggiornamento dei L1 L2
- Un piano generale di recupero morfologco (PMLV) è già disponibile ed un suo aggiornamento è allo studio dopo le indicazioni emerse in sede di esme della Commissione VAS
- La questione cruciale del PMLV è l'identificazione di quegli interventi strategici (ricostruzione di barene/velme) che richiedono l'impiego di sedimenti nel rispetto delle nuove linee guida

Grazie

www.isprambiente.gov.it/it