2. - PIEZOMETRIE E VOLUMI IDRICI IM-MAGAZZINATI

In questo capitolo vengono presentate e commentate le elaborazioni piezometriche relative ai CISS che insistono nell'alta Val di Cecina (32CT050 Acquifero del Cecina) e nell'area costiera compresa tra Rosignano Solvay e S. Vincenzo (32CT030 Acquifero costiero tra Fiume Fine e Fiume Cecina, 32CT010 Acquifero costiero tra Fiume Cecina e S. Vincenzo), nonché la procedura adottata ed i relativi risultati ottenuti a riguardo del calcolo dei volumi idrici totali in essi immagazzinati.

La disomogeneità spazio-temporale dei dati disponibili ha indotto a trattare il CISS della Valle del Cecina (32CT050) in maniera separata rispetto ai due riconosciuti dalla Regione Toscana sulla fascia litoranea (32CT030 e 32CT010). In particolare, non è stato possibile procedere con l'elaborazione di un'unica piezometrica che riguardasse contemporaneamente i tre CISS (cosa di fatto plausibile vista la continuità idrogeologica tra gli stessi), dal momento che non erano disponibili dati di uno stesso periodo distribuiti sia sul sistema acquifero costiero, sia su quello intravallivo.

2.1. - Acquiferi costieri tra Fiume Fine e Fiume Cecina (32CT030) e tra Fiume Cecina e S. Vincenzo (32CT010)

2.1.1. - Ricostruzioni piezometriche

Come anticipato nel § 1.2. i due CISS istituiti formalmente dalla Regione Toscana in base alla D.G.R.T. n.225/2003, devono esser trattati da un punto di vista idrogeologico come un unico CISS. Le considerazioni che seguono tengono dunque conto di questo aspetto.

Il CISS in esame è stato interessato in passato, anche se non sempre su tutta la sua estensione, da vari studi che hanno effettuato campagne di rilevamento dati piezometrici e relative elaborazioni (AF-STUDIO GEOLOGICO, 1997; GRASSI *et alii*, 2000; ARPAT, 2003; PRANZINI, 2004a; FRULLINI *et alii*, 2007). Negli anni sono state inoltre portate avanti attività di monitoraggio piezometrico da parte degli Enti che, a vario titolo e con varie competenze, operano sul territorio. È tuttora in corso un'attività di monitoraggio piezometrico svolto congiuntamente dall'Ufficio del Genio Civile della Regione Toscana, dalla Provincia di Livorno e dall'ASA, in qualità di Gestore Unico del Servizio Idrico Integrato.

Nell'ottica di voler rappresentare le condizioni piezometriche nelle due situazioni di regime di magra e di morbida per l'intero CISS in esame, sono stati considerati i dati relativi allo studio di PRANZINI (2004a) che si riferiscono a campagne di rilevamento svolte nei periodi maggio e settembre 2002. Questi dati, messi a disposizione in originale dal suddetto autore che qui ringraziamo, risultano di fatto, tra i disponibili al momento della stesura del presente elaborato, quelli che coprono maggiormente e con una densità migliore l'intera area di pertinenza del sistema acquifero costiero compreso tra il Fiume Fine, a nord, e S. Vincenzo a sud.

Nell'ambito del presente lavoro, su tali valori piezometrici è stata effettuata un'analisi critica anche in funzione delle esigenze del lavoro stesso e più in particolare tenendo conto della distribuzione dei dati sperimentali e della loro rappresentatività nei confronti delle caratteristiche idrogeologico-strutturali del CISS in esame (§1.2.); in definitiva, dei 303 e 268 pozzi misurati a maggio e settembre 2002 da PRANZINI (2004a), ne sono stati considerati rispettivamente 288 e 259 (tab. 3).

				Clz	idoration	111	inguies o)-/.				
EST	NORD	QPC_m	PROF_m	LIV. PIEZ. MAG02	LIV. PIEZ. SET02		EST	NORD	QPC_m	PROF_m	LIV. PIEZ. MAG02	LIV. PIEZ. SET02
1614160	4806467	12,50	3,0	3,20	2,90	1	1620735	4796185	3,00	15,0	0,65	0,70
1615269	4806492	13,30	10,0	6,30	6,00		1620783	4795633	1,60	6,0	0,41	0,60
1615674	4805713	3,50	9,0	0,25	0,80		1620975	4800680	18,76	15,0	2,71	3,00
1615719	4806388	10,50	15,0	5,80	5,70		1621000	4803091	39,50		33,90	34,40
1615820	4805331	5,80	8,0	1,57	1,80		1621010	4802150	32,46		15,42	15,77
1615905	4804981	7,00	8,0	0,26	-0,20	1	1621142	4796437	3,70		1,47	1,47
1615982	4804432	2,80	3,0	0,30	0,80		1621212	4797330	5,10	20,0	0,88	0,75
1616392	4804928	6,60	10,0	2,50	2,70		1621289	4795563	3,00	4,0	0,10	0,40
1616450	4805505	14,10	4,0	11,12	11,20		1621354	4795186	2,00	3,0	0,02	0,32
1616534	4804199	4,20	3,0	2,05	2,40		1621362	4798875	8,00	46,0	1,26	-0,21
1616569	4806386	30,00	14,0	21,30	21,50		1621390	4800910	23,71		11,98	12,17
1616667	4806087	23,70	6,0	20,28	20,30	1	1621400	4802310	37,47		25,18	25,42
1616878	4805380	17,60	6,0	13,83	13,50]	1621415	4796075	4,30		1,72	1,72
1616994	4802099	1,40	5,0	0,55	1,40		1621429	4794896	3,00	8,0	0,20	0,40
1617196	4802938	2,10	3,0	-0,25	-0,20		1621439	4795523		3,0	0,56	0,52
1617385	4805548	25,30	18,0	18,40	18,10		1621450	4801590	29,75	23,7	12,44	12,56
1617460	4803187	4,20	15,0	1,30	1,55		1621530	4797625	7,40		0,58	0,36
1617516	4805990	36,80	12,0	28,52	28,20		1621530	4799030	11,00	61,0	0,27	0,53
1617538	4804511	12,20	15,0	7,84	6,90		1621540	4795092	2,50	6,0	-0,20	0,00
1617693	4803504	3,00	30,0	1,50	1,25		1621670	4800950	27,06		9,91	10,26
1617699	4802409	3,10	3,0	2,14	2,25	1	1621780	4800635	26,00	3,0	9,59	9,90
1617872	4802121	1,70	3,0	1,05	1,22	1	1621831	4794710	2,50	7,0	0,20	0,35
1617925	4801103	2,50	2,5	1,50	1,70		1621850	4798900	8,20	48,0	0,18	
1618010	4803046	6,20	3,0	3,50	3,45		1621935	4799883	22,40	60,0	9,80	10,10
1618050	4805938	43,40	25,0	35,50	35,20		1622018	4797651	7,70	25,0	1,80	2,00
1618080	4798840	1,20	15,0	-0,59	-0,62]	1622170	4802550	54,99	18,1	39,44	39,37
1618085	4801180	2,70	15,0	0,85	1,40	1	1622305	4795645	3,70	3,0	-0,66	-0,25
1618226	4798676	1,60	20,0	0,50			1622375	4802031	51,20	15,0	41,20	40,70
1618394	4801742	4,90	15,0	2,75	2,75		1622405	4798845	12,50	15,0	2,56	2,72
1618397	4804993	24,10	3,0	21,70	22,40		1622420	4793785	3,30	11,5	1,40	1,51
1618429	4801535	3,80	8,0	1,65	1,70	1	1622470	4800630	36,50	53,0	20,40	19,80
1618460	4800635	2,62		0,91	0,90	1	1622570	4795305	3,50	54,0	0,16	-0,05
1618517	4797640	0,70	20,0	0,00	0,13		1622625	4795130	3,20	52,0	1,18	
1618541	4802832	11,10	12,0	8,90	8,85]	1622635	4795070	3,20	52,0	-1,06	-0,56
1618597	4803311	6,90	15,0	1,60	1,10		1622660	4798910	12,10	41,7	-0,22	
1618631	4798161	1,90	7,0	0,50			1622665	4793201	2,60	12,0	0,25	0,35
1618679	4805526	34,30	20,0	29,23	28,20]	1622740	4799758	34,50	11,8	11,54	12,29
1618780	4800430	3,48		2,21	2,19	1	1622745	4796095	6,60	60,0	-2,83	-3,03
1618844	4797207	1,30		-0,76	-0,70		1622845	4799065	17,00	51,0	7,56	
1618880	4800475	3,62		2,31	2,28		1622895	4795575	4,40		1,66	1,66

Tab. 3 – Dati piezometrici di maggio e settembre 2002 (per gentile concessione del Prof. G. Pranzini) utilizzati per le elaborazioni delle figure 6-7.

- Groundwater level of may and september 2002 (courtesy of the Prof. G. Pranzini) used for the elaboration in figures 6-7.

segue

1618920	4801310	6,90	4,9	3,27	3,69		1622910	4794151	1,90	3,5	0,50	0,60
1618922	4802176	9,40	15,0	6,80	6,20		1622952	4792466	3,40	26,0	0,94	1,00
1618951	4803806	8,20	30,0	-0,40	-0,80		1622985	4798760	8,70	51,0	-0,25	
1618975	4800395	3,68	3,8	0,29	0,52		1622990	4801600	60,30	15,0	44,08	44,41
1618989	4805614	38,20	13,0	34,15	34,10		1623080	4800740	51,00	55,0	30,24	30,65
1619010	4800030	3,22	25,0	0,86	0,80		1623144	4791626	1,20	14,5	-0,30	0,10
1619034	4801810		18,0	5,10	5,15		1623344	4791231	1,00	20,0	0,46	-0,75
1619040	4797520	1,00		0,51	0,47		1623454	4790966	2,70	20,0	2,40	2,29
1619137	4802985	13,70	6,0	9,80	9,50		1623475	4800830	59,50		31,89	32,44
1619152	4797320	1,90	60,0	0,00	-0,02		1623539	4793986	4,00	40,0	1,20	1,60
1619240	4799850	37,30	25,0		1,50		1623635	4799900	50,00		24,37	24,92
1619248	4805864	50,00	22,0	39,40	38,60		1623665	4799210	27,00		3,26	
1619261	4805255	33,90	8,0	27,17	26,90		1623813	4790019	3,60	20,0	0,96	0,90
1619457	4796813	2,00	20,0	0,00	0,25		1623828	4789282	2,60	3,0	-0,15	0,00
1619530	4798960	2,27	4,4	1,21	1,18		1623840	4801960	79,00	3,0	52,82	52,60
1619555	4798925	2,30	41,7	-0,15	0,20		1623910	4796355		65,0		-1,94
1619650	4800625	7,48		0,54	0,63		1623975	4800330	56,70	49,5	42,64	42,43
1619830	4801690				3,53		1623980	4798045			-0,64	
1619830	4797525	1,50	5,0	-0,44	0,60		1624084	4789401	2,90	15,0	-0,90	-0,75
1619864	4801792	16,90	30,0	5,75	6,33		1624092	4793880	9,60	26,0	3,35	3,44
1619865	4799750	7,24		1,04	1,12		1624125	4798475		62,1	0,14	
1619875	4801700	15,20	53,0	6,94			1624150	4801140	70,80		48,15	48,62
1620000	4799500	5,19	22,7	-0,03	-0,20		1624175	4788381	2,90	8,0	-1,30	-1,25
1620160	4801930	18,50	46,0	3,20			1624180	4797980			2,21	
1620195	4798360	3,65		0,23	0,04		1624200	4797930		15,0	2,20	
1620274	4803448	34,00	15,0	26,00	25,90		1624200	4798962	13,00		2,49	
1620342	4802491	27,60	58,0	22,10			1624212	4795755	17,00		1,11	1,41
1620380	4801900	21,45		9,28	9,51		1624250	4794332	11,80	28,0	3,35	3,48
1620400	4801670	23,00	42,0	7,35			1624450	4798325		47,5	-0,21	
1620430	4799790	11,20		0,87	1,02		1624490	4797465		52,0		
1620506	4796180	3,00	20,0	1,85	1,90		1624562	4792587	6,20	15,0	3,61	3,72
1620520	4800690		48,0		1,14		1624575	4798555		51,0	-0,23	
1620540	4796512	2,50		1,31	1,28		1624680	4790217	3,40	15,0	1,27	1,25
1620578	4799161	7,70	21,0	0,50	-0,15		1624790	4798335		42,0	0,10	
1620590	4803916	49,40	15,0	34,25	33,70		1624829	4785628	2,00	15,0	-2,47	-2,47
1620605	4800530	17,20	46,0	1,85]	1624927	4790637	4,60	15,0	2,33	2,15
1620615	4799500	9,46	53,0	0,61]	1625074	4784130	3,50	15,0	-0,78	-0,70
1620620	4797080	3,60	65,0	-0,14	1,05	1	1625080	4792260	8,50	15,0	3,10	3,28
1620700	4801750	26,50	42,0	10,50	7,60]	1625083	4793523	13,00	30,0	6,80	6,80
1620705	4801190	18,67		2,39	2,72		1625188	4782906	2,00	15,0	-2,00	-2,30
				1				1				

segue

1625194	4791770	8,30	15,0	3,20	3,30		1627865	4792091	28,00	3,0	10,97	11,46
1625262	4781646	6,40	10,0	-0,50	-0,60		1627921	4785149	13,60	15,0	8,48	6,80
1625282	4785594	1,00	15,0	-0,40	-0,80		1628020	4779712	31,00	15,0	20,60	19,75
1625300	4792655	9,10	15,0	2,90	5,15		1628023	4783360	13,00	9,0	10,40	10,15
1625321	4791535	9,00	10,0	4,03	3,65		1628029	4788560	28,70	15,0	18,00	17,20
1625337	4789464	5,10	55,0	2,75	2,45		1628113	4784518	10,50	15,0	8,20	8,96
1625403	4780980	6,80	15,0	5,40	5,06		1628261	4782937	15,20	15,0	13,60	
1625435	4778222	3,50	15,0	-1,15	-1,70		1628288	4791106	36,60	25,0	13,60	13,60
1625479	4790953	7,40	15,0	3,50	3,00		1628311	4781019	29,50		19,50	18,50
1625485	4777056	4,50	15,0	1,30	1,00		1628340	4781738	24,30	8,0	17,60	17,30
1625507	4780907	3,40	40,0	1,75	1,76		1628471	4785470	17,00	15,0	9,45	8,20
1625563	4774298	7,60	9,0	2,60	2,73		1628498	4792018	31,50	41,0	15,10	16,10
1625619	4774859	8,00	13,0	0,47	0,72		1628540	4786510	22,00	60,0	10,00	10,80
1625670	4794925	32,30	35,0	8,38	9,40		1628550	4784551	16,00	15,0	7,13	7,00
1625694	4790250	7,80	15,0	4,35	3,35		1628563	4785789	21,00	15,0	10,25	9,80
1625740	4798100		23,5		-1,10		1628580	4779194	39,20	20,0	24,55	23,55
1625747	4776130	6,50	12,0	-3,34	-3,14		1628631	4780879	31,00	35,0	20,15	19,65
1625840	4778434	6,00	15,0	0,90	0,80		1628644	4779533	39,50	15,0	23,10	22,40
1625850	4793350	20,06		5,50	5,77		1628676	4788847	33,40	75,0	12,90	13,50
1625891	4778215	6,50	15,0	2,30	2,20		1628737	4783089	18,50	15,0	15,80	15,85
1625900	4798210	15,00	22,0	2,15			1628805	4790580	32,70	15,0	18,01	
1625968	4788601	5,70	15,0	4,20	2,90		1628880	4789087	38,30	15,0	15,40	14,80
1626044	4793989	28,80	44,0	8,81	8,87		1628892	4785278	19,20	15,0	11,40	11,28
1626055	4782757	2,40	7,0	0,30	-0,05		1628931	4784429	16,00	15,0	13,70	10,10
1626115	4785481	2,40	15,0	1,60	1,30		1629102	4779905	46,50	26,0	27,10	25,20
1626125	4799150		53,0	5,71			1629103	4783258	21,00	5,0	18,30	18,50
1626140	4788421	9,50	100,0	8,05	7,95		1629108	4781673	28,60	8,0	16,50	16,20
1626148	4788297	6,90	15,0	5,80	4,75		1629160	4791479	61,00	80,0	16,60	14,20
1626170	4798550	12,00	53,0	3,24	3,37		1629231	4790609	35,80	58,0	18,60	
1626348	4779074	10,60	10,0	5,26	4,85		1629278	4786404	29,60	50,0	11,90	12,40
1626361	4782078	5,20	5,0	3,80	3,90		1629309	4789202	37,45	40,0	16,05	16,25
1626369	4790294	11,70	10,0	5,90			1629581	4782071	30,70	15,0	19,25	
1626406	4789088	10,10	15,0	6,17	4,60		1629587	4789684	54,20	49,0	14,70	15,70
1626416	4778537	12,30	10,0	5,15	4,40		1629691	4780503	47,30	50,0	24,20	22,85
1626426	4780497	13,80	15,0	5,45	5,10		1629698	4781579	34,20	12,0	24,60	25,50
1626460	4784050	2,50	60,0	2,15	0,70		1629891	4779856	59,60	30,0	38,50	37,55
1626462	4794732	36,20	20,0	20,90	21,20		1630227	4779564	66,20	15,0	64,30	64,30
1626480	4798855	16,40	45,5	5,28			1630251	4780496	53,00	15,0	31,20	30,00
1626490	4794820	40,50		17,95	18,40		1630266	4783043	27,00	20,0	21,70	21,30
1626510	4795410	49,00	3,0	16,12	16,82		1630273	4781075	44,20	20,0	28,23	27,68
1626515	4790835	11,30	30,0	4,60	4,20	1	1630327	4787946	67,80	15,0	22,80	
1626516	4780801	14,60	7,0	11,62	10,97		1630347	4782594	32,80	15,0	22,60	20,90
1626544	4792205	21,00	15,0	13,80	13,30		1630357	4788826	63,70	50,0	20,20	20,70
1626603	4781493	11,00	15,0	5,75	5,25		1630427	4781285	43,20	20,0	25,80	26,20
1626616	4790415	12,80	50,0	6,40	6,20		1630755	4786973	49,00	11,0	46,20	45,90
1626640	4799010	18,00	30,0	9,35	7,89		1630862	4786387	59,50	15,0	46,40	46,25
1626657	4792817	21,50	28,0	9,02	9,05		1630868	4784612	40,00	12,0	22,80	23,40
1626707	4789022	11,40	40,0	6,95	6,30		1630905	4785308	45,00	15,0	37,30	35,40
1626741	4777779	23,60	15,0	5,02	4,10		1630917	4781820	45,20	21,0	25,80	30,20
1626813	4779377	18,60	15,0	9,50	9,78		1630941	4783835	32,70	15,0	20,70	20,40
1626928	4784667	6,00	15,0	4,40	4,20		1630997	4781542	49,50	15,0	29,20	28,15
1626947	4782782	7,00	15,0	6,00	5,80		1631129	4784598	40,00	10,0	36,00	35,70
1627000	4794097	46,00		21,27	21,78		1631155	4782149	47,40	15,0	35,10	35,90

segue

EST	NORD	QPC_m	PROF_m	LIV. PIEZ. MAG02	LIV. PIEZ. SET02
1627032	4790959	17,50	20,0	8,03	7,05
1627066	4786158	11,90		7,90	5,90
1627100	4800250		49,5	8,80	
1627112	4779101	22,00	15,0	10,14	9,20
1627128	4782232	9,20	5,0	6,70	6,20
1627128	4785946	9,40	38,0	6,60	7,90
1627137	4789393	14,50	40,0	5,86	5,50
1627139	4792460	21,70	15,0	10,30	9,50
1627167	4778588	21,30	15,0	9,06	7,90
1627173	4786593	13,30	15,0	8,20	8,65
1627269	4780910	21,80	6,0	16,45	16,45
1627273	4788237	16,40	30,0	11,60	11,60
1627302	4793826	50,00	60,0	15,00	15,00
1627336	4778806	27,80	15,0	11,10	11,30
1627364	4784435	9,60	15,0	6,40	6,00
1627404	4790254	18,20		8,30	
1627407	4788265	17,60	11,0	9,40	9,30
1627478	4788739	18,00	15,0	10,85	10,00
1627533	4783087	9,70	40,0	8,25	8,10
1627539	4781547	19,80	15,0	14,40	
1627613	4789688	19,20	40,0	7,95	7,60
1627670	4791224	24,30	50,0	9,67	8,95
1627684	4780059	27,30	15,0	18,50	17,90
1627725	4779739	27,70	15,0	18,60	18,15
1627742	4782863	11,80	8,0	10,30	10,05
1627766	4781774	19,40	6,0	14,80	14,60
1627779	4780004	29,90	20,0	19,70	19,25

L'elaborazione dei dati, eseguita con il metodo d'interpolazione *Kriging* (utilizzando il programma *Surfer* della *Golden Software*) e succesivamente rivisitata criticamente, ha portato dunque a due superfici piezometriche (figg. 6, 7) che non ricalcano quelle ottenute dal suddetto autore, sebbene ne risultino molto simili.

Le piezometrie ricostruite sono da ritenersi rappresentative del carico idraulico di equilibro relativo all'insieme degli orizzonti acquifero del sistema multistrato. Di fatto, ponendo a confronto i livelli piezometrici rilevati in pozzi relativamente vicini ed aventi profondità marcatamente diverse si osservano limitate differenze che portano a considerare il sistema nell'insieme come un monofalda. Ciò può esser dovuto al fatto che gli orizzonti acquitardi/acquicludi non hanno spessori e/o continuità tali da separare nettamente gli orizzonti acquiferi su tutta l'estensione del CISS; in più, i numerosi pozzi che insistono sul sistema acquifero, e che spesso drenano più di un orizzonte produttivo, costituiscono un fattore favorevole al raggiungimento di un unico carico idraulico di equilibro rappresentativo dei vari orizzonti permeabili che su una stessa verticale si intervallano a termini semipermeabili e/o impermeabili.

Entrambe le figure 6 e 7 mettono in risalto la presenza di ampie depressioni piezometriche, con livelli al disotto di quello marino (minimi valori pari a circa -2,5 m s.l.m.), che insistono in particolar modo nella zona di Cecina e tra questa e l'abitato di Vada; le pronunciate depressioni sono da ricondursi all'intenso sfruttamento dell'acquifero ad opera di campi pozzi utilizzati perlopiù a scopi civili ed industriali.

Importanti depressioni piezometriche, sebbene queste non si spingano molto nell'entroterra e mostrino valori generalmente superiori a -2 m s.l.m., si rilevano anche nella porzione sud del CISS in esame ed in particolare tra Marina di Bibbona e Castagneto Carducci, nonché più a sud verso S. Vincenzo. In questi casi i valori piezometrici negativi sono prevalentemente da imputare agli emungimenti che fanno fronte alle esigenze idriche delle aziende agricole e degli insediamenti a vocazione turistica; ciò è anche in accordo col fatto che le suddette depressioni piezometriche risultano più estese a seguito della stagione estiva. Benché tutte le situazioni sopra discusse giochino a favore di un'ingressione di acqua di mare in acquifero, è sicuramente da porre una maggior attenzione a quella relativa alla zona in cui ricade l'abitato di Cecina; in questo caso, infatti, si registrano livelli piezometrici inferiori a zero fino a 5 km di distanza dalla costa e ciò può particolarmente favorire un avanzamento del cuneo salino nell'entroterra.

Le carte piezometriche elaborate evidenziano infine una chiara alimentazione al sistema acquifero costiero proveniente da tutta la fascia collinare. Sia a nord, sia a sud del Fiume Cecina, le quote piezometriche massime sui rilievi collinari si attestano su valori compresi tra 40 e 50 m s.l.m.. Nel settore settentrionale tali quote si raccordano a quelle della fascia costiera attraverso dei gradienti idraulici maggiori rispetto a quelli della fascia meridionale; ciò è principalmente da attribuire alle depressioni piezometriche che a nord/nord-ovest di Cecina si spingono fino alla base delle colline,

Fig. 6 – Piezometria di maggio 2002. – Piezometric surface contour (m a.s.l) in may 2002.

Fig. 7 – Piezometria di settembre 2002. – Piezometric surface contour (m a.s.l) in may 2002.

anche se non si può escludere l'esistenza di una minore trasmissività degli orizzonti acquiferi del settore collinare a nord rispetto a quella dei rilievi meridionali.

2.1.2. - Variazione piezometrica stagionale

Considerando i soli pozzi sui quali in entrambe le campagne sono stati rilevati i livelli idrici, è stata elaborata la carta delle variazioni piezometriche avvenute tra maggio e settembre 2002 (fig. 8). Contrariamente a quanto avviene normalmente, non si registra un generale abbassamento della falda tra il periodo primaverile e quello autunnale. Questo aspetto è riconducibile al particolare regime pluviometrico che ha caratterizzato l'anno 2002. Il diagramma di figura 9 mostra infatti come nel periodo invernale-primaverile le precipitazioni siano state particolarmente scarse e come il periodo primaverile-estivo sia stato caratterizzato da una piovosità relativamente elevata.

La figura 8 evidenzia comunque che a fronte del particolare regime pluviometrico si ha un differente comportamento piezometrico nelle varie zone. In particolare, da Maggio a Settembre 2002 si osserva un prevalente aumento dei livelli piezometrici nella porzione centro-settentrionale del CISS, mentre in quella meridionale predominano le aree con abbassamento piezometrico; i differenti comportamenti della piezometrica sono verosimilmente riconducibili ai diversi usi della risorsa idrica sul territorio, di cui si è accennato al precedente paragrafo. L'abbassamento e l'innalzamento massimi, tra il periodo primaverile e quello autunnale, sono stati rispettivamente di 2,9 e 2,0 m. Mediando le differenze settembre-maggio sull'intero CISS si ottiene che la superficie piezometrica ha subito un abbassamento di circa 0,1 m. Considerando viceversa l'ampia zona a cavallo del Fiume Cecina che mostra innalzamenti dei livelli e l'altrettanto ampia zona compresa tra Bibbona e S. Vincenzo, interessata da abbassamenti, si ottengono differenze piezometriche medie rispettivamente di + 0.27 e -0.43 m.

2.1.3. - Variazioni piezometriche negli anni

Il confronto con le condizioni piezometriche degli anni passati permette di verificare il comportamento della falda in termini di abbassamenti o innalzamenti avvenuti nel tempo. In generale, bisogna osservare che le variazioni cronologiche del livello di falda dipendono sia dalla diversa ricarica che dal diverso sfruttamento. È inoltre doveroso ricordare che i pozzi misurati nell'ambito dei vari studi che negli anni hanno interessato una determinata area spesso non sono gli stessi e di conseguenza il confronto deve essere fatto nell'insieme e non puntualmente.

Come anticipato nel § 2.1.1., sul CISS in esame sono stati condotti vari studi che, tra le altre cose, hanno prodotto rappresentazioni della superficie piezometrica. Tra le varie ricostruzioni disponibili, nelle figure 10-14 si riportano quelle relative all'area Cecina-Vada elaborate negli anni tra il 1998 ed il 2001; nelle figure 15-19 sono invece illustrate le elaborazioni che hanno interessato l'area a sud di Marina di Bibbona nell'Ottobre 1996 e nei periodi primaverile ed autunnale degli anni 2000 e 2001 (si veda la didascalia delle figure per la relativa fonte bibliografica).

Tutte le ricostruzioni relative alla parte settentrionale del CISS confermano la presenza della principale depressione piezometrica del sistema acquifero, ovvero quella che insiste tra Cecina e Vada; in particolar modo nell'autunno del 1998 questa si mostra addirittura più estesa e con minimi più accentuati rispetto a quanto osservato nelle elaborazioni relative all'anno 2002 (figg. 6, 7). Anche nell'area a sud di Marina di Bibbona, le elaborazioni degli anni precedenti al 2002 confermano l'esistenza di zone piezometriche depresse in prossimità della linea di costa.

Nell'insieme possiamo affermare che nel periodo considerato (anni tra il 1996 ed il 2002) la morfologia della superficie piezometrica non ha subito marcate modifiche.

2.1.4. - Volumi idrici immagazzinati nel sistema acquifero multistrato

La ricostruzione tridimensionale del sistema acquifero multistrato ha permesso, non solo di comprendere meglio le caratteristiche geometriche del sistema stesso, ma anche di calcolare i volumi occupati dai vari orizzonti acquiferi in esso presenti. Inserendo nel modello tridimensionale le superfici piezometriche ricostruite per i periodi primaverile ed autunnale del 2002, sono stati inoltre calcolati i volumi di competenza della parte satura degli orizzonti acquiferi. Infine, applicando ai vari orizzonti acquifero un coefficiente di porosità efficace medio, pesato in funzione delle percentuali di abbondanza delle varie granulometrie, sono stati stimati i volumi idrici totali immagazzinati nel sistema acquifero. Bisogna comunque specificare che di fatto questi volumi si riferiscono alla porzione di sistema acquifero che è stato possibile ricostruire in funzione della quantità, distribuzione e tipologia di stratigrafie; in particolare si ricorda che non su tutta l'estensione della ricostruzione è stato possibile rappresentare il substrato impermeabile, causa l'assenza di stratigrafie che lo intercettassero, e che inoltre nella porzione più

Fig. 8 – Variazione dei livelli piezometrici tra maggio e settembre 2002. – Variation of the groundwater levels between may and september 2002.

settentrionale del CISS (a Nord di Vada) non è stato possibile ricostruire nelle tre dimensioni il sistema acquifero, a causa del numero limitato di stratigrafie.

Il calcolo dei volumi idrici immagazzinati viene riassunto in tabella 4 dalla quale si evince che tali volumi ammontano a circa 398 milioni e circa 394 milioni di m³ rispettivamente a Maggio e Settembre 2002. Questi valori sono del tutto in linea con quelli calcolati (480 milioni di m³) da PRANZINI (2004a), tenendo conto che l'autore ha considerato anche la parte più settentrionale del CISS, a nord di Vada, non computata nel presente studio per i motivi precedentemente addotti.

2.2. - Acquifero del Cecina (32CT050)

2.2.1. - Ricostruzioni piezometriche

La carenza ed il tipo di distribuzione dei punti di misura disponibili, pongono dei limiti alla ricostruzione della superficie piezometrica lungo la valle del Fiume Cecina. Ad accentuare questo aspetto è il fatto che, almeno in buona parte dell'anno, il corso d'acqua regola significativamente la superficie piezometrica e di conseguenza sarebbero opportune misure di dettaglio del livello idrografico.

Nel corso del 2003, PRANZINI (2004b) ha effettuato due campagne di rilevamento piezometrico lungo la valle del Fiume Cecina (tra Molino di Berignone e la foce), basandosi su 105 e 66 punti di misura, rispettivamente nelle campagne di luglio e dicembre. Lo stesso autore nel relativo lavoro mette in evidenza le problematiche legate alla scarsa e non uniforme densità dei pozzi ai fini di una dettagliata ricostruzione della superficie piezometrica.

Al fine di elaborare le superfici piezometriche relative al CISS del Cecina (così come istituito con D.G.R.T. n.225/2003), a partire dai suddetti dati, nel presente lavoro sono stati prima selezionati quelli ricadenti nel CISS stesso e, successivamente, su questi è stata condotta un'analisi critica che ha portato ad escluderne alcuni ritenuti non rappresentativi. In particolare, i dati di due pozzi a profondità limitata (dell'ordine di 5-10 metri) non sono stati considerati, in quanto le relative quote piezometriche sono risultate anomale rispetto a quanto osservato nei pozzi circostanti; questo comportamento è a nostro avviso da imputare ad

 Fig. 10 – Carta delle isopieze (m s.l.m.) di maggio-giugno 1998 (da GRASSI et alii, 2000).
 – Piezometric surface contour (m a.s.l.) in may-june 1998 (by GRASSI et alii, 2000).

Fig. 11 – Carta delle isopieze (m s.l.m.) di ottobre-novembre 1998 (da GRASSI et alii, 2000). – Piezometric surface contour (m a.s.l.) in october-november 1998 (by GRASSI et alii, 2000).

una limitata circolazione idrica molto superficiale e di importanza locale.

In definitiva sono stati utilizzati 76 e 53 pozzi (tab. 5) per le elaborazioni riportate nelle figure 20,

Fig. 12 – Isoipse (m s.l.m.) della superficie piezometrica media annua del periodo 1999-2000 (da ARPAT, 2003).
– Water-level contour (m a.s.l.) of the mean piezometric surface in 1999-2000 (by ARPAT, 2003).

21, rispettivamente relative alle piezometrie di luglio e dicembre 2003. La ricostruzione del luglio 2003 è da ritenersi rappresentativa di condizioni di magra piuttosto spinte, dato che i periodi primaverile ed estivo di quell'anno sono stati particolarmente poveri di piogge. La campagna di dicembre 2003 è stata verosimilmente rappresentativa di condizioni di morbida (anche se non al culmine) dal momento che la stessa è stata preceduta da diversi giorni di pioggia e che l'elevata permeabilità dell'acquifero alluvionale favorisce la ricarica in tempi relativamente brevi.

Come si può osservare nelle figure 20, 21, la morfologia della superficie piezometrica risulta piuttosto simile nei due periodi considerati. Premettendo che in ragione del numero limitato di pozzi misurati non è possibile effettuare considerazioni troppo accurate, in linea generale osserviamo che in diversi tratti il fiume risulta drenare la falda; sono inoltre individuabili apporti idrici laterali al sistema acquifero di fondo valle da parte dei depositi alluvionali degli affluenti del Cecina. Per quanto riguarda i gradienti idraulici, da valori compresi tra 0,5 e 1%, che si ritrovano sulla maggior parte dell'estensione del CISS, si passa a valori di oltre l'1,5 %, laddove i restringimenti della sezione di competenza dei depositi alluvionali (vedi in particolare la zona a valle di loc. Casino di Terra) de-

Fig. 13 – Situazione piezometrica (m s.l.m.) del giugno 2001 nell'area Vada-Cecina (da PRANZINI, 2004a – elaborazione da dati ASA).
– Piezometric surface contour (m a.s.l.) in june 2001 for the Vada-Cecina zone (by PRANZINI, 2004a – original data by ASA).

Fig. 14 – Situazione piezometrica (m s.l.m.) di ottobre 2001 nell'area Vada-Cecina (da PRANZINI, 2004a - elaborazione da dati ASA).
Piezometric surface contour (m a.s.l.) in october 2001 for the Vada-Cecina gone (by PRANZINI, 2004a - original data by ASA).

Fig. 15 – Situazione piezometrica (m s.l.m.) di ottobre 1996 nell'area fra Marina di Bibbona e San Vincenzo (da PRANZINI, 2004a - elaborazione da dati ASA). – Piezometric surface contour (m a.s.l.) in octobre 1996 for the Marina di Bibbona-San Vincenzo zone (by PRANZINI, 2004a - original data by ASA).

Fig. 16 – Situazione piezometrica (m s.l.m.) di maggio 2000 nell'area fra Marina di Bibbona e San Vincenzo (da PRANZINI, 2004a - elaborazione da dati ASA). – Piezometric surface contour (m a.s.l.) in may 2000 for the Marina di Bibbona-San Vincenzo zone (hy PRANZINI, 2004a - original data by ASA).

Fig. 17 – Situazione piezometrica (m s.l.m.) di ottobre 2000 nell'area fra Marina di Bibbona e San Vincenzo (da PRANZINI, 2004a - elaborazione da dati ASA). – Piezometric surface contour (m a.s.l.) in octobre 2000 for the Marina di Bibbona-San Vincenzo zone (hy PRANZINI, 2004a - original data by ASA).

Fig. 18 – Situazione piezometrica di maggio 2001 nell'area fra Marina di Bibbona e San Vincenzo (da PRANZINI, 2004a - elaborazione da dati ASA). – Piezometric surface contour (m a.s.l.) in may 2001 for the Marina di Bibbona-San Vincenzo zone (by PRANZINI, 2004a - original data by ASA).

Fig. 19 – Situazione piezometrica di ottobre 2001 nell'area fra Marina di Bibbona e San Vincenzo (da PRANZINI, 2004a - elaborazione da dati ASA).
– Piezometric surface contour (m a.s.l.) in october 2001 for the Marina di Bibbona-San Vincenzo zone (by PRANZINI, 2004a - original data by ASA).

Orizzonte 90 a	cquifero 7			· · · · · · · · · · · · · · · · · · ·	Orizzonte	44 acq	uifero 3			
Classe	%	Pe	Periodo	Saturo (m ³)	Classe		0/0	Da	Periodo	Saturo (m3)
sabbia	32,24	0,15	mag 02	509061736	Cuisse		70	10	1 011000	Sumo(m)
sabbia cementata	23,98	0,08	set 02	515569617	ghiaia ceme	entata	32,73	0,05	mag 02	92934828
ghiaia	23,47	0,2		010007017	ghiaia		28,45	0,2	02	02766515
ghiaia cementata	15,61	0,05			ashhia asma	un to to	25.00	0.08	set 02	92700313
argilla	4,/	0			sabbia cerne		23,77	0,00	_	
Orizzonte 70 a	acquifero 6				sabbia		7,07	0,15	_	
Classe	%	Pe	Periodo	Saturo (m ³)	argilla		5,76	0		
sabbia cementata	a 40,18	0,08	mag 02	1116608753						
sabbia	28,8	0,15	set 02	1086487419		20				
ghiaia cementata	14,2	0,05	set 02	1080487419	Orizzonte	30 acq	uitero 2			
ghiaia	11,87	0,2			Classe	ę,	%	Pe	Periodo	Saturo (m³)
argilla	4,95	0			sabbia	ı	39,94	0,15	mag - 02	644849328
Orizzonte 58 (couifero 5				sabbia ceme	entata	32,67	0,08		011019320
				$C \rightarrow (3)$	ghiaia	L	10,91	0,2	set 02	629571369
Classe	70	Pe	Periodo	Saturo (m ²)	ghiaia ceme	entata	8,18	0,05	-	
sabbia cementata	a 54,84	0,08	mag 02	7313062	argilla	ı	83	0	-	
sabbia	45,16	0,15	set 02	7202811		10	·c 1			
0.1	:C				Orizzonte	10 acq	ulfero I	1	¬	
Orizzonte 50 a	acquifero 4				Classe	?	%	Pe	Periodo	Saturo (m ³)
Classe	%	Pe	Periodo	Saturo (m ³)	sabbia ceme	entata	35,77	0,08	mag = 02	549213374
sabbia cementat	a 55,28	0,08	mag 02	745135160	ghiaia	,	22.77	0,2		547215574
sabbia	32,07	0,15	set 02	741661965	sabbia		15.18	0.15	set 02	548863490
ghiaia cementatz	1 5,11	0,05			aroilla		14 55	0	-	
ghiaia	5,02	0,2			abiaia ceme	entata	11.74	0.05	-	
argilla	2,52	0			gillala culic		11,/4	0,05		
	Orizzonte	acquifero	Pe_pesata	volume i immagazzinato (drico (m³) mag '02it	vo mmagaz	olume idric zinato (m³	o) set '02		
	7		0,12	62.252.0	651		63.048.493			
	6		0,11	118.565.	.984	1	15.367.580			
	5		0,11	816.22	26		803.920			
-	4		0,10	78.182.5	561		77.818.112			
F	3		0,10	9.726.7	745		9.709.129			
	2		0.10	56.456.0	938	70.484.292				
vol	ume idrico	totale imp	nagazzinato	308 105	856	20	93 652 40'	7		
VOI		ioraie IIIII	uagazziiiai0;	370.195	.050	3	73.034.47	r		

Tab. 4 – *Calcolo dei volumi idrici totali immagazzinati (Pe = porosità efficace).* – Evaluation of the effective groundwater storage (Pe = effective porosity).

terminano appunto un incremento del gradiente.

Visto il numero limitato di pozzi di misura in comune (circa 50 su un estensione longitudinale e trasversale del CISS rispettivamente di circa 30 km e 0,5-0,6 km in media) alle due campagne di luglio e dicembre, non è stata eseguita una spazializzazione delle differenze piezometriche registrate tra i due periodi. Analizzando puntualmente questi valori, si deduce tuttavia che la quasi totalità dei pozzi di misura in comune è interessata da un incremento dei livelli piezometrici tra Luglio e Dicembre; l'incremento massimo è di oltre 2,5 metri, quello medio 0,6 metri.

2.2.2. - Volumi idrici immagazzinati nel sistema acquifero

Sovrapponendo le superfici piezometriche alla ricostruzione tridimensionale del sistema acquifero ed adottando un coefficiente di porosità efficacemedio pesato in funzione delle granulometrie, si è giunti alla stima dei volumi idrici totali immagazzinati nei due periodi luglio e dicembre 2003 (tab. 6). In particolare, in ragione di una porosità media pesata del 16% e di volumi totali di acquifero saturo pari a circa 175 e 190 milioni di m³, si ottengono circa 28,9 e 31,3 milioni di m³ di volumi idrici immagazzinati in ac-

EST	NORD	PROF_m	LIV. PIEZ. LUG03	LIV. PIEZ. DIC03		EST	NORD	PROF_m	LIV. PIEZ. LUG03	LIV. PIEZ. DIC03
1656023	4797172		111,95	112,15	-	1643803	4800962	13	53,75	
1655980	4797392		110,79	111,69	-	1643792	4801408	18	55,00	55,45
1655980	4797334		110,49		-	1642218	4800294	18	50,75	51,00
1655923	4797029		111,20	112,00	-	1642163	4800625	20	53,10	53,10
1655508	4797268		107,20	109,00	1	1642131	4800778		54,00	
1655478	4797412		106,35	107,80	-	1641913	4799881	16	47,86	
1655463	4797240		107,60	109,29	-	1641447	4799415	12	45,70	
1655422	4797227		107,30	108,62		1639644	4798717	6	42,40	
1655404	4797519		105,30		-	1639493	4798460	6	38,00	39,00
1655394	4797320		106,50	108,56	-	1639445	4798540	6	37,70	38,38
1655311	4797230		107,75	109,50	1	1639403	4798625	6	37,50	38,30
1655217	4797445		105,20			1639197	4798400	10	36,25	38,90
1655160	4797431			109,10	-	1638546	4798320	10	34,65	
1655137	4797414			108,30	-	1637829	4798154	10	36,13	34,20
1653148	4798783		92,10	92,70	1	1637524	4798659	12	36,30	36,73
1652849	4798939	13	91,30	92,80	1	1637223	4798775		36,40	
1652497	4799416	13	88,40	88,70	-	1636823	4798691	7	37,80	38,35
1651590	4799236		85,40	85,50		1636643	4798143	10	35,20	33,80
1651529	4799450		84,30	84,40	-	1636387	4798651		34,85	35,40
1651484	4799521		83,00	83,10	-	1635535	4798714	8	32,20	32,70
1650100	4799958	20	79,65	80,20	-	1635405	4798030	7	31,20	31,65
1650052	4799979	20	79,90		-	1635235	4798667	8	34,35	34,77
1648876	4800835		70,55	71,45	1	1635107	4798710	17	34,60	
1647229	4800979	10	63,40	64,00	-	1634820	4798573	10	34,45	34,15
1646732	4801426		62,30	62,88		1634777	4798546	10	34,00	
1646581	4800723		61,40			1634030	4798914		28,90	29,95
1646571	4800871		60,80	61,30		1633827	4798047		35,97	36,25
1646473	4801466	14	60,42	61,44		1633659	4798291		36,70	37,08
1646366	4801490	14	61,45			1633632	4799985		34,37	35,15
1646317	4801043	9	60,70			1633157	4799740	18	24,55	25,00
1646272	4801048	9	60,70	61,30		1632347	4800377		24,33	24,75
1646245	4800818	8	61,50	62,20	-	1631567	4800855	17	34,60	
1645610	4801286	12	59,30	59,20	1	1631378	4800468		21,50	22,10
1645364	4801912	17	57,75		1	1631364	4800100		18,10	
1645047	4801937	11	56,80		1	1628704	4799587	27	14,55	
1644796	4801876	3	55,60		1	1628567	4799834		14,80	14,80
1644460	4801714	13	56,58		1	1627688	4800366		11,00	11,60
1644264	4801426	13	53,48		1	1627389	4800528	12	9,20	9,60
1643964	4801464		54,85	55,40	1	1627104	4800144		9,75	

Tab. 5 – Dati piezometrici di luglio e dicembre 2003 utilizzati per le elaborazioni delle figg. 6, 7. – Groundwater level of july and december 2003 used for the elaboration in figs. 6, 7.

quifero rispettivamente a luglio e dicembre 2003. Questi valori sono piuttosto in linea con quelli calcolati (circa 26 e 29 milioni di m³) da PRANZINI (2004b), considerando ovviamente quella porzione di area studiata da tale autore che approssimativamente corrisponde all'estensione del CISS qui esaminato.

La differenza tra i volumi idrici totali immagazzinati a dicembre 2003 (pressoché in condizioni di morbida) ed a luglio 2003 (pressoché in condizioni di magra), secondo il calcolo sopra effettuato ammonta a circa 2,4 milioni di m³. Essendo quello del Cecina un acquifero di tipo freatico, la somma tra quest'ultimo quantitativo ed i volumi idrici estratti durante il periodo di ricarica (valori non noti) è pressappoco corrispondente alla risorsa idrica sotterranea dell'anno idrologico considerato.

Fig. 20 – Piezometria di luglio 2003 (A e B, rispettivamente parte medio-bassa e medio-alta del bacino del Fiume Cecina). – Piezometric surface contour (m a.s.l) in july 2003 (A and B, respectively middle-low and middle-high part of the Cecina River basin).

3. - LA CARATTERIZZAZIONE IDROGEO-CHIMICA

3.1. - FONTI BIBLIOGRAFICHE

Le fonti bibliografiche da cui sono stati estratti i dati idrogeochimici relativi ai CISS in oggetto sono il *database* del Sistema Informativo Regionale Ambientale della Toscana (S.I.R.A.) e del Gestore Servizio Idrico Integrato ASA, i rapporti inediti dello AF STUDIO GEOLOGICO (1997) e di PRAN-ZINI (2004a) oltre a differenti pubblicazioni scientifiche (GRASSI & SQUARCI, 2004; PENNISI *et alii*, 2006; FRULLINI *et alii*, 2007; GRASSI *et alii*, 2007; NISI *et alii*, 2007; CAPRI *et alii*, 2009).

Va ricordato che nel *database* S.I.R.A. sono immagazzinate serie temporali di dati relative a punti d'acqua appartenenti alla rete di monitoraggio di interesse regionale. Da queste serie temporali sono stati considerati due analisi solamente, rappresentative dei periodi idrologici di magra e morbida. Lo stesso approccio è stato applicato anche alle altre fonti bibliografiche suddette in cui sono presenti dati ripetuti nel tempo.

Sono state prese in considerazione, per le finalità specifiche di questo progetto, solamente le analisi complete in termini di elementi maggiori, per un totale di 367 campioni d'acqua (Tabelle A, B, H in appendice).

3.2. - Classificazione chimica delle acque

Per la classificazione chimica delle acque naturali presenti nei CISS in oggetto sono stati utilizzati sia

Fig. 21 - Piezometria di dicembre 2003 (A e B, rispettivamente parte medio-bassa e medio-alta del bacino del F. Cecina). – Piezometric surface contour (m a.s.l) in december 2003 (A and B, respectively middle-low and middle-bigh part of the Cecina River basin).

i diagrammi triangolari dei principali costituenti anionici e cationici (fig. 22) sia i diagrammi quadrangolari di Langelier-Ludwig con lo ione HCO₃ e lo ione Cl⁻ come anioni singoli (fig. 23), sia i diagrammi di correlazione Cl vs. (HCO₃+SO₄) (fig. 24).

Il diagramma HCO₃-Cl-SO₄ di figura 22(a) mostra che nella maggior parte delle acque dei CISS in oggetto il bicarbonato è l'anione prevalente, anche se sono numerose le acque in cui domina lo ione cloruro, mentre in minima misura sono quelle in cui lo ione solfato è il principale costituente anionico disciolto. Il diagramma (Na+K)-Ca-Mg di figura 22(b) evidenzia che il Ca²⁺ è il catione più abbondante, mentre Na⁺ è il catione dominante (considerando che lo ione K⁺ è generalmente subordinato al sodio) in un numero limitato di campioni. L'esame congiunto dei due diagrammi triangolari di figura 22 indica che:

(i) fra le acque a bicarbonato prevalente sono riconoscibili sia quelle con composizione variabile da Ca-HCO₃ a Ca(Mg)-HCO₃, che comprendeno 257 dei 367 campioni selezionati (70% del totale), e 11 acque (3%) appartenenti alla facies Na-HCO₃;

(ii) tra le acque clorurate sono individuabili quelle tendenzialmente Ca-Cl, rappresentate da 54 acque (14.7%) e a Na-Cl, comprendente 32 campioni (8.7%);

(iii) le 13 acque a solfato dominante (1.6%) appartengono tutte al tipo chimico Ca-SO₄.

Nel diagramma quadrangolare di Langelier-Ludwig con il Cl⁻ come anione singolo (fig. 23a) sono ovviamente ben distinguibili le facies Ca-Cl e Na-Cl e si individuano altrettanto agevolmente le acque a Na-HCO₃, a causa della assenza di cam-

Classe	%	Pe		
argilla	1,74	0,00		
argilla ghiaiosa	0,77	0,00		
argilla limosa	0,45	0,00	periodo	saturo (m³)
argilla sabbiosa	1,38	0,00	lug - 03	175746984
limo	0,12	0,03	dic - 03	190718869
limo sabbioso	4,94	0,05		
limo argilloso	0,65	0,01		
limo ghiaioso	1,15	0,08		
sabbia	1,48	0,15		
sabbia argillosa	1,78	0,07		
sabbia ghiaiosa	1,84	0,17		
sabbia limosa	0,32	0,07		
ghiaia	51,91	0,20		
ghiaia argillosa	2,81	0,05		
ghiaia sabbiosa	16,04	0,18		
ciottoli	5,75	0,25		
ciottoli sabbiosi	1,34	0,20		
"terreno" (copertura limo-sabbiosa)	5,52	0,05		

Tab. 6 – *Calcolo dei volumi idrici totali immagazzinati (Pe = porosità efficace).* – Evaluation of the effective groundwater storage (Pe = effective porosity).

	Pe_pesata	volume idrico immagazzinato (m ³) lug. '03	volume idrico immagazzinato (m³) dic. '03
	0,12	28.862.889	31.321.718
volume idrico immagazzinato:		28.862.889	31.321.718

Fig. 22 – Diagrammi triangolari (a) HCO_3 -Cl-SO₄ e (b) Ca-Mg-(Na+K) per le acque dei CISS 32CT010+32CT030 e 32CT050. – Triangular diagrams of (a) SO₄, Cl and HCO₃ and (b) (Na+K), Mg and Ca for the waters relative to the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean Water Bodies).

Fig. 23 – Diagrammi quandrangolari di Langelier-Ludwig (1942) con (a) lo ione Cl⁻ e (b) lo ione HCO₃⁻ come anioni singoli per le acque dei CISS32CT010+32CT030 e 32CT050.
 – Square diagram of Langelier-Ludwig (1942) with (a) Cl⁻ and (b) HCO₃⁻ single ions for the waters of the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean Water Bodies).

pioni appartenenti al gruppo Na-SO₄. Sono invece sovrapposti i due gruppi di acque a Ca-SO₄ e Ca-HCO₃. Quest'ultimo insieme di punti d'acqua è ben separato dalle altre famiglie chimiche nel diagramma quadrangolare di Langelier-Ludwig con HCO₃ come anione singolo (fig. 23b).

Ι diagrammi di correlazione Cl VS. (HCO_3+SO_4) (fig. 24) mostrano che solamente la maggior parte delle acque Na-Cl e alcune di quelle Ca-Cl sono caratterizzate da elevata salinità ionica totale (SIT), maggiore di 50 meq/L, fino a 1200 -1300 meq/L nel caso dei due campioni rappresentativi dell'acqua di mare media mondiale (SW) e dell'acqua marina locale (BC 100); quest'ultima è stata prelevata di fronte alla spiaggia antistante la Mazzanta nel corso dello studio effettuato dallo AF STUDIO GEOLOGICO (1997). Indipendentemente dalla facies di appartenenza, gli altri campioni hanno invece SIT compresa fra 10 e 50 meq/L.

Le acque con composizione variabile da Ca-HCO₃ a Ca(Mg)-HCO₃ sono interpretabili come acque meteoriche che acquisiscono le loro caratteristiche composizionali a seguito di dissoluzione di minerali carbonatici (calcite e dolomite) presenti entro i sedimenti alluvionali della piana costiera. Ciò è dovuto alla elevata cinetica di dissoluzione delle fasi minerali carbonatiche, ben maggiore di quella dei minerali silicatici e Al-silicatici, ovviamente in condizioni di lontananza dall'equilibrio. Questa interpretazione è in linea anche con l'abbondanza di questa facies idrochimica.

Le acque Ca-SO₄ sono attribuibili a processi di interazione fra acque meteoriche e rocce evaporitiche di età miocenica (Messiniano). Considerando che affioramenti di questi litotipi, anche di notevole estensione, sono presenti nelle zone collinari che limitano la piana costiera, è ragionevole ipotizzare che clasti di gesso e/o anidrite siano contenuti, ancorché in piccole quantità ed in zone circoscritte, all'interno del materasso alluvionale. In effetti le acque di questa famiglia sono presenti in settori limitati, come per esempio nella zona di Rosignano Marittimo (campioni Mi00, Mi01, Mi02, Mi04 e Mi05).

Nella stragrande maggioranza dei casi(¹), i due tipi chimici Na-Cl e Ca-Cl sono riferibili ai fenomeni di ingressione marina entro i sedimenti della piana alluvionale e mostrano una netta zonazione, con i primi. L'unica eccezione è rappresentata dai più prossimi alla linea di costa rispetto ai secondi.

⁽¹⁾ L'unica eccezione è rappresentata dai campioni BC31, BC37 e BC40, localizzati nei pressi della confluenza fra il Fiume Cecina ed il Botro Santa Marta, che riceve l'apporto di acque sorgive clorurato-sodiche.

Fig. 24 – Diagrammi di correlazione Cl vs. HCO₃ + SO₄ per differenti intervalli di salinità, <50 meq/L in (a) e <1200 meq/L in (b), per le acque dei CISS 32CT010+32CT030 e 32CT050.
 – Binary diagrams of Cl versus HCO₃ + SO₄ for different salinity (a) <50 meq/L and (b) <1200 meq/L for the waters of the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean Water Bodies).

Inoltre, si osserva una concentrazione di acque Ca-Cl nel centro abitato di Cecina, probabilmente a causa dell'intenso emungimento della falda. L'ingressione marina può avvenire o direttamente (cuneo salino) o a seguito di risalita delle acque marine e salmastre lungo gli alvei fluviali e successiva infiltrazione nell'acquifero freatico, ospitato entro i sedimenti alluvionali. In genere, le acque Na-Cl sono imputabili a semplice miscela fra acque di falda di bassa salinità ed acque marine, mentre le acque Ca-Cl implicano il verificarsi di processi di scambio ionico, che determinano l'acquisizione di ione Ca²⁺ in sostituzione dello ione Na⁺. Tuttavia, i fenomeni di scambio ionico meritano un approfondimento, che è l'oggetto del paragrafo seguente.

3.3. - LO SCAMBIO IONICO

Per comprendere gli effetti dello scambio ionico è necessario ricordare che i sedimenti alluvionali sono assimilabili ad uno scambiatore cationico, i cui siti sono saturati in prevalenza da ioni Ca²⁺ e Mg²⁺, derivanti da processi di interazione acquaroccia. Nel momento in cui l'acqua di mare o l'acqua salmastra interagisce con i sedimenti alluvionali, a seguito di ingressione marina, avvengono le seguenti reazioni di scambio ionico:

$$Na^{+} + \frac{1}{2} Ca - X_{2} \rightarrow Na - X_{2} + \frac{1}{2} Ca^{2+}$$
 (1)

$$Na^{+} + \frac{1}{2}Mg - X_{2} \rightarrow Na - X_{2} + \frac{1}{2}Mg^{2+}$$
 (2)

dove X₂ indica lo scambiatore cationico rappresentato dai sedimenti alluvionali. A seguito delle reazioni (1) e (2), la fase acquosa si arricchisce in ioni Ca²⁺ e Mg²⁺ e si impoverisce in ione Na⁺, che va a saturare lo scambiatore cationico, ossia i sedimenti alluvionali. In tal modo, la fase acquosa acquisisce una composizione Ca-Cl o Ca(Mg)-Cl, del tutto simile a quella osservata nell'area in esame. Nel momento in cui il processo si inverte, ossia quando le acque di falda Ca-HCO₃ o Ca(Mg)-HCO3 tornano a fluire entro i sedimenti alluvionali precedentemente saturati da ioni Na⁺ (a seguito di ingressione marina), le reazioni (1) e (2) procedono in senso inverso, determinando la produzione di acque Na-HCO₃, pure rappresentate nell'area in esame.

I fenomeni di scambio ionico, sia quelli determinati da ingressione marina che quelli dovuti a riflusso di acque di falda (*freshening*), sono stati osservati e modellizzati in differenti acquiferi costieri (vedi APPELO, 1996, APPELO & POSTMA, 1996 e riferimenti citati). Le spiegazioni precedenti sono di tipo puramente qualitativo. In realtà le reazioni di scambio ionico sono regolate dalla legge di azione di massa, ossia ad esse competono costanti di equilibrio che sono state misurate sperimentalmente (e.g., APPELO, 1996). Inoltre, la quantità di cationi scambiabili è limitata dalla capacità di scambio cationico, che varia da materiale a materiale ed è dell'ordine di (LANGMUIR, 1997 e fonti citate): (i) 3-15 meq/100 g per caolinite; (ii) 10-40 meq/100 g per illiti e cloriti; (iii) 80-150 meq/100 g per smectiti; (iv) 100-150 meq/100 g per vermiculite; (v) 100-400 meq/100 g per zeoliti; (vi) 100-500 meq/100 g per sostanze organiche contenute nei suoli; (vii) 100-740 meq/100 g per ossi-idrossidi di Fe(III) e Mn(IV). Infine, il processo di scambio ionico è assimilabile ad una cromatografia multicomponente e può essere oggetto di modellizzazioni accurate (e.g., APPELO, 1996).

Cercando di mantenere la presente trattazione ad un livello semplice, è utile esaminare prima di tutto i diagrammi di correlazione, in scala log-log, Ca-Cl (fig. 25a), Mg-Cl (fig. 25b), Na-Cl (fig. 25c) e K-Cl (fig. 35d) nei quali sono state tracciate le linee di miscela fra l'acqua di mare media mondiale e l'acqua di falda, rappresentata da due campioni opportunamente scelti per le basse concentrazioni dei soluti considerati, BC34 e BC331. Dall'esame di

Fig. 25 – Diagrammi di correlazione log-log fra Cl e Ca (a), Mg (b), Na (c) e K (d), per le acque dei CISS 32CT010+32CT030 e 32CT050; sono altresi indicate le linee di miscela fra l'acqua di mare media mondiale e l'acqua di falda, rappresentata dai campioni BC331 e BC34. Simboli come in legenda di figura 24. – Log-log correlation plots (a) Ca, (b) Mg, (c) Na and (d) K against chloride for the waters relative to Significant Subterranean Water Bodies (SSWB 32CT010+32CT030 and 32CT050); as well as the mixing line between ground waters (BC34 and BC331) and average seawater (s.w.), are also drawn. Symbols as in figure 24.

questi diagrammi sono ben evidenti sia gli eccessi di Ca e Mg, sia i difetti di Na e (in minor misura) K, attribuibili al processo di scambio ionico, nonostante la sovrapposizione di altri processi quali l'acquisizione o la perdita di sostanze disciolte per fenomeni di dissoluzione o precipitazione, rispettivamente, che avvengono nel corso della interazione acqua-roccia. Un discorso a parte meritano:

(i) i campioni BC31, BC37 e BC40, di composizione Na-Cl, situati nei pressi della confluenza fra il Fiume Cecina ed il Botro Santa Marta (in località Ponteginori), caratterizzati da difetti di Mg e eccessi di K, contrariamente a quanto atteso per scambio ionico, oltre a eccessi di Ca; si tratta di acque che interagiscono con livelli evaporitici in cui sono verosimilmente presenti halite (NaCl), silvite (KCl), gesso (CaSO₄ × 2H₂O) e anidrite (CaSO₄), la cui dissoluzione spiega le peculiari caratteristiche di questi campioni;

(ii) il campione 133, anch'esso di composizione NaCl, che si differenzia per l'eccesso di Ca ed il difetto di Mg, oltre al pH anomalmente basso (5.56).

In alternativa, per valutare l'eccesso di Mg e Ca ed il difetto di Na e K, rispetto alle concentrazioni attese per semplice miscela fra acqua di mare ed acqua di falda, sono stati preparati i diagrammi di correlazione semilogaritmici di figura 26. Innanzi tutto è stata calcolata la frazione di acqua di mare, x, presente in una miscela qualunque (pedice M) costituita da acqua di mare (pedice SW) ed acqua di falda (pedice GW). A tal fine, è stato risolto rispetto ad x il bilancio di massa sul cloruro, costituente mobile che non è coinvolto nei processi di scambio ionico (dove C identifica la concentrazione in mg/L):

$$C_{Cl,M} = C_{Cl,SW} \cdot x + C_{Cl,GW} \cdot (1 - x)$$
 (3)

I valori di x sono stati calcolati per tutti i campioni in esame, ponendo, in prima approssimazione: C_{Cl,GW} = 18 mg/L (concentrazione di Cl del campione BC331). Successivamente sono state calcolate le differenze di Ca, Mg, Na e K rispetto alle concentrazioni attese per semplice miscela fra acqua di mare ed acqua di falda, mediante la semplice relazione:

$$\Delta C_{i,M} = C_{i,A} - x \cdot (C_{i,SW} - C_{i,GW}) - C_{i,GW}$$
(4)

per i = Ca, Mg, Na e K, dove il pedice A indica il valore analitico. Nei diagrammi semilogaritmici di figura 26, la linea tratteggiata per $\Delta C_i = 0$ corrisponde alla linea di miscela fra l'acqua di mare media mondiale e l'acqua di falda (rappresentata dal campione BC331); in effetti è semplice verificare che la funzione (4) assume il valore zero sia per x = 0 e $C_{i,A} = C_{i,GW}$, sia per x = 1 e $C_{i,A} =$

 $C_{i,SW}$. Questi diagrammi sono pertanto del tutto analoghi a quelli di figura 25, ma vengono maggiormente evidenziati gli scostamenti dalla linea di miscela acqua marina ed acque sotterranee. Nuovamente, sono ben evidenti gli effetti dello scambio ionico, in termini di acquisizione di Ca e Mg e perdita di Na e subordinatamente di K, per i campioni caratterizzati da contenuti di Cl superiori a 0.005-0.01 eq/L, appartenenti alle facies Ca-Cl e Na-Cl; fra i campioni più modificati risaltano i due prelevati dal punto BC21 in differenti periodi. Gli scostamenti rispetto alla linea di miscela sono invece attribuibili all'interazione acqua-roccia per le acque degli altri tipi idrochimici. Da notare anche la posizione anomala delle tre acque BC31, BC37 e BC40, appartenenti alla facies Na-Cl e situati in prossimità della confluenza fra il Fiume Cecina ed il Botro Santa Marta (in località Ponteginori), soprattutto per ciò che concerne il ΔMg ed il ΔK , come già osservato in figura 25. Nei diagrammi di figura 26 a-c è stato invece escluso il campione 133 caratterizzato da valori di ΔCa , $\Delta Mg \in \Delta Na$ che ricadono al di fuori dell'intervallo considerato.

3.4. - CALCOLI DI SPECIAZIONE-SATURAZIONE

La speciazione in fase acquosa e la saturazione rispetto alle fasi minerali di interesse sono state ricostruite per i 367 campioni d'acqua rappresentativi dei CISS regionali 32CT010 "Acquifero costiero tra Fiume Cecina e San Vincenzo", 32CT030 "Acquifero costiero tra Fiume Fine e Fiume Cecina" e 32CT050 "Acquifero del Cecina", mediante il codice EQ3 (WOLERY & JAREK, 2003), utilizzando il *database* CMP (Tabelle C1-C2, D1-D2, E1-E2, F1-F2, G1-G2 in appendice).

Il pH, ove assente, è stato stimato assumendo la condizione di saturazione (equilibrio) rispetto alla calcite, ipotesi condivisibile in base a quanto discusso nella sezione 3.4.3.2. La temperatura, ove mancante, è stata fissata a 17.5 °C (valore medio per i corpi idrici di interesse).

Per la maggior parte dei campioni non sono noti i contenuti degli elementi minori ed in traccia, ad eccezione delle specie azotate, in particolare nitrato ed ammonio, che sono stati utilizzati per vincolare le condizioni ossido-riduttive di queste soluzioni acquose.

In genere, la concentrazione di silice acquosa è stata stimata in base alla equazione seguente (concentrazioni in mg/L):

ottenuta, in base a dati non pubblicati, attraverso

Fig. 26 – Diagrammi di correlazione semilogaritmici fra cloruro e Δ Ca (a), Δ Mg (b), Δ Na (c) e (d) Δ K, per le acque dei CISS 32CT010+32CT030 e 32CT050; la linea tratteggiata per Δ Ci = 0 corrisponde alla linea di miscela fra l'acqua di mare media mondiale e l'acqua di falda, rappresentata dal campione BC331. Simboli come in legenda di figura 24.

- Semilogarithmic correlation plots (a) ΔCa , (b) ΔMg , (c) ΔNa e (d) ΔK against chloride for the waters relative to Significant Subterranean Water Bodies (SSWB 32CT010+32CT030 and 32CT050); the dashed line $\Delta Ci = 0$ corresponds to the mixing line between ground waters (BC331) and average seawater (s.w.). Symbols as in figure 24.

l'analisi di regressione multipla (effettuata mediante il codice Statistica v. 6.0), in cui la SiO₂ è stata considerata come variabile dipendente e i costituenti principali disciolti sono stati trattati come variabili indipendenti (R = 0.611, N = 82). Nel diagramma di correlazione SiO₂-temperatura (fig. 27) nel quale sono riportate le curve di solubilità di differenti fasi solide della silice, la maggior parte dei pozzi si situa tra la curva della α -cristobalite e quella della β -cristobalite.

Per i pochi campioni a cui non può essere applicata la equazione (5), è stata ipotizzata la condizione di equilibrio rispetto al calcedonio. La concentrazione dell'alluminio disciolto è stata vincolata imponendo la saturazione rispetto alla caolinite; quest'ultima è una condizione ragionevole alla luce di quanto emerge dai diagrammi di attività (vedi sezione 3.4.4).

I principali risultati dei calcoli di speciazionesaturazione sono discussi nei paragrafi seguenti.

3.4.1. - Diagrammi Eh-pH

I diagrammi Eh-pH rappresentano uno strumento grafico estremamente potente, in quanto forniscono una visione immediata dei processi di

Fig. 27 – Diagramma di correlazione fra SiO $_2$ disciolta e temperatura, mostrante sia i valori calcolati per le acque dei CISS 32CT010+32CT030 e 32CT050.

 Correlation plot between temperature and dissolved SiO₂ of the calculate values for the waters relative to the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean Water Bodies).

protonazione/deprotonazione e della speciazione redox, nei limiti della ipotesi di equilibrio. Mentre è lecito assumere che l'equilibrio acido-base sia rispettato in soluzione acquosa, il raggiungimento dell'equilibrio redox rappresenta l'eccezione piuttosto che la regola, in quanto è stato osservato solamente per alcune coppie redox: Fe^{2+}/Fe^{3+} , U^{4+}/U^{6+} e S°/S²⁻ (NORDSTROM, 2002). Un altro limite dei diagrammi Eh-pH è legato al fatto che essi fanno necessariamente riferimento a sistemi semplificati e non possono pertanto essere considerati un'alternativa ai calcoli di speciazione effettuati mediante codici più complessi.

Gli studi più conosciuti sui diagrammi Eh-pH sono quelli di POURBAIX (1966) e BROOKINS (1988). Il primo tratta i fenomeni di corrosione e passivazione dei materiali, mentre il secondo è incentrato sugli aspetti geochimici dello stoccaggio geologico delle scorie radioattive. Più recentemente i diagrammi Eh-pH sono stati utilizzati per confrontare i dati termodinamici immagazzinati in differenti *database* (TAKENO, 2005), facendo riferimento a sistemi del tipo X-H-O, dove X indica il simbolo di un elemento chimico qualunque. I *database* termodinamici considerati da TAKENO (2005) sono:

1. FACT, che è connesso con il *software* commerciale FACTSAGE, versione 5.2 (BALE *et alii*, 2002) prodotto da GTT-Technologies;

2. SUPCRT92 (JOHNSON *et alii*, 1992), si tratta di una collezione di programmi, scritti in Fortran 77, per calcolare le proprietà termodinamiche molali *standard* di specie inorganiche ed organiche e delle reazioni fra di esse, in funzione della temperatura e della pressione. È distribuito dal *Prediction Central, o Laboratory of Theoretical Geochemistry*, creato dal compianto Prof. Harold C. Helgeson alla Università della California, Berkeley (vedi *web* http://www.predcent.org/);

3. thermo.dat sviluppato dal *Lawrence Livermore National Laboratory* e collegato con il *software* commerciale GWB (*Geochemist's Workbench*), scritto da C. M. Bethke della Illinois University;

4. JNC-TDB distribuito dal *website* http://migrationdb.jnc.go.jp/ della *Japan Nuclear Cycle Organization*;

5. HATCHES (ZZ-HATCHES-15) distribuito dalla NEA (*Nuclear Energy Agency*) *Computer Program Services*;

6. OECD/NEA *Chemical Thermodynamics* serie 1-4 (GRENTHE *et alii*, 1992; SILVA *et alii*, 1995; RARD *et alii*, 1999; LEMIRE *et alii*, 2001) e serie 5 (GUIL-LAUMONT *et alii*, 2003).

In questo studio sono stati selezionati i diagrammi Eh-pH più completi, riportati in TAKENO (2005), per i seguenti sistemi As-H-O, Cr-H-O, Cu-H-O, Fe-H-O, Hg-H-O, Mn-H-O, Mo-H-O, N-H-O, Ni-H-O, Pb-H-O, S-H-O, Sb-H-O, Se-H-O, Sn-H-O, U-H-O e V-H-O, a causa della rilevanza ambientale di questi elementi chimici.

Questi diagrammi Eh-pH sono riferiti alla temperatura di 25 °C ed alla pressione di 1.01325 bar. La concentrazione totale di ciascuno degli elementi considerati è fissata a 10⁻¹⁰ moli/kg in tutti i diagrammi. Per una concentrazione così bassa, è lecito assumere che i coefficienti di attività delle specie acquose di interesse abbiano valore unitario; inoltre, viene minimizzato l'effetto di precipitazione delle fasi solide. Infine nei seguenti diagrammi sono riportati, mediante due linee diagonali tratteggiate, i limiti del campo di stabilità dell'acqua alle condizioni di T,P_{tot} sopra specificate e si riferiscono a P = P_{tot} (quella superiore) e = P_{tot} (quella inferiore).

Éscludendo gli errori derivanti dall'elaborazione dei *software* commerciali e dei *database*, l'errore complessivo è compreso tra ± 0.0025 V per l'Eh e ± 0.02 per il pH.

3.4.1.1. - Diagramma Eh-pH per il sistema As-H-O

L'esame di questo diagramma (fig. 28) mostra che la specie prevalente dello As disciolto è lo ione monoidroarsenato, che può essere presente sia come ione libero sia in forma di complessi acquosi (vedi MARINI & ACCORNERO, 2007), quali:

(i) CaHAsO₄° e MgHAsO₄° nelle acque ricche di Ca e Mg, appartenenti ai tipi idrochimici Ca-

 Fig. 28 – Diagramma Eh-pH relativo al sistema As-H-O per le acque dei CISS 32CT010+32CT030 e 32CT050.
 – Eh-pH diagrams for the As-H-O system of the waters relative to the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean Water Bodies).

HCO₃, Ca(Mg)-HCO₃, Ca-Cl, Ca(Mg)-Cl e CaSO₄.
(ii) NaHAsO₄⁻ nelle acque in cui lo Na⁺ è lo ione dominante, ossia quelle delle facies Na-Cl e Na-HCO₃.

La prevalenza di specie elettricamente neutre, quali i complessi acquosi CaHAsO₄° e lo MgHAsO₄°, nelle maggior parte delle acque di falda fa sì che As(V) abbia un comportamento mobile non essendo soggetto a processi di adsorbimento di superficie, di natura elettrostatica. Ovviamente, queste implicazioni non si evincono dai diagrammi Eh-pH ma richiedono studi più approfonditi.

3.4.1.2. - Diagramma Eh-pH per il sistema Cr-H-O

Nel diagramma di figura 29, le acque di falda in oggetto si distribuiscono in prossimità delle linee che separano i campi di prevalenza delle specie acquose del Cr(VI) da quelli in cui dominano gli idrosso-complessi del Cr(III). Ciò è abbastanza in accordo con le evidenze acquisite per acque sotterranee di circolazione poco profonda, che interagiscono con rocce ultramafiche; in queste acque, il Cr disciolto è presente in toto nella forma esavalente (vedi anche FANTONI *et alii*, 2002). Anche in questo caso, ammettendo che la specie dominante sia lo ione CrO_4^{2-} , è probabile che le sua mobilità

 Fig. 29 – Diagramma Eh-pH relativo al sistema Cr-H-O per le acque dei CISS 32CT010+32CT030 e 32CT050.
 – Eb-pH diagrams for the Cr-H-O system of the waters relative to the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean Water Bodies).

sia in larga misura condizionata dalla formazione di specie acquose complesse, quali il CaCrO₄° e lo MgCrO₄° (vedi ACCORNERO *et alii*, 2005; ACCOR-NERO *et alii*, 2009). Ulteriori indicazioni circa la provenienza del Cr disciolto nelle acque di falda potrebbero essere fornite dai rapporti isotopici del Cr, al momento non disponibili per le acque in esame, nonostante il forte frazionamento isotopico che accompagna la ossidazione del Cr trivalente a Cr esavalente (e.g., OTTONELLO *et alii*, 2004; PE-TRINI *et alii*, 2005).

3.4.1.3. - Diagramma Eh-pH per il sistema Cu-H-O

Il diagramma di figura 30 mostra che Cu(II) prevale di gran lunga sulla forma monovalente; i campioni sono equamente distribuiti nei campi di prevalenza dello ione libero Cu²⁺ e dello idrosso-complesso Cu(OH)₂° (indicato come CuO_(aq) in figura 30). Tuttavia i calcoli di speciazione effettuati con il codice PHREEQC facendo riferimento al *database* termodinamico Wateq4f.dat per uno dei pochi campioni (MAT-P114, pH 6.65) per i quali è disponibile il dato analitico del Cu disciolto, 6 μ g/L, mostrano che le specie dominanti sono:

(i) il complesso acquoso CuCO₃° che spiega il 51.2% del Cu disciolto;

Fig. 30 – Diagramma Eh-pH relativo al sistema Cu-H-O per le acque dei CISS 32CT010+32CT030 e 32CT050.
– Eh-pH diagrams for the Cu-H-O system of the waters relative to the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean Water Bodies).

(ii) il complesso acquoso $CuHCO_3^+$ che costituisce il 30.6% del Cu disciolto;

(iii) lo ione libero Cu²⁺ che rappresenta il 13.4% del Cu disciolto.

3.4.1.4. - Diagramma Eh-pH per il sistema Fe-H-O

Nel diagramma Eh-pH per il sistema Fe-H-O (fig. 31) i campioni in esame si localizzano nel campo di stabilità della ematite (Fe₂O₃), con quelli più acidi che si avvicinano al limite Fe^{2+} /ematite e quelli più basici che si allontanano da tale limite.

La presenza del campo di stabilità dell'ematite nel diagramma considerato e la sua notevole estensione sono dovute alla elevata stabilità termodinamica di questa fase, anche se è pressoché impossibile la sua formazione per precipitazione diretta dalla soluzione acquosa. Questo processo, in genere, determina la produzione di fasi solide più solubili e meno stabili, quali l'idrossido ferrico amorfo o la ferridrite (JAMBOR & DUTRIZAC, 1998), come spesso si osserva nelle aree minerarie dismesse (e.g., ACCORNERO *et alii*, 2005). La presenza del campo di stabilità della ematite maschera completamente non solo quello del complesso $Fe(OH)_3^{\circ}$ ma anche, almeno in parte, quelli dei complessi adiacenti, $Fe(OH)_2^+$ e $Fe(OH)_4^-$. A questo proposito si ricorda che la condizione di isoattività $Fe(OH)_2^+/$ $Fe(OH)_3^{\circ}$ corrisponde a pH di 6.89, mentre la condizione di isoattività $Fe(OH)_4^-/$ $Fe(OH)_3^{\circ}$ si registra per pH di 9.04, a 25°C e 1.013 bar.

Indicazioni più dettagliate sono fornite dai calcoli di speciazione effettuati con il codice PHRE-EQC facendo riferimento al *database* termodinamico Wateq4f.dat per i campioni in cui è stato misurato il Fe disciolto. Per esempio, nel caso del campione MAT-P114 (pH 6.65, Fe disciolto 0.13 mg/L) il Fe(III) costituisce il 94% del Fe disciolto totale mentre il Fe(II) rappresenta solo il 6% circa. Il primo è presente per lo più come Fe(OH)₂⁺ (73% del Fe trivalente) e subordinatamente come Fe(OH)₃° (27%), mentre il secondo è rappresentato principalmente dallo ione libero Fe²⁺ (67% del Fe bivalente) ed in minor misura dal complesso FeHCO₃⁺ (29 %).

La stabilità termodinamica della ematite trova riscontro in un elevatissimo valore dell'indice di saturazione (trattato più estesamente nel paragrafo 3.4.3), SI = 16.99, per il campione MAT-P114, che risulta sovrassaturo anche rispetto all'idrossido ferrico amorfo, ma in misura molto minore, SI = 1.85.

Fig. 31 – Diagramma Eh-pH relativo al sistema Fe-H-O per le acque dei CISS 32CT010+32CT030 e 32CT050.
– Eb-pH diagrams for the Fe-H-O system of the waters relative to meaningful groundwater bodies (CISS 32CT010+32CT030 e 32CT050).

Fig. 32 – Diagramma Eh-pH relativo al sistema Hg-H-O per le acque dei CISS 32CT010+32CT030 e 32CT050.
– Eb-pH diagrams for the Hg-H-O system of the waters relative to the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean Water Bodies).

3.4.1.5. - Diagramma Eh-pH per il sistema Hg-H-O

Dal diagramma Eh-pH per il sistema Hg-H-O (fig. 32) si evince che la specie dominante è l'idrosso-complesso Hg(OH)2°. Indicazioni ulteriori derivano dai calcoli di speciazione eseguiti con il codice PHREEQC facendo riferimento al database termodinamico MINTEQ.dat per i pochissimi campioni in cui è stato determinato il mercurio acquoso. Fra di essi, è stato preso in esame il campione BC27 (pH = 7.6, Hg = 2 ppb) per il quale la speciazione del mercurio (a prescindere dalla possibile presenza di complessi metallo-organici) è risultata essere dominata dallo Hg(0), che rappresenta il 98% del mercurio acquoso, seguito dalla forma bivalente (2%), mentre quella monovalente è totalmente trascurabile. In particolare il mercurio bivalente è rappresentato principalmente dai complessi Hg(OH_2° [45% dello Hg(II)], HgClOH (27%) e HgCl₂ (18%).

Da sottolineare che sia il mercurio elementare che quello bivalente sono presenti in forma elettricamente neutra, fatto che comporta una elevata mobilità, in quanto gli effetti di adsorbimento di natura elettrostatica sono pressoché nulli.

 Fig. 33 – Diagramma Eh-pH relativo al sistema Mn-H-O per le acque dei CISS 32CT010+32CT030 e 32CT050.
 – Eb-pH diagrams for the sistems Mn-H-O for the waters relative to the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean Water Bodies).

3.4.1.6. - Diagramma Eh-pH per il sistema Mn-H-O

Nel diagramma Eh-pH per il sistema Mn-H-O (fig. 33) tutte le acque in esame si posizionano all'interno del campo di predominanza dello ione libero Mn²⁺, che risulta essere pertanto la principale specie dello Mn disciolto. Questa deduzione è in accordo soddisfacente con i risultati dei calcoli di speciazione. Per esempio, nel caso del campione BC28 (un'acqua Ca-HCO₃ con pH 7.71), la principale specie acquosa del Mn è lo ione libero (47%), seguito dal carbonato-complesso MnCO₃^o (29%), dal bicarbonato-complesso MnHCO₃⁺ (19%) e dal solfato-complesso MnSO₄^o (5%). Ovviamente si tratta di specie acquose non rappresentate in figura 33, che fa riferimento al sistema Mn-H-O.

3.4.1.7. - Diagramma Eh-pH per il sistema Mo-H-O

Il diagramma Eh-pH per il sistema Mo-H-O (fig. 34) mostra che è attesa la predominanza della specie anionica $MoO_4^{2^-}$ nelle condizioni redox (fissate dalla coppia NO_3^-/NH_4^+) e di acidità delle

Fig. 34 – Diagramma Eh-pH relativo al sistema Mo-H-O per le acque dei CISS 32CT010+32CT030 e 32CT050.
– Eb-pH diagrams for the Mo-H-O system of the waters relative to the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean Water Bodies).

acque campionate, in nessuna delle quali peraltro è stato analizzato il Mo disciolto. Non è escluso che lo ione molibdato possa essere presente, almeno in parte, in forma di complessi acquosi, quali le specie CaMoO₄°, MgMoO₄°, NaMoO₄⁻ e KMoO₄⁻, la cui stabilità è stata investigata da ESSINGTON (1992).

3.4.1.8. - Diagramma Eh-pH per il sistema Ni-H-O

Esaminando il diagramma Eh-pH per il sistema Ni-H-O (fig. 35), si osserva che all'interno del campo di stabilità dell'acqua, il Ni disciolto è presente, praticamente in toto, allo stato bivalente.

Inoltre, la figura 35 mostra che tutti i punti rappresentativi delle acque analizzate giacciono nel campo di predominanza dello ione libero Ni²⁺, mentre l'idrosso-complesso NiOH⁺ diventa la specie prevalente in acque decisamente basiche (pH>9.7 circa a 25°C e 1.013 bar). Differenti sono le indicazioni fornite dai calcoli di speciazione effettuati mediante il programma PHREEQC utilizzando il *database* termodinamico MINTEQ.dat, per i pochi campioni in cui è stato misurato il Ni acquoso. Per esempio, nel caso del campione MAT-P091 (un'acqua Ca-HCO₃ con pH 7.02, assumendo saturazione in calcite), lo ione libero Ni²⁺ rappresenta solamente il 9% del Ni totale disciolto, mentre sono importanti i complessi con gli ioni carbonato e bicarbonato, in particolare lo NiCO₃° (87%) e subordinatamente lo NiHCO₃⁺ (4%). La prevalenza del complesso neutro NiCO₃°, non influenzato da effetti di adsorbimento elettrostatici, determina un comportamento decisamente mobile del Ni acquoso.

3.4.1.9. - Diagramma Eh-pH per il sistema Pb-H-O

In base al diagramma Eh-pH per il sistema Pb-H-O (fig. 36), all'interno del campo di stabilità dell'acqua, il Pb disciolto è presente pressoché totalmente allo stato redox bivalente, ossia in forma di ione libero, per pH< 7.5 circa, e di [PbOH⁺, $Pb(OH)_2^{\circ}$ idrosso-complessi $Pb(OH)_{3}$ a pH superiori. Le acque campionate si dividono quasi equamente tra il campo di predominanza dello ione Pb²⁺ e quello del PbOH⁺. D'altro lato, indicazioni più dettagliate sono ottenibili in base ai calcoli di speciazione eseguiti con il codice PHREEQC (e con il database termodinamico MINTEQ.dat), ipotizzando una concentrazione del Pb disciolto di 5 ppb, nonostante i contenuti di Pb siano risultati inferiori al limite di

Fig. 35 – Diagramma Eh-pH relativo al sistema Ni-H-O per le acque dei CISS 32CT010+32CT030 e 32CT050.
– Eh-pH diagrams for the Ni-H-O system of the waters relative to the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean Water Bodies).

Fig. 36 – Diagramma Eh-pH relativo al sistema Pb-H-O per le acque dei CISS 32CT010+32CT030 e 32CT050.
– Eb-pH diagrams for the Pb-H-O system of the waters relative to the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean Water Bodies).

rilevabilità in tutte le acque analizzate. Ad esempio, per il campione MAT-P091 (già considerato nel precedente paragrafo), lo ione Pb²⁺ costituisce solamente il 3.7% del Pb totale acquoso, mentre prevale il complesso PbCO₃° (86%) e, in minor misura, il PbHCO₃⁺ (8.5%). Poiché il complesso neutro dominante, PbCO₃°, non è influenzato da fenomeni di adsorbimento sulle superficie solide, di natura elettrostatica, è lecito ipotizzare un comportamento mobile del Pb acquoso. Si ricorda che ulteriori informazioni circa l'origine del Pb disciolto nelle acque di falda sono fornite dai rapporti isotopici del Pb (e.g., BROZZO *et alii*, 2008).

3.4.1.10. - Diagramma Eh-pH per il sistema Sb-H-O

Il diagramma Eh-pH per il sistema Sb-H-O (fig. 37) suggerisce che l'antimonio disciolto è presente allo stato pentavalente ed in particolare come ione antimonato, considerando che il pK dell'acido antimonico è prossimo a 2.85 a 25 °C, 1.013 bar (ACCORNERO *et alii*, 2008).

Va detto che i calcoli di speciazione effettuati con il codice PHREEQC (e con il *database* termodinamico MINTEQ.dat) non aggiungono alcun dettaglio a quanto dedotto in base al diagramma Eh-pH di figura 37, in quanto è poco nota la stabilità dei complessi dell'antimonio pentavalente.

3.4.1.11. - Diagramma Eh-pH per il sistema Se-H-O

Esaminando il diagramma Eh-pH per il sistema Se-H-O (fig. 38), si osserva che i campioni in esame si distribuiscono nei campi di prevalenza delle specie acquose del Se tetravalente, in genere in quello dello ione monoidroselenito, HSeO₃⁻, e più raramente in quello dello ione selenito, SeO₃²⁻, non lontano dalle linee di isoattività con lo ione selenato, SeO₄²⁻. Queste deduzioni sono confermate dai calcoli di speciazione eseguiti con il codice PHREEQC (e con il *database* termodinamico MINTEQ.dat), in quanto l'unico complesso acquoso considerato del Se(IV), lo FeHSeO₃²⁺, è totalmente subordinato allo ione HSeO₃⁻.

3.4.1.12. - Diagramma Eh-pH per il sistema Sn-H-O

Il diagramma Eh-pH per il sistema Sn-H-O (fig. 39) mostra che, all'interno del campo di stabilità dell'acqua, la forma stabile dello Sn disciolto è quella tetravalente. Esso è presente come ione li-

Fig. 37 – Diagramma Eh-pH relativo al sistema Sb-H-O per le acque dei CISS 32CT010+32CT030 e 32CT050.
– Eh-pH diagrams for the Sb-H-O system of the waters relative to the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean Water Bodies).

Fig. 38 – Diagramma Eh-pH relativo al sistema Se-H-O per le acque dei CISS 32CT010+32CT030 e 32CT050.
– Eb-pH diagrams for the Se-H-O system of the waters relative the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean Water Bodies).

bero, Sn⁴⁺, solamente in condizioni fortemente acide. Sono invece gli idrosso-complessi Sn(OH)₄° e Sn(OH)₅⁻ a prevalere nel campo di pH tipico delle acque naturali, come si osserva anche nel caso dei CISS 32CT010+32CT030 e 32CT050. I calcoli di speciazione effettuati con il programma PHRE-EQC non aggiungono nessun dettaglio ulteriore, in quanto lo Sn non è presente fra i componenti chimici considerati nei *database* termodinamici MINTEQ.dat, PHREEQC.dat e Wateq4f.dat.

3.4.1.13. - Diagramma Eh-pH per il sistema U-H-O

Come indicato dal diagramma Eh-pH per il sistema U-H-O (fig. 40), la forma redox prevalente di U, nelle acque rappresentative degli acquiferi costieri tra Fiume Cecina e San Vincenzo e tra Fiume Fine e Fiume Cecina e dell'acquifero del Cecina, è quella esavalente, ossia gli idrosso-complessi UO_2OH^+ e $(UO_2)_3OH_7^-$ dello ione uranile, $UO_2^{2^+}$.

Peraltro, i calcoli di speciazione effettuati con il codice PHREEQC (e con il *database* termodinamico MINTEQ.dat) mostrano che i carbonato-complessi prevalgono sugli idrosso-complessi nelle acque di falda Ca-HCO₃. Ad esempio, nel già citato campione MAT-P091, ipotizzando una concentrazione

Fig. 39 – Diagramma Eh-pH relativo al sistema Sn-H-O per le acque dei CISS 32CT010+32CT030 e 32CT050.
– Eh-pH diagrams for the Sn-H-O system of the waters relative the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean Water Bodies).

Fig. 40 – Diagramma Eh-pH relativo al sistema U-H-O per le acque dei CISS 32CT010+32CT030 e 32CT050.
– Eh-pH diagrams for the U-H-O system of the waters relative the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean Water Bodies).

49

di U disciolto di 1 ppb, la specie acquosa prevalente è il carbonato complesso $UO_2(CO_3)_2^{2^-}$ (70% dell'U totale disciolto), seguito dai complessi $UO_2(CO_3)_3^{4^-}$ (27%) e $UO_2CO_3^{\circ}$ (3%).

Decisamente subordinate sono invece le specie acquose in cui U presenta stati formali di ossidazione inferiori (+5, +4 e +3).

3.4.1.14. - Diagramma Eh-pH per il sistema V-H-O

Il diagramma Eh-pH per il sistema V-H-O (fig. 41) mostra che la forma redox dominante del vanadio disciolto è quella pentavalente, con prevalenza dello ione diidrovanadato, $H_2VO_4^-$, per pH < 8.1 e dello ione monoidrovanadato, HVO_4^{-2} , per pH > 8.1. Queste osservazioni sono pienamente confermate dai calcoli di speciazione effettuati con il codice PHREEQC (e con il *database* termodinamico MINTEQ.dat). Per esempio, nel campione MAT-P091 (pH 7.02), già considerato più sopra, ipotizzando una concentrazione di V disciolto di 1 ppb, la specie acquosa dominante è lo ione diidrovanadato (88.5% del V totale disciolto), seguita dallo ione monoidrovanadato (9.9%).

Assolutamente trascurabili sono le concentrazioni delle specie acquose in cui il vanadio presenta stati formali di ossidazione minori (+4, +3 e +2).

Fig. 41 – Diagramma Eh-pH relativo al sistema V-H-O per le acque dei CISS 32CT010+32CT030 e 32CT050.
– Eh-pH diagrams for the V-H-O system of the waters relative to the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean Water Bodies).

3.4.2. - Diagramma P_{CO2} - pH

I valori di pH riflettono il bilancio fra l'apporto di sostanze acide alla soluzione acquosa ed il loro consumo, principalmente per interazione acquaroccia. La principale sostanza acida che entra nelle acque naturali è la CO₂ (che si idrata formando acido carbonico, H₂CO₃), seguita dagli acidi organici (es. acidi umici e fulvici). Sia la CO₂ sia gli acidi organici si originano soprattutto nei suoli, attraverso processi di decomposizione di sostanze organiche mediati da batteri. Localmente la CO₂ può avere anche origine profonda, mentre il contributo di CO₂ atmosferica è abitualmente trascurabile. Gli acidi disciolti nelle acque naturali, nel nostro caso essenzialmente H₂CO₃, vengono progressivamente neutralizzati, per interazione con i minerali delle rocce. Quest'ultimi agiscono generalmente da basi (eccettuando i processi di dissoluzione ossidativa dei solfuri metallici). In altri termini, questo processo di neutralizzazione determina, in un primo tempo, la conversione di H₂CO₃ in ione HCO₃ e quella successiva dello ione HCO_3^- in ione CO_3^{2-} , successivamente. Conseguentemente il pH è, almeno in parte, condizionato dal grado di avanzamento delle interazioni acqua-roccia: in particolare valori bassi di pH, dovuti all'incapacità da parte delle rocce di neutralizzare la carica acida acquisita dall'acqua, indicano o una scarsa interazione coi litotipi presenti o la presenza di litotipi poco reattivi.

Nonostante la concentrazione del carbonio inorganico totale disciolto (TDIC) sia un parametro facilmente misurabile sul terreno e di estremo interesse (CIONI *et alii*, 2007), per le acque dell'area in oggetto non sono disponibili dati analitici relativi al TDIC, che è stato pertanto ottenuto mediante calcoli di speciazione effettuati con il codice PHREEQC, essenzialmente in base ai dati di pH ed alcalinità.

Il diagramma P_{CO_2} - pH relativo all'area in esame (fig. 42), mostra che il pH delle acque campionate, indipendentemente dalla facies chimica di appartenenza, è generalmente compreso fra 6.5 e 8.5. Ovviamente, il logaritmo della P_{CO_2} è fortemente correlato con il pH ed in modo inverso, poiché, prescindendo da effetti di complessazione in fase acquosa, le due variabili sono legate dalla seguente equazione:

$$\log P_{CO_2} = -pH + \log m_{HCO_3} + \log \gamma_{HCO_3} + \log (K_{H/K_{H_2CO_3}})$$
(6)

dove K_H indica la costante di Henry della CO_2 in atm/(mol/kg) e la costante di dissociazione dell'acido carbonico. In effetti, la notevole correlazione fra pH e log P_{CO_2} è ben evidente in figura

Fig. 42 – Diagramma di correlazione P_{CO2} - pH per le acque dei CISS
 32CT010+32CT030 e 32CT050. Le curve di iso-TDIC sono state calcolate mediante la relazione semplificata (7).
 – Correlation plot between P_{CO2}- pH for the waters relative to the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean Water Bodies). Reference iso-TDIC lines are calculated by simplify relations (7).

42, dalla quale si evince che la P_{CO_2} delle acque in esame è generalmente compresa, a parte poche eccezioni, fra 10⁻³ e 10⁻¹ bar. Si tratta di valori tipicamente controllati dai processi di decomposizione delle sostanze organiche presenti nei suoli. Fra le acque anomale, sono degne di nota:

(i) il campione 133, di composizione Na-Cl ed alta concentrazione di Cl (13490 mg/L), caratterizzato da pH anomalmente basso, 5.56, ed alta, 0.48 bar;

(ii) il campione P245, pure di composizione Na-Cl ma con basso contenuto di Cl (113 mg/L solamente), con alto pH, 9.48, e bassa P_{CO_2} , 2.4 × 10^{-5} bar;

(iii) i due campioni Ca01 e Ca02, entrambi di composizione Ca-HCO₃, caratterizzati da bassi pH (6.0-6.2) ed alta P_{CO_2} (0.23-0.39 bar).

In figura 42 sono riportate anche le curve di iso-TDIC calcolate mediante la seguente relazione semplificata: $p_{\text{TDIC}} \cdot K_{\text{H}}$

$${}^{2} = \frac{1}{\left(1 + \frac{\mathbf{K}_{H_{2}CO_{3}}}{10^{-pH}} + \frac{\mathbf{K}_{HCO_{3}} \cdot \mathbf{K}_{H_{2}CO_{3}}}{10^{-2pH}}\right)}$$
(7)

facilmente desumibile dagli equilibri dei carbonati, dove K_{HCO_3} - indica la costante di dissociazione dello ione bicarbonato. Escludendo i quattro campioni anomali sopra citati e pochi altri, la diminuzione di P_{CO_2} ed il concomitante aumento di pH non sono accompagnate da variazioni significative del TDIC, che è generalmente dell'ordine di alcune centinaia di mg HCO₃/L. Ciò suggerisce che la conversione dello H_2CO_3 in ioni HCO_3^- e CO_3^{2-} avviene essenzialmente in condizioni di sistema chiuso rispetto alla CO_2 .

3.4.3. - L'indice di saturazione

3.4.3.1. - Definizione dell'indice di saturazione, considerazioni termodinamiche, cinetiche ed operative

La dissoluzione di una qualunque fase solida da parte di una certa soluzione acquosa può avvenire solamente se quest'ultima è sottosatura, mentre se la soluzione acquosa si trova in condizioni di sovrassaturazione rispetto alla fase solida considerata, quest'ultima può precipitare. È pertanto importante valutare il grado di equilibrio (ossia lo stato di saturazione) della soluzione acquosa nei confronti delle fasi minerali di interesse.

Questa valutazione può essere effettuata, in termini di energia, mediante l'affinità termodinamica, A_j, che è definita dalla seguente relazione, in riferimento alla reazione di dissoluzione di un generico minerale j, che avviene a pressione e temperatura costanti:

$$A_{j} = 2.303 \cdot RT \log \left(\frac{Q_{j}}{K_{j}}\right) \tag{8}$$

dove R è la costante universale dei gas, T la temperatura assoluta (in K), K; è la costante di equilibrio della reazione, ovvero il prodotto di solubilità, trattandosi della reazione di dissoluzione di una fase solida, mentre Q_i è il corrispondente prodotto di attività. In alternativa, si può utilizzare, al posto dell'affinità termodinamica, l'indice di saturazione $SI_i = \log (Q_i/K_i)$, che è una grandezza adimensionale. Quando $SI_i = 0$ oppure $A_i = 0$ si ha perfetto equilibrio tra la fase solida in questione e la soluzione acquosa, ossia la soluzione acquosa è satura rispetto alla fase solida. Valori negativi di SI; $(Q_i/K_i < 1)$ e A_i sono indicativi di condizioni di sottosáturazione', mentre valori positivi di SI; $(Q_i/K_i > 1)$ e A_i sono indicativi di condizioni di sovrassaturazione della soluzione acquosa rispetto alla fase solida.

Va anche ricordato che l'affinità termodinamica (o l'indice di saturazione) influisce considerevolmente sulla velocità complessiva, r;, dei processi di dissoluzione/precipitazione per la generica fase solida considerata, nel caso in cui tali processi siano controllati da meccanismi di superficie (e non di trasporto in soluzione acquosa). Ciò è espresso dalla seguente equazione, che è basata sulla Teoria degli Stati di Transizione (OELKERS, 2001):

$$r_{j} = r_{+,j} \cdot \left[1 - \exp\left(\frac{\mathbf{A}_{j}}{\sigma RT}\right) \right]$$
(9)

In questa relazione, $r_{+,i}$ è la velocità della rea-

zione di dissoluzione (*forward*) per unità di superficie, e σ è il rapporto fra la velocità di decomposizione del complesso attivato (ossia della reazione microscopica) e la velocità del processo macroscopico; σ è anche noto come numero stechiometrico di Temkin. Per $\sigma = 1$ e considerando la relazione (8), l'equazione (9) si riduce a:

$$\mathbf{r}_{j} = \mathbf{r}_{+,j} \cdot \left(1 - \frac{\mathbf{Q}_{j}}{\mathbf{K}_{j}}\right) \,. \tag{10}$$

Accettando la convenzione che la velocità $r_{+,j}$ della reazione di dissoluzione (forward) sia positiva', r risulta positivo in regime di dissoluzione e negativo in regime di precipitazione, mentre diventa zero in condizione di equilibrio (saturazione), come espresso dalle relazioni (9) e (10). La variazione del rapporto $r_j/r_{+,j}$ con l'affinità termodinamica è mostrata in figura 43. Per valori di affinità termodinamica inferiori a circa -8000 J mole⁻¹, il rapporto $r_i/r_{+,i}$ non devia significativamente dal valore unitario,"indicando che la velocità del processo di dissoluzione è virtualmente indipendente dalla affinità termodinamica in questa regione (il cosiddetto plateau di dissoluzione), ossia in condizioni di notevole lontananza dalla condizione di equilibrio. Avvicinandosi a quest'ultima, ossia per valori della affinità termodinamica compresi fra $-8000 \text{ e } 0 \text{ J mole}^{-1}$, il rapporto $r_j/r_{+,j}$ diminuisce sensibilmente e, all'equilibrio, valé la séguente condizione $r_j = r_{+,j} - r_{-,j} = 0$. Nella regione di preci-pitazione, il rapporto $r_j/r_{+,j}$ continua a diminuire notevolmente al crescere della affinità termodina-

Fig. 43 – Variazione del rapporto r/r₊ con la affinità termodinamica (da OELKERS, 2001).
Variations of r/r+ ratio with the thermodynamics affinity (by OELKERS, 2001).

mica, indicando che anche la velocità del processo di precipitazione è fortemente influenzata da questo parametro. Come sottolineato da OELKERS (1996), il diagramma della figura 43 suggerisce anche che le velocità dei processi di dissoluzione e precipitazione misurati in laboratorio, in condizioni di estrema lontananza dall'equilibrio, possono deviare significativamente dalle velocità che si stabiliscono in prossimità dell'equilibrio, che sembrano essere tipici della maggior parte dei sistemi naturali.

Per i 367 campioni rappresentativi dei CISS regionali 32CT010 "Acquifero costiero tra Fiume Cecina e San Vincenzo", 32CT030 "Acquifero costiero tra Fiume Fine e Fiume Cecina" e 32CT050 "Acquifero del Cecina", i valori dell'indice di saturazione rispetto a fasi minerali di interesse (quali calcite, dolomite, albite, K-feldspato, anortite, crisotilo, Mg-clorite ed anidrite) sono stati calcolati mediante il codice EQ3 (WOLERY & JAREK, 2003), utilizzando il *database* CMP.

A tal fine, si è ipotizzato che l'attività dello ione Al^{3+} sia fissata dalla saturazione con la caolinite; questo è un vincolo ragionevole in base alle informazioni desunte dai diagrammi di attività (vedi sezione 3.4.4). In mancanza del dato di concentrazione della SiO₂ disciolta, questo parametro è stato fissato assumendo saturazione rispetto al calcedonio.

I risultati ottenuti sono generalmente visualizzati mediante diagrammi di correlazione fra i valori di indice di saturazione ed il pH. La scelta di questa variabile di riferimento è dettata dalla forte dipendenza dal pH dell'affinità termodinamica (e quindi dell'indice di saturazione), per differenti gruppi di minerali, fra cui i carbonati ed i silicati. In effetti, le reazioni di dissoluzione di queste fasi minerali sono governate, in larga misura, dall'attività dello ione H⁺. Per tenere conto delle incertezze insite nel calcolo, consideriamo sottosature le acque con SI < -0.2, sature quelle con -0.2 < SI < +0.2 e sovrassature quelle con SI > +0.2.

3.4.3.2. - Diagramma pH – indice di saturazione rispetto alla calcite

Nel diagramma di correlazione fra pH ed indice di saturazione rispetto alla calcite (fig. 44) si osserva che la condizione di sovrassaturazione rispetto alla calcite è molto comune negli acquiferi considerati, in quanto le acque sovrassature rappresentano il 63% del totale, quelle sature il 33% e quelle sottosature solo il 4%. L'elevato numero di acque in condizioni di equilibrio o sovrassaturazione rispetto alla calcite è dovuto sia alla diffusione di questo minerale, che è molto comune negli acquiferi in oggetto, ove è presente anche in note-

Fig. 44 – Diagramma di correlazione fra il pH e l'indice di saturazione rispetto alla calcite per le acque dei CISS 32CT010+32CT030 e 32CT050. Le linee tratteggiate limitano il campo delle acque sature, caratterizzate da -0.2 < SI < +0.2. A tratto continuo viene rappresentata la linea di regressione per le 295 acque appartenenti alla facies Ca-HCO₂ e Ca(Mo)HCO₂.

le 295 acque appartenenti alla facies Ca-HCO₃ e Ca(Mg)HCO₃, – Binary diagram between saturation index and pH with respect to calcite for the waters relative to the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean Water Bodies). The dashed lines define the field of the calcite-saturated waters at -0.2 < SI < +0.2. The solid straight line refers to the regression line for the HCO₃-Ca and HCO₃-Ca(Mg) waters.

voli quantità, sia alla elevata cinetica di dissoluzione della calcite. In particolare, numerose sono le acque che hanno valore dell'SI superiore a 0.3, limite al di là del quale la cinetica del processo di precipitazione della calcite diventa molto rapida (APPELO & POSTMA, 1996).

In figura 44, la maggior parte dei campioni disponibili si distribuisce in un unico allineamento, dal quale si allontanano poche acque con caratteristiche chimiche peculiari (133, 93, 258, P245, BC37).

Per spiegare la dipendenza dal pH dell'indice di saturazione rispetto alla calcite per le acque in esame (facendo riferimento alle acque di composizione Ca-HCO₃ e Ca(Mg)-HCO₃, che costituiscono il gruppo più numeroso), possiamo scrivere la reazione di dissoluzione della calcite nelle due forme seguenti:

$$CaCO_3 + H^+ = Ca^{2+} + HCO_3^-$$
(11)

$$CaCO_3 + 2H^+ = Ca^{2+} + H_2CO_3$$
. (12)

Conseguentemente, la dipendenza $SI_{calcite}$ -pH può essere espressa come segue:

 $SI_{calcite} = pH + \log a_{Ca^{2+}} + \log a_{HCO_3^{-}} - \log K_{(5)}$ (13) oppure

$$SI_{calcite} = 2 \cdot pH + \log_{Ca^{2+}} + \log_{H_2CO_3} - \log_{K_{(6)}}.$$
 (14)

La pendenza teorica della relazione $SI_{calcite} - pH$ risulta 1 per la reazione (11) e 2 per la (12). Il valore osservato di 0.85, per le 295 acque di composizione Ca-HCO₃ e Ca(Mg)-HCO₃, è prossimo alla pendenza teorica della prima reazione, che pertanto sembra essere quella più idonea per descrivere il processo di dissoluzione (precipitazione) della calcite.

Da ultimo, va ricordato che per il 14% dei campioni considerati, per i quali non era noto il pH, questo parametro è stato calcolato imponendo la condizione di saturazione in calcite. È stato verificato che includere o meno queste acque, non comporta differenze significative nelle considerazioni precedenti.

3.4.3.3. - Diagramma pH – indice di saturazione rispetto alla dolomite

Il diagramma di correlazione $SI_{dolomite}$ - pH (fig. 45) mostra che sono molto numerose le acque considerate sono prevalentemente sovrassature (97% del totale), mentre quelle sature (1%) e quelle sottosature (2%) risultano essere subordinate.

In figura 45, la maggior parte dei campioni disponibili si distribuisce in un unico allineamento, dal quale si allontanano poche acque con caratteristiche chimiche particolari, già evidenziate nella

Fig. 45 – Diagramma di correlazione fra il pH e l'indice di saturazione rispetto alla dolomite per le acque dei CISS 32CT010+32CT030 e 32CT050. Le linee tratteggiate limitano il campo delle acque sature, caratterizzate da 0.2 < SI < +0.2. A tratto continuo viene rappresentata la linea di regressione per le 295 acque appartenenti alla facies Ca-HCO₃ e Ca(Mg)HCO₃. – Binary diagram between saturation index and pH respect to dolomite for the waters relative to the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean Water Bodies). The dashed lines define the field of the dolomite-saturate waters at -0.2 < SI < +0.2. The solid straight line refers to the regression line for the HCO₃-Ca and HCO₃-Ca(Mg) waters.

precedente sezione (133, 93, 258, P245, BC37). Da notare inoltre che la maggior parte delle acque appartenenti alla facies Na-Cl (escludendo alcuni campioni poveri di Mg, come P245 e 133) mostrano valori di SI_{dolomite} superiori a quelli delle altre acque, a parità di pH, essendo più ricche di Mg. Anche nel caso della dolomite, è utile esaminare la dipendenza dal pH dell'indice di saturazione, per le acque di composizione Ca-HCO₃ e Ca(Mg)-HCO₃; la reazione di dissoluzione della dolomite può essere scritta nei due modi seguenti:

$$CaMg(CO_3)_2 + 2H^+ = Ca^{2+} + Mg^{2+} + 2HCO_3^-$$
 (15)

o
$$CaMg(CO_3)_2 + 4H^+ = Ca^{2+} + Mg^{2+} + 2H_2CO_3$$
. (16)

Conseguentemente, la dipendenza SI_{dolomite}-pH può essere espressa come segue:

$$SI_{dolomite} = 2 \cdot pH + \log a_{Ca^{2+}} + \log a_{Mg^{2+}} + 2 \cdot \log a_{HCO_3} - \log K_{(9)}$$
(17)

oppure

$$SI_{dolomite} = 4 \cdot pH + \log a_{Ca^{2+}} + \log a_{Mg^{2+}} + 2 \cdot \log a_{H_2CO_3} - \log K_{(10)}.$$
(18)

Le equazioni (17) e (18) indicano che la pendenza teorica della relazione $SI_{dolomite} - pH \ e 2$ per la reazione (15) e 4 per la (16). Il valore osservato di 1.78, per le 295 acque appartenenti alla facies Ca-HCO₃ - Ca(Mg)-HCO₃, è più vicino alla pendenza attesa per la reazione (15), che di conseguenza è quella più appropriata per descrivere i fenomeni di dissoluzione e precipitazione della dolomite.

3.4.3.4. - Diagramma pH – indice di saturazione rispetto alla albite

Nel diagramma di correlazione SI_{albite} - pH (fig. 46) si osserva che la maggior parte delle acque prelevate (93%) sono sottosature rispetto al feldspato sodico, solamente il 4% e il 3% sono rispettivamente sature e sovrassature. In particolare, le 295 acque di composizione Ca-HCO₃ e Ca(Mg)-HCO₃ definiscono la retta di regressione seguente ($R^2 = 0.754$): SI_{albite} =0.9168 × pH – 8.004, (19)

la cui pendenza si approssima a quella del valore teorico (=1) atteso per la reazione di dissoluzione incongruente della albite accompagnata da precipitazione di caolinite:

$$\begin{array}{c} \text{NaAlSi}_{3}\text{O}_{8} + \text{H}^{+} + 0.5 \text{ H}_{2}\text{O} = \text{Na}^{+} + 2 \text{ SiO}_{2(\text{aq})} \\ \text{(albite)} + 0.5 \text{ Al}_{2}\text{Si}_{2}\text{O}_{5}(\text{OH})_{4}. \quad (20) \\ \text{(caolinite)} \end{array}$$

Questo valore teorico della pendenza è definito dalla equazione seguente:

Fig. 46 – Diagramma di correlazione fra il pH e l'indice di saturazione rispetto alla albite per le acque dei CISS 32CT010+32CT030 e 32CT050. Le linee tratteggiate limitano il campo delle acque sature, caratterizzate da -0.2 \leq SI < +0.2. A tratto continuo viene rappresentata la linea di regressione per le 295 acque appartenenti alla facies Ca-HCO₃ e Ca(Mg)HCO₃.

– Binary diagram between saturation index and pH respect to albite for the waters relative
to the
$$32C1010+32CT030$$
 and $32CT050$ SSWB (Significant Subterranean Water
Bodies). The dashed lines define the field of the albite-saturated waters at $-0.2 < SI < +0.2$.
The solid straight line refers to the regression line for the HCO₃-Ca and
HCO₃-Ca(Mg) waters.

$$SI_{albite} = pH + \log a_{Na^+} + 2 \cdot \log a_{SiO_{2(ac)}} - \log K_{(14)}.$$
(21)

Le acque Na-Cl mostrano valori di SI_{albite} nettamente superiori a quelli delle acque di composizione Ca-HCO₃ e Ca(Mg)-HCO₃, a parità di pH, essendo più ricche di Na; in effetti, i contenuti medi di questo elemento sono $83 \pm 40 (1\sigma) \text{ mg/L}$ per le acque Ca-HCO₃ e Ca(Mg)-HCO₃ e 3880 ± 4104 (1 σ) mg/L per le acque Na-Cl. Tuttavia, il limitato numero di acque Na-Cl e l'elevata dispersione delle concentrazioni di Na in questa classe idrochimica non permettono di definire una retta di regressione SI_{albite} - pH significativa. Considerazioni similari valgono per le acque appartenenti alla facies Ca-SO₄.

3.4.3.5. - Diagramma pH – indice di saturazione rispetto al K-feldspato

Il diagramma di correlazione fra il pH e l'indice di saturazione rispetto al feldspato potassico (fig. 47) mostra che nell'insieme, i campioni appaiono traslati verso l'alto (ossia verso la condizione di equilibrio), in confronto a quanto osservato nel caso dell'albite (fig. 46). In effetti, poco più della metà dei campioni (il 53% del totale) si trova in

Fig. 47 – Diagramma di correlazione fra il pH e l'indice di saturazione rispetto al K-feldspato per le acque dei CISS 32CT010+32CT030 e 32CT050. Le linee tratteggiate limitano il campo delle acque sature, caratterizzate da -0.2 < SI < +0.2. A tratto continuo viene rappresentata la linea di regressione per le 295 acque appartenenti alla facies Ca-HCO₃ e Ca(Mg)HCO₃ per le quali è nota la concentrazione di K.

– Binary diagram between saturation index and pH respect to K-feldspar for the waters relative to the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean Water Bodies). The dashed lines define the field of the K-feldspar-saturated waters at -0.2 < SI < +0.2. The solid straight line refers to the regression line for the HCO₃-Ca and HCO₃-Ca(Mg) waters.

condizioni di sovrassaturazione rispetto a questa fase solida, il 32% sono saturi, mentre solamente il 15% sono sottosaturi. Per inciso, questa maggiore prossimità alla condizione di equilibrio (se non addirittura il raggiungimento di condizioni di sovrassaturazione) con il K-feldspato rispetto alla albite è generalmente osservata nelle acque naturali che circolano in prossimità della superficie terrestre e spiega la maggiore durabilità del feldspato potassico rispetto a quello sodico, spesso riscontrata nei suoli (GAMBARDELLA *et alii*, 2005).

Nello specifico, i 294 campioni appartenenti alle facies Ca-HCO₃ e Ca(Mg)-HCO₃ (per il campione 17 non è disponibile il dato analitico relativo alla concentrazione di K disciolto) individuano la seguente retta di regressione ($\mathbb{R}^2 = 0.734$):

$$SI_{K-feldspato} = 1.009 \times pH - 7.090,$$
 (22)

la cui pendenza è prossima al valore unitario atteso in base alla reazione di dissoluzione incongruente del K-feldspato accompagnata da precipitazione di caolinite:

$$\begin{array}{c} \text{KAlSi}_{3}\text{O}_{8} + \text{H}^{+} + 0.5 \text{ H}_{2}\text{O} = \text{K}^{+} + 2 \text{ SiO}_{2(\text{aq})} + \\ \text{(K-feldspato)} & 0.5 \text{ Al}_{2}\text{Si}_{2}\text{O}_{5}(\text{OH})_{4}. \\ \text{(caolinite)} \end{array}$$
(23)

Il valore unitario teorico della pendenza è definito

dalla relazione seguente:

$$SI_{K-feldspato} = pH + loga_{K^+} + 2 \cdot loga_{SiO_{2(ac)}} - logK_{(17)}$$
. (24)

Anche in figura 47, analogamente a quanto osservato in figura 46, i campioni appartenenti alla facies Na-Cl sono caratterizzati da valori dell'indice di saturazione rispetto al K-feldspato maggiori di quelli dei campioni Ca-HCO₃ e Ca(Mg)-HCO₃, a parità di pH; ciò è dovuto ai maggiori contenuti di K nei primi (204 \pm 244 mg/L) rispetto ai secondi (4.4 \pm 6.6 mg/L).

3.4.3.6. - Diagramma pH – indice di saturazione rispetto all'anortite

Il diagramma di correlazione fra il pH e l'indice di saturazione rispetto all'anortite (fig. 48) mostra che tutti i campioni d'acqua sono fortemente sottosaturi nei confronti di questa fase solida. Questa condizione, peraltro tipica delle acque naturali poco profonde, spiega la minore durabilità del plagioclasio calcico rispetto a quello sodico, spesso riscontrata nei suoli (MARINI, 2007).

In particolare, le 295 acque di composizione Ca-HCO₃ e Ca(Mg)-HCO₃ si distribuiscono attorno alla seguente retta di regressione ($\mathbb{R}^2 = 0.949$):

$$SI_{anortite} = 1.861 \times pH - 22.210,$$
 (25)

Fig. 48 – Diagramma di correlazione fra il pH e l'indice di saturazione rispetto all'anortite per le acque dei CISS 32CT010+32CT030 e 32CT050.
Le linee tratteggiate limitano il campo delle acque sature, caratterizzate da -0.2 < SI < +0.2. A tratto continuo viene rappresentata la linea di regressione per le 295 acque appartenenti alla facies Ca-HCO₃ e Ca(Mg)HCO₃.

– Binary diagram between saturation index and pH respect to anorthite for the waters relative to the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean Water Bodies). The dashed lines define the field of the anorthite-saturated waters at -0.2 < SI < +0.2. The solid straight line refers to the regression line for the HCO₃-Ca and HCO₃-Ca(Mg) waters. il cui *slope* è vicino al valore 2, atteso per la dissoluzione incongruente del plagioclasio calcico accompagnata da precipitazione di caolinite:

$$\begin{array}{c} CaAl_2Si_2O_8 + 2H^+ + H_2O = Ca^{2+} + Al_2Si_2O_5(OH)_{4,} \\ \text{(anortite)} & \text{(caolinite)} \end{array}$$

Questo valore dello *slope* è definito dalla relazione seguente: $SI_{anortite} = 2 \cdot pH + \log_{Ca^{2+}} - \log_{Ca^{2$

L'alto valore dell' \mathbb{R}^2 , ossia la scarsa dispersione dei campioni di composizione Ca-HCO₃ e Ca(Mg)-HCO₃ attorno alla retta di regressione (eq. 25), è dovuto alla dipendenza dello SI_{anortite} solamente dal pH e dalla attività dello ione Ca²⁺ (vedi eq. 27, in linea con quanto osservato nel paragrafo 3.2), mentre gli indici di saturazione di albite e K-feldspato dipendono anche dalla attività della silice, fatto che induce un maggior *scattering* dei dati.

3.4.3.7. - Diagrammi pH – indice di saturazione rispetto a crisotilo e clinocloro

Nei diagrammi di figura 49 viene mostrata la dipendenza dal pH dell'indice di saturazione di due fillosilicati magnesiaci: crisotilo e Mg-clorite (clinocloro con spaziatura basale di 14Å). Entrambi sono presenti entro le rocce ultramafiche e la seconda fase solida, come abbiamo visto nel paragrafo 3.4.3, sembra essere la principale sorgente del Cr disciolto nelle acque dell'area in esame.

Nell'insieme, prevalgono le acque sottosature sia rispetto al crisotilo (87%) che alla Mg-clorite (92%); le acque sature rappresentano rispettivamente il 3% e l'1%, mentre quelle sovrassature il 10% ed il 7%.

È interessante sottolineare che la maggior parte delle acque sovrassature in crisotilo e Mg-clorite, è caratterizzata da valori di pH > 8.0. Pertanto, la dissoluzione di queste fasi, e conseguentemente il rilascio del Cr dalla Mg-clorite, non sono possibili nelle acque con valori di pH superiori a questo limite. Il *plateau* di dissoluzione peraltro si localizza a valori di SI inferiori a circa -3.2 (a 25 °C), ossia a pH inferiori a 7.5, nel caso del crisotilo, e 7.8 per il clinocloro.

Le 295 acque appartenenti alle facies idrochimiche Ca-HCO₃ e Ca(Mg)-HCO₃ sono collocate attorno alle rette di regressione seguenti:

$$SI_{crisotilo} = 5.933 \times pH - 47.68, (R^2 = 0.9392)$$
 (28)

e
SI_{Mg-clorite}=9.822×pH-80.03, (
$$R^2$$
=0.9398) (29)

le cui pendenze sono prossime rispettivamente ai valori, 6 e 10, attesi per le reazioni di dissoluzione dei due minerali in oggetto:

$$Mg_{3}Si_{2}O_{5}(OH)_{4}+6H^{+} = 3 Mg^{2+} + 2 SiO_{2(aq)}+5 H_{2}O_{(crisotilo)}$$
(30)

Fig. 49 – Diagrammi di correlazione fra il pH e l'indice di saturazione rispetto al crisotilo e alla clorite per le acque dei CISS 32CT010+32CT030 e 32CT050.
 Le linee tratteggiate limitano il campo delle acque sature, caratterizzate da -0.2 < SI < +0.2. A tratto continuo viene rappresentata la linea di regressione per le 295 acque appartenenti alla facies Ca-HCO₃ e Ca(Mg)HCO₃.
 – Binary diagram between saturation index and pH respect to chlorite and chrysotile for the waters relative to the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterra-

- Binary diagram between saturation index and pH respect to chlorite and chrysotile for the waters relative to the 32C1010+32C1030 and 32C1050 SSW B (Significant Subterranean Water Bodies). The dashed lines define the field of the chlorite-and chrysotile-saturated waters at -0.2 < SI < +0.2. The solid straight line refers to the regression line for the HCO₃-Ca and HCO₃-Ca(Mg) waters.

$$\begin{array}{c} Mg_{5}Al_{2}Si_{3}O_{10}(OH)_{8} + 10 \text{ H}^{+} = 5 \text{ Mg}^{2+} + SiO_{2(aq)} \\ Mg\text{-clorite}) + Al_{2}Si_{2}O_{5}(OH)_{4} + 7 \text{ H}_{2}O \\ \text{(caolinite)} \end{array}$$
(31)

Questi valori dello *slope* sono dettati dalle relazioni seguenti:

$$SI_{crisotilo} = 6 \cdot pH + 3 \cdot \log a_{Mg^{2+}} + 2 \cdot \log a_{SiO_2(aq)} - \log K_{(24)}.$$
(32)

$$SI_{Mg-clorite} = 10 \cdot pH + 5 \cdot \log a_{Mg^{2+}} + \log a_{SiO_2(aq)} - \log K_{(25)}.$$
(33)

3.4.3.8. - Diagramma SO_4 – indice di saturazione rispetto a gesso ed anidrite

Poiché l'indice di saturazione rispetto a gesso (CaSO₄ · 2H₂O) ed anidrite (CaSO₄) è fortemente condizionato dalle concentrazioni degli ioni calcio e solfato, è conveniente utilizzare una di esse come variabile di riferimento. D'altro lato, non vi è alcuna correlazione fra l'indice di saturazione rispetto a gesso ed anidrite ed il pH, poiché lo ione H⁺ non è implicato nelle reazioni di dissoluzione di questi minerali.

I diagrammi di correlazione $SI_{gesso} - SO_4$ e $SI_{anidrite} - SO_4$ (fig. 50) mostrano che vi è una differenza pressoché costante fra i due indici di saturazione, di circa 0.25 unità. Ciò dipende dalla somiglianza fra le due variabili, che sono definite dalle relazioni:

$$SI_{gesso} = loga_{Ca^{2+}} + loga_{SO_{4}^{2-}} + 2loga_{H_{2}O} - logK_{(36)}$$
 (34)

$$SI_{anidrite} = \log a_{Ca^{2+}} + \log a_{SO_4^{2-}} - \log K_{(37)}$$
 (35)

in riferimento alle reazioni di dissoluzione:

$$CaSO_4 \cdot 2H_2O = Ca^{2+} + SO_4^{2-} + 2H_2O$$
 (36)
(gesso)

$$CaSO_4 = Ca^{2+} + SO_4^{2-}.$$
 (37)
(anidrite)

Tutte le acque provenienti dall'area in oggetto sono decisamente sottosature rispetto a gesso ed anidrite, ad eccezione dei campioni 133 (entrambi i prelievi) e BC37, che risultano saturi rispetto al gesso e debolmente sottosaturi rispetto alla anidrite. Il primo è ubicato nei pressi della linea di costa, mentre il secondo è situato in vicinanza della confluenza fra il Botro Santa Marta ed il Fiume Cecina. Per i campioni 133 e BC 37, la saturazione rispetto al gesso è da mettere in relazione alle alte concentrazioni di SO₄ (3250 mg/L per il primo, 1920 mg/L per il secondo) e di Ca (1660 mg/L per il primo, 979 mg/L per il secondo). Per il campione 133, il raggiungimento della condizione di equilibrio con il gesso fornisce un'ulteriore indicazione (come i bassi contenuti di Mg) che si possa trattare di un'acqua marina diluita o salmastra che ha subito un fenomeno di riscaldamento. In effetti l'acqua di mare, che è sottosatura rispetto a gesso ed anidrite (come evidenziato anche in figura 50), raggiunge la saturazione rispetto a queste fasi solide per riscaldamento a circa 100-120°C (MARINI et alii, 2002).

Fig. 50 – Diagramma di correlazione fra il pH e l'indice di saturazione rispetto al gesso per le acque dei CISS 32CT010+32CT030 e 32CT050. Le linee tratteggiate limitano il campo delle acque sature, caratterizzate da -0.2 < SI < +0.2.
 – Binary diagram between saturation index and pH respect to gypsum for the waters relative to The 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean Water Bodies). The dashed lines define the field of the gypsum-saturated waters at -0.2 < SI < +0.2.

Per tutte le acque in cui il Mn disciolto è rilevabile, sono stati calcolati gli indici di saturazione rispetto alla pirolusite (MnO₂), in cui il Mn è presente in toto allo stato tetravalente, ed alla hausmannite [Mn(II)Mn(III)₂O₄], in cui il Mn è per 1/3 bivalente e per 2/3 trivalente. Pirolusite ed hausmannite sono due dei numerosi ossidi di Mn potenzialmente presenti nei circuiti idrici relativamente prossimi alla superficie. L'indice di saturazione rispetto alla pirolusite ed alla hausmannite risulta essere correlato positivamente con il pH (figg. 51a,c) e negativamente con l'Eh (figg. 51b,d). Negli intervalli di pH ed Eh considerati, tutte le

Fig. 51 – Diagrammi di correlazione fra l'indice di saturazione rispetto alla pirolusite e (a) pH e (b) Eh e fra l'indice di saturazione rispetto alla hausmannite e (c) pH e (d) Eh per le acque dei CISS 32CT010+32CT030 e 32CT050. Le linee tratteggiate limitano il campo delle acque sature, caratterizzate da -0.2 < SI < +0.2.

- Binary diagram between saturation index respect to pyrolusite for pH (a) and Eb (b) and between saturation index respect to bausmannite for pH (c) and Eb (d) for the waters relative to the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean Water Bodies). The dashed lines define the field of the bausmannite-saturated waters at -0.2 < SI < +0.2.

acque naturali in oggetto sono fortemente sottosature rispetto ai due ossidi di Mn presi in considerazione. Conseguentemente, queste soluzioni acquose sono in grado di disciogliere sia la pirolusite che la hausmannite e di acquisire Mn. Ciò potrebbe avere importanti implicazioni per la ossidazione del Cr(III) a Cr(VI) governata dal Mn allo stato tetravalente e trivalente, processo che è stato oggetto di indagini approfondite (RAPHAEL & BOULIS, 1982; EARY & RAI, 1987; SALEH *et alii*, 1989; JOHNSON & XYLA, 1991; FENDORF & ZASOSKI, 1992; BÖHM & FISCHER, 2004).

3.4.4. - Diagrammi di attività

Per completezza d'informazione si riportano anche i diagrammi di attività per i sistemi CaO-SiO₂-Al₂O₃-H₂O (fig. 52), MgO-SiO₂-Al₂O₃-H₂O (fig. 53), Na₂O-SiO₂-Al₂O₃-H₂O (fig. 54) e K₂O-SiO₂-Al₂O₃-H₂O (fig. 55), che sono stati costruiti ipotizzando conservazione di alluminio nelle fasi solide. Quest'ultima è un'ipotesi ragionevole, in quanto la concentrazione di Al disciolto nelle acque naturali è normalmente molto piccola, escludendo le acque fortemente acide e quelle marcatamente basiche, peraltro non comprese nel gruppo in esame. Mediante i diagrammi di attività delle figure 52 - 55 si può verificare, in maniera indipendente, la condizione di saturazione rispetto alla

Fig. 52 – Diagramma di attività per il sistema CaO-SiO₂-Al₂O₃-H₂O in cui sono rappresentate le acque dei CISS 32CT010+32CT030 e 32CT050. I limiti di stabilità per le fasi solide e le linee di saturazione rispetto a minerali di interesse si riferiscono a 15 °C, 1.013 bar.

– Activity plot for the systems CaO-SiO₂-Al₂O₃-H₂O for the waters relative to the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean Water Bodies). The saturation lines for the considered minerals refer to 15 °C and 1.013 bar.

Fig. 53 – Diagramma di attività per il sistema MgO-SiO₂-Al₂O₂-H₂O, in cui sono rappresentate le acque dei CISS 32CT010+32CT030 e 32CT050. I limiti di stabilità per le fasi solide e le linee di saturazione rispetto a minerali di interesse si riferiscono a 15°C, 1.013 bar.

– Activity plot for the systems MgO-SiO₂-Al₂O₃-H₂O for the waters relative to the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean Water Bodies). The saturation lines for the considered minerals refer to 15 °C and 1.013 bar.

Fig. 54 – Diagramma di attività per il sistema Na₂O-SiO₂-Al₂O₃-H₂O, in cui sono rappresentate le acque dei CISS 32CT010+32CT030 e 32CT050.
 I limiti di stabilità per le fasi solide e le linee di saturazione rispetto a minerali di interesse si riferiscono a 15°C, 1.013 bar.

– Activity plot for the systems Na 20-SiO2-Al2O3-H2O for the waters relative to the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean Water Bodies). The saturation lines for the considered minerals refer to 15 °C and 1.013 bar.

caolinite (come ipotizzato per effettuare i calcoli di saturazione rispetto agli allumino-silicati, vedi sopra) o ad altre fasi solide contenenti Al.

Fig. 55 – Diagramma di attività per il sistema K2O-SiO2-Al2O3-H2O, in cui sono rappresentate le acque dei CISS 32CT010+32CT030 e 32CT050. I limiti di stabilità per le fasi solide e le linee di saturazione rispetto a minerali di Interesses inference of status of the systems to the systems the construction of 15°C, 1.013 bar.
 Activity plot for the systems K₂O-SiO₂-Al₂O₃-H₂O for the waters relative to the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean Water Bodies). The saturation lines for the considered minerals refer to 15 °C and 1.013 bar.

Nei diagrammi di attività delle figure 52 - 55, sia i limiti di stabilità delle fasi minerali sia le linee di saturazione rispetto a fasi solide di particolare interesse (calcedonio, β -cristobalite, calcite, dolomite, diopside e crisotilo) si riferiscono a 15 °C, valore prossimo alla temperatura media riscontrata nelle acque considerate, 17.1 ± 2.1 °C (1s). In particolare, le condizioni di saturazione rispetto a calcite, dolomite e diopside sono rappresentate facendo riferimento alle reazioni seguenti:

$$CaCO_{3} + 2H^{+} = Ca^{2+} + CaCO_{2(g)} + H_{2}O$$
 (38)

 $CaMg(CO_3)_2 + 2H^+ = CaCO_3 + Mg^{2+} + CO_{2(g)} + H_2O$ (39)Dolomite

$$\begin{array}{c} CaMgSi_2O_6 + 2H^+ + CO_{2(g)}CaCO_3 + Mg^{2+} + 2SiO_{2(aq)} + H_2O\\ Diopside \end{array}$$
(40)

e sono pertanto dipendenti dalla fugacità di CO_2 . La attività della SiO_{2(aq)} ed i rapporti di attività $a_{Ca^{2+}/(a_{H^+})^2}$, $a_{Mg^{2+}/(a_{H^+})^2}$, $a_{Na^+/a_{H^+}}$ e $a_{K^+/a_{H^+}}$ ossia le variabili necessarie per rappresentare ciascun campione nei diagrammi di attività in oggetto, sono stati calcolati, per ogni campione, alla temperatura di emergenza per mezzo del codice EQ3, versione 8.0 (WOLERY & JAREK, 2003), utilizzando il database CMP.

In tutti i diagrammi, l'attività della $SiO_{2(aq)}$ è ge-

neralmente compresa fra la condizione di saturazione rispetto al calcedonio e la condizione di equilibrio con la β -cristobalite, che rappresenta una sorta di limite evolutivo per la silice disciolta nelle acque naturali dell'area investigata. La prima rappresenta una sorte di limite inferiore che è stato imposto per quei campioni a cui non può essere applicata l'equazione 28.

Inoltre, nei diagrammi di attività per i sistemi CaO-SiO₂-Al₂O₃-H₂O (fig. 52), MgO-SiO₂- $Al_2O_3-H_2O$ (fig. 53) e $Na_2O-SiO_2-Al_2O_3-H_2O$ (fig. 54), la maggior parte dei campioni si localizza nel campo di stabilità della caolinite, anche se alcuni punti cadono nei campi di stabilità della beidellite calcica, in figura 52, in quelli della Mgbeidellite e della Mg-saponite, in figura 53 ed in quello della albite, in figura 54. Al contrario, nel diagramma di attività per il sistema K₂O-SiO₂- Al_2O_3 - H_2O (fig. 55), si osserva un addensamento di campioni nel campo di stabilità del feldspato potassico. Complessivamente, i diagrammi di attività confermano la validità dell'ipotesi di saturazione rispetto alla caolinite, adottata per il calcolo della affinità termodinamica rispetto alle fasi alluminosilicatiche.

Nel diagramma di attività per il sistema CaO-SiO₂-Al₂O₃-H₂O (fig. 52), la maggior parte delle acque si posiziona fra le linee di equilibrio con la calcite per fugacità di CO₂ di 10⁻¹ e 10⁻³ bar, coerentemente con quanto osservato circa la saturazione in calcite (paragrafo 3.4.3.2) e la distribuzione della nelle acque in oggetto (paragrafo 3.4.2; da notare che, alle condizioni di pressione e temperatura di interesse, le due variabili ed sono virtualmente coincidenti). La saturazione rispetto a questa fase carbonatica rappresenta pertanto una barriera evolutiva estremamente efficace per le acque naturali, che impedisce il raggiungimento della condizione di saturazione rispetto all'anortite (o più in generale rispetto al plagioclasio) a meno che non si verifichi una drammatica riduzione nella.

Nel diagramma di attività per il sistema MgO-SiO₂-Al₂O₃-H₂O (fig. 53), la maggior parte dei dati analitici relativi alle acque dei CISS 32CT010+32CT030 e 32CT050 si posiziona fra le linee di equilibrio con dolomite+calcite per fugacità di CO₂ comprese fra 10⁻¹ e 10⁻³ bar, o al di sopra di quest'ultima, in linea con quanto osservato per la condizione di saturazione rispetto a dolomite (nel paragrafo 3.4.3.3) e calcite (nel paragrafo 3.4.3.2): in effetti, gran parte delle acque in esame risulta satura o sovrassatura rispetto a questi due minerali carbonatici. Conseguentemente, l'equilibrio rispetto ad essi costituisce una barriera evolutiva efficace nei sistemi idrici naturali che complica il raggiungimento della condizione di saturazione rispetto alle fasi magnesiache primarie, e.g. crisotilo e soprattutto diopside (e più in generale i pirosseni), a meno che non si verifichi una sensibile riduzione nella f_{CO_2} o che possa essere mantenuta la condizione di sovrassaturazione rispetto alla dolomite per ragioni cinetiche.

I due diagrammi di attività nei quali vengono considerati i metalli alcalini Na e K forniscono indicazioni del tutto similari a quelle derivate nel paragrafi 3.4.3.4 e 3.4.3.5, in termini di stato di saturazione rispetto ad albite e K-feldspato, rispettivamente. In effetti, in figura 54, le acque in oggetto (ad eccezione di quelle appartenenti alla facies Na-Cl) si posizionano nel campo di stabilità della caolinite e risultano pertanto sottosature in albite, mentre in figura 55 la maggior parte delle acque considerate si colloca nel campo di stabilità del K-feldspato, essendo sature e/o sovrassature rispetto a questa fase minerale.

I diagrammi di attività forniscono pertanto una visione sintetica e molto efficace delle condizioni di reattività nel sistema naturale di interesse, che nel nostro caso è rappresentativo dei CISS 32CT010+32CT030 e 32CT050 caso.

3.5. - MAPPATURA IDROGEOCHIMICA

3.5.1. - Considerazioni generali

Al fine di ottenere una formulazione corretta sul fenomeno investigato ed eliminare ogni possibile causa di errore sistematico è opportuno effettuare uno studio preliminare sui dati disponibili mediante l'applicazione dei metodi dell'analisi statistica esplorativa e descrittiva, frequentemente utilizzati come routine per investigare le proprietà dei dati, anche se l'analisi finale richiede un'analisi spaziale. Il primo passo per la costruzione delle mappe prevede lo studio della forma della distribuzione di frequenza dei valori, per individuare in modo obiettivo famiglie di dati differenti, eventuali valori anomali e l'adozione di modelli di probabilità, quali ad esempio quello Normale o Log-normale (AITCHISON 1986/2003). L'adozione di modelli di probabilità nello studio dei fenomeni ambientali è particolarmente importante perché permette di fare "inferenza", cioè permette di ipotizzare cosa accade nella popolazione, con un certo grado di incertezza, sulla base del solo campione (ALLEGRE & LEWIN 1995). La Normale o di Gauss è la distribuzione di probabilità più importante poiché approssima la distribuzione empirica di moltissimi fenomeni reali ed è un punto di riferimento per stabilire confronti, dedurre risultati asintotici e controllare allontanamenti dalla Normalità medesima. La distribuzione Normale è utile per descrivere situazioni in cui i valori di una variabile siano generati dall'azione di processi indipendenti, agenti in direzioni opposte, che sommano i loro effetti, da cui il nome di processi somma. La curva infatti presenta una tipica forma a campana e la probabilità di trovare valori minori o maggiori del suo baricentro è esattamente la stessa. Se il logaritmo di una variabile si distribuisce secondo la Normale di Gauss, allora la variabile investigata segue una distribuzione Log-normale, cioè una distribuzione di tipo asimmetrico a destra (prevalenza in frequenza dei dati con valori bassi) (BUCCIANTI *et alii*, 2003).

I fenomeni naturali, quali quelli di interesse della idrogeochimica ambientale, sono in genere rappresentati da un set di dati sperimentali puntiformi, distribuiti irregolarmente sia nello spazio che nel tempo. Al fine di ricostruire nel miglior modo possibile un fenomeno naturale, diventa fondamentale effettuare, dai valori sperimentali in possesso, stime quanto più accurate e precise della variabile di interesse nei punti in cui non sono state effettuate misure. Queste stime, che fanno capo all'analisi geostatistica dei dati, sono vincolate ad una conoscenza preliminare del fenomeno da studiare, che deve avere necessariamente una sua continuità spaziale (e.g. ISAAKS & SRIVASTAVA, 1989; CRESSIE, 1991; DAVIS, 2002). Inoltre, esse sono fortemente influenzate dalla disponibilità dei dati e dalla loro accuratezza e qualità. In questo contesto la selezione della procedura di stima più idonea deve tener conto del fatto che i dati spaziali abbiano una variabilità influenzata sia da fenomeni erratici, tipici delle variabili causali, sia della struttura di autocorrelazione dovuta al legame spaziale esistente. In quest'ultimo caso si intende che valori campionati in luoghi vicini tra di loro tendono ad avere comportamenti simili, mentre valori di una stessa variabile misurata in campioni prelevati in siti lontani fra di loro tendono a differire almeno dai valori medi dell'area. L'obiettivo finale della procedura di stima è quello di realizzare mappe relative a grandezze *regionalizzate* a partire dalle elaborazioni delle informazioni note, ottenute su un numero limitato di campioni. A questo proposito è importante ricordare che la procedura di interpolazione, il cui risultato finale rappresenta una mappa con curve ad iso-concentrazione (luogo dei punti che hanno lo stesso valore), si basa su dati disposti su di un griglia regolare, condizione questa, quasi mai ottenibile in natura.

Di seguito sono riportati alcuni concetti base ed i risultati dell'analisi spaziale dei dati, oltre alle tecniche e procedure adottate nel presente lavoro per la ricostruzione delle mappe di distribuzione di alcuni costituenti chimici di interesse (Cl, NO₃ e B) dei CISS regionali 32CT010 "Acquifero costiero tra Fiume Cecina e San Vincenzo", 32CT030 "Acquifero costiero tra Fiume Fine e Fiume Cecina", 32CT050 "Acquifero del Cecina".

Le stime per l'interpolazione dei dati sperimentali sono state effettuate mediante una delle tecniche più conosciute e di più ampia e diffusa applicazione nel campo delle scienze geologiche ed ambientali: il *kriging*.

Il *kriging* si basa sull'adozione di un modello di variazione spaziale *continuo* e *stocastico*, facendo il miglior uso possibile dell'informazione esistente.

Questa tecnica è una procedura di stima che gode di due importanti proprietà: la prima è che si tratta di uno stimatore esatto, cioè restituisce nei punti ove si ha l'informazione reale il suo valore vero; la seconda è che per ogni valore stimato fornisce la varianza di stima, un parametro che consente la valutazione dell'accuratezza della stima stessa. Applicando le procedure del kriging, ciascun nodo di una griglia regolare è stimato come combinazione lineare dei valori di tutti i punti sperimentali noti, mediante l'uso della funzione variogramma sperimentale. I pesi vengono attribuiti in modo tale che la varianza di stima sia la minima possibile e questi vengono determinati risolvendo un insieme di equazioni simultanee nelle quali entrano i valori estratti dal variogramma della variabile investigata. Il variogramma delinea la dipendenza spaziale (ossia la probabilità che osservazioni più vicine nello spazio siano più "somiglianti" di quelle poste a maggior distanza) nella forma di una funzione che mette in relazione la semivarianza (γ) con la distanza (h) che separa coppie di dati sperimentali. La semivarianza è data dalla somma delle differenze quadratiche tra i valori di punti sperimentali separati da una determinata distanza chiamata lag (h). Dalla funzione del variogramma si ottiene un diagramma binario il cui studio fornisce informazioni su come i dati varino nello spazio, in una data direzione definita a priori (N-S, E-O, o altro), e per valori di distanza h (o multipli di h). L'ordinata di tale diagramma per una data distanza è data dai valori di γ (h) mentre sull'asse delle ascisse sono riportati i valori di h. Il variogramma modello (fig. 56) è definito mediante 3 parametri fondamentali: sill, range, e nugget effect. Il sill, conosciuto come altezza del variogramma, individua il valore di γ (h) in corrispondenza del quale la semivarianza non mostra più apprezzabili variazioni. Il *range* è la distanza in corrispondenza della quale il variogramma raggiunge il sill, in altre parole definisce la distanza (h) al di sopra della quale il valore (γ) risulta pressoché stabile. Infine, il *nugget ef*fect è una componente strutturale a piccola scala del variogramma (che può talora essere legata a errori

y(h) range scale nugget effect distanza (h)

Fig. 56 – Il variogramma modello e le sue principali componenti. – Model variogram and its main components.

nel campionamento e/o di misura della variabile). Definisce pertanto una discontinuità all'origine del *variogramma* ed individua il valore positivo di intercetta del *variogramma* sull'asse delle ordinate.

I modelli più comuni che descrivono normalmente l'andamento di un *variogramma* sperimentale sono quelli esponenziale, sferico, gaussiano e lineare.

Nello studio in oggetto, l'analisi spaziale dei dati ha permesso di: 1) ricostruire la variabilità spaziale dei set di dati di interesse, 2) ottimizzare i pesi da utilizzare nell'interpolazione e 3) definire il metodo di ricerca migliore per l'interpolazione.

3.5.2. - Diagrammi di probabilità

I diagrammi di probabilità rappresentano uno strumento grafico molto potente per l'analisi statistica univariata, che consente sia di individuare le caratteristiche della popolazione in esame, in modo semplice e rigoroso, sia di effettuare la ripartizione in più sub-popolazioni, ove presenti. Questa tecnica, che è stata introdotta nella letteratura geochimica da SINCLAIR (1974), verrà applicata nei paragrafi seguenti per lo studio di cloruro, nitrato e boro, tre specie chimiche di particolare rilevanza nei CISS considerati.

3.5.2.1. - Cloruri

Per l'analisi della statistica univariata dei cloruri nelle acque sotterranee sono stati utilizzati i 367 dati chimici presenti nel *database* generale del presente progetto. I dati sono stati analizzati mediante diagrammi di probabilità, in scala logaritmica (fig. 57), i quali rappresentano uno strumento utile per individuare l'eventuale presenza di popolazioni diverse in grado di suggerire il riconoscimento di differenti origini di Cl. Nel grafico di figura 57 è possibile distinguere almeno quattro differenti famiglie: i) le popolazioni A, B e C sono caratterizzate da alti valori di Cl disciolto nelle acque indagate (ad esempio, i valori medi sono pari rispettivamente a 14158, 2092 e 700 mg/L) e da un numero esigui di campioni (rispettivamente 1.9, 3 e 3.3% del totale) mentre ii) la popolazione D è contrassegnata da concentrazioni minori (distribuite attorno ad un valore medio di 171 mg/L) ma comprendente il maggior numero dei dati (92% del totale). Anche in questo caso, il riconoscimento delle differenti popolazioni è stato effettuato graficamente mediante l'individuazione dei punti di flesso della curva cumulativa. Successivamente sono stati calcolati i parametri statistici per le differenti famiglie applicando la procedura di Sinclair (1974); i risultati ottenuti sono riportati in tabella 7.

Le popolazioni A, B e C comprendono i campioni d'acqua caratterizzati da valori di Cl disciolto anomalmente elevati a causa di miscelamento, in differenti proporzioni, fra acque marine e salmastre ed acque di falda. Queste ultime, non influenzate da contributi di acque di mare, costituiscono invece il corpo principale della distribuzione dei dati individuato nella famiglia D.

Fig. 57 – Diagramma di probabilità per la concentrazione (in mg/L) di Cl per le acque dei CISS 32CT010+32CT030 e 32CT050. I circoli neri definiscono la distribuzione cumulativa dei valori misurati. Le croci e le linee di colore rosso, fucsia, viola e blu si riferiscono alle singole popolazioni ottenute mediate la procedure di partitionine di Singole popolazioni

colore rosso, fuesia, viola e blu si riferiscono alle singole popolazioni ottenute mediante la procedura di partitioning di Sinclair (1974).
Probability plot for the Cl concentrations (mg/L) of the waters relative to the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean Water Bodies). Black circles indicate the cumulative distribution of the measured data. The separated populations are obtained by partitioning procedure of Sinclair (1974) and plotted with different colours (red, pink, purple and blue) and symbols (crosses and lines).

3.5.2.2. - Nitrati

Per l'analisi statistica univariata dei nitrati nelle acque sotterranee sono stati utilizzati i dati relativi alle due campagne di monitoraggio del Giugno 2006 (155 analisi) e dell'Ottobre 2006 (115 analisi) effettuate dal Dipartimento di Scienze della Terra di Firenze nell'ambito di un Progetto di Ricerca di Interesse Nazionale (PRIN 2005) coordinato dal Prof. Massimo Civita che ha avuto come obiettivo, tra gli altri, la valutazione del rischio d'inquinamento delle acque sotterranee da nitrati nell'acquifero costiero tra Rosignano e San Vincenzo (CAPRI *et alii*, 2009; NISI *et alii*, 2009).

Come descritto per i cloruri, anche i dati corrispondenti ai valori dei nitrati disciolti nelle acque in esame sono stati analizzati mediante il diagramma di probabilità in scala logaritmica di figura 58.

La curva cumulativa relativa ai dati del Giugno 2006 presenta una forma sigmoidale con un unico punto di flesso indicando che la collezione dei valori di NO_3 disciolto nelle acque è caratterizzata dalla presenza di due popolazioni di dati. La curva relativa ai campioni dell'Ottobre 2006 è invece caratterizzata dalla presenza di due punti di flesso suggerendo la presenza di tre popolazioni distinte.

Le famiglie individuate sono state distinte utilizzando la procedura di *partitioning* di SINCLAIR (1974) e caratterizzate per i principali parametri statistici (tab 7).

Tab. 7 – Parametri statistici delle singole popolazioni individuate per cloruro (mg/L). I termini P_{84} , P_{50} e P_{16} si riferiscono rispettivamente ai percentili 84, 50 e 16 della variabilità delle singole popolazioni.

 Statistic parameters of the single population for cloride (mg/L). P₈₄, P₅₀ and P₁₆ values corresponding to the 16th, 50th and 84th percentiles of the single population variability.

Specie chimica	Popolazione	P ₈₄	\mathbf{P}_{50}	P ₁₆	media	dev. stand.	%
Cl	Pop A	18227	13548	10070	14158	4294	1,91
Cl	Рор В	2881	1931	1295	2092	872	3,00
Cl	Pop C	795	693	604	700	97	3,27
Cl	Pop D	270	134	67	171	136	91,83

Nelle due campagne di Giugno e di Ottobre 2006 è possibile distinguere due popolazioni di NO_3 disciolto: una caratterizzata da alti valori di concentrazioni (denominata Pop. A; NO_3 fino a 360 mg/L) ed un'altra con concentrazioni intermedie (chiamata Pop. B; NO_3 compreso fra 1 e 7 mg/L), che mostrano parametri statistici sostanzialmente confron-

tabili nei due periodi. Inoltre, nell'Ottobre 2006 compare una popolazione di bassi tenori (NO₃ < 1 mg/L) che è invece assente nel Giugno 2006.

La popolazione A è quella più rappresentata, in quanto comprende il maggior numero dei campioni: 86% del totale per Giugno 2006, e 85% del totale per Ottobre 2006. La famiglia B raggruppa un minor numero di dati: 14% del totale per Giugno 2006 e 6% del totale per Ottobre 2006. Anche la popolazione C è scarsamente rappresentata in quanto comprende solo il 9% circa dei campioni.

Il riconoscimento delle medesime popolazioni A e B, sia nel campionamento di Giugno che in quello di Ottobre 2006, suggerisce che questi campioni risentono di processi che non sono significativamente influenzati da effetti stagionali. Al contrario, la popolazione C, presente solamente nell'Ottobre 2006, è evidentemente governata da effetti di natura stagionale, che potrebbero essere relazionati ai forti emungimenti del periodo estivo. Nonostante non sia possibile fornire un'interpretazione solida ed univoca dei dati disponibili, mediante un trattamento univariato, è ragionevole ipotizzare che: (i) la popolazione A sia rappresentativa della falda freatica, in comunicazione con l'atmosfera ed in condizioni redox decisamente ossidanti, che riceve NO3 derivanti probabilmente dall'uso di fertilizzanti e/o da perdite fognarie di scarichi civili (NISI et alii, 2007), mentre (ii) nelle famiglie B e in particolar modo C sono compresi i

pozzi che emungono gli acquiferi più profondi, fisicamente separati dall'atmosfera ed in condizioni più riducenti, dove NO₃ è instabile e viene ridotto a nitrito, azoto elementare e/o ammonio da processi di denitrificazione. In effetti, durante questi processi il valore del rapporto isotopico ¹⁵N/¹⁴N del nitrato residuale aumenta normalmente di circa 2 volte rispetto a quello del rapporto isotopico ¹⁸O/¹⁶O (e.g., BÖTTCHER et alii, 1999). Tale considerazione ha permesso di tracciare questi processi analizzando il nitrato disciolto in alcuni campioni selezionati, provenienti dai CISS considerati, per i rapporti isotopici ¹⁵N/¹⁴N e ¹⁸O/¹⁶O (NISI *et alii*, 2007). Non è escluso che questi processi di denitrificazione possano essere condizionati, almeno in parte, da effetti antropici; ad esempio, la presenza di casing in Fe elementare può determinare il verificarsi della reazione: $3 \text{ NO}_3 + 2 \text{ Fe}^\circ + 3 \text{ H}_2\text{O} = 3 \text{ NO}_2 + 2 \text{ Fe}(\text{OH})_{3(s)}$ con conseguente accelerazione del processo di riduzione del nitrato disciolto, come osservato nella

3.5.2.3. - Boro

Delle 367 analisi presenti nel *database* generale solamente in 160 di questi è stata determinata la concentrazione del B disciolto, che è principalmente presente come acido borico, B(OH)₃, ed

zona di Barbarasco, alta valle del Fiume Magra

(ROBERTO CIONI, dati non pubblicati).

Fig. 58 – Diagrammi di probabilità per la concentrazione (in mg/L) di NO₃ nel Giugno e nell'Ottobre 2006 per le acque dei CISS 32CT010+32CT030 e 32CT050. I circoli neri definiscono la distribuzione cumulativa dei valori misurati. Le croci e le linee di colore rosso, viola e blu si riferiscono alle singole popolazioni ottenute mediante la procedura di *partitioning* di Sinclair (1974).

Depositive of the second response of the second respons

anione borato, B(OH)₄, con la condizione di isoattività a pH 9.24 a 25 °C. Il diagramma di probabilità relativo al boro è riportato in figura 59 nella quale si può riconoscere la presenza di un'unica popolazione, caratterizzata dai parametri statistici riportati in tabella 8, con una "coda" di bassi valori per probabili problemi di natura analitica connessi ai valori di rilevabilità strumentale. Ciononostante non si può escludere la presenza di differenti sorgenti (acque marine, acque contaminate da borati) caratterizzate da valori massimi sovrapposti o parzialmente sovrapposti. In effetti, tali sorgenti sono state discriminate mediante il rapporto isotopico del B (PENNISI *et alii*, 2006).

3.5.3. - Mappe del Cloruro

Per la realizzazione delle mappe di concentrazione dei cloruri delle acque sotterranee sono stati utilizzati i dati relativi ai CISS 32CT030 e 32CT010. Dei 367 dati chimici presenti nel *database* generale del presente progetto ne sono state considerate 250, ovverosia, solamente quelle che sono risultate essere delle variabili aleatorie adatte a descrivere i fenomeni investigati mediante un modello Log-normale. Infatti, se da un punto di vista formale il set di dati utilizzato non presenta analisi coeve, dall'altro, l'applicazione del *test* di Kolmogorov-Smirnov ai dati trasformati mediante il logaritmo naturale conferma che la variabile con-

Fig. 59 – Diagramma di probabilità per la concentrazione (in mg/L) di B per le acque dei CISS 32CT010+32CT030 e 32CT050. La curva sigmoidale nera rappresenta il *trend* dei valori misurati.

rappresenta il trend dei valori misurati. – Probability plot for the B concentrations (mg/L) of the waters relative to the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean Water Bodies). Black line indicates the cumulative distribution of the data measured.

Tab. 8 – Parametri statistici delle singole popolazioni individuate per nitrato (mg/L) (Giugno e Ottobre 2006). I termini P_{84} , P_{50} e P_{16} si riferiscono rispettivamente ai percentili 84, 50 e 16 della variabilità delle singole popolazioni. – Statistic parameters of the single population for nitrate (mg/L) (October and June 2006). P_{84} , P_{50} and P_{16} values corresponding to the 16th, 50th and 84th percentiles of the single population variability.

Specie chimica	Popolazione	P ₈₄	P ₅₀	P ₁₆	media	dev. stand.	%
NO3 giugno	Pop A	93,20	39,40	16,70	57,10	59,80	85,80
NO3 giugno	Рор В	5,67	2,72	1,31	3,56	3,00	14,20
NO3 ottobre	Pop A	64,70	22,60	7,88	39,30	56,00	84,90
NO3 ottobre	Рор В	1,45	1,00	0,69	1,07	0,41	6,35
NO3 ottobre	Рор С	0,07	0,04	0,02	0,05	0,03	8,73

siderata segue il modello Log-normale nelle loro unità originarie, con una significatività di 0.05, nonostante la presenza delle due differenti popolazioni individuate mediante il diagramma di probabilità (vedi paragrafo 3.5.2). Di conseguenza le informazioni raccolte appaiono descrivere in modo omogeneo l'area investigata pur derivando da periodi di campionamento differenti.

La mappa dei valori logaritmici della concentrazione di Cl è stata ottenuta processando i dati con il *software* ISATIS della *Geovariance* sviluppato dai ricercatori dell'*Ecole Des Mines De Paris*, 2004. Come già accennato, l'estrapolazione richiede la costruzione del variogramma sperimentale e prevede la definizione del miglior modello e del migliore intorno da considerare per il processo di interpolazione. In questo caso il modello in grado di riprodurre la forma del variogramma sperimentale omnidirezione, riportato in figura 60, è risultato essere quello sferico con effetto *nugget* ed è caratterizzato dai seguenti parametri:

Sill: 0.225; *Range*: 6257 m; *Nugget effect*: 0.13. Il modello matematico scelto è stato verificato mediante la tecnica della *validazione incrociata* che ha evidenziato la presenza di 7 punti "critici", nei quali la modellizzazione non fornisce una risposta affidabile (deviazione *standard* superiore a 2.5 s; fig. 61). La combinazione dei valori logaritmi della concentrazione di Cl con l'applicazione di algoritmi del *kriging* (scegliendo il modello sferico) ha permesso la ricostruzione della mappa del logaritmo naturale della isoconcentrazione e della deviazione *standard* sulla stima (fig. 62).

La figura 62 evidenzia le zone costiere chiara-

mente interessate da anomale concentrazioni di cloruri (Marina di Cecina, Marina di Bibbona e Marina di Castagneto Carducci). Altrettanto evidente è l'importante anomalia positiva di cloruri che caratterizza le acque sotterranee in prossimità dell'abitato di Cecina. Tutte queste zone sono da tempo oggetto di intensi prelievi di acque sotterranee sia per usi civili che industriali, e pertanto presentano delle depressioni piezometriche importanti, con quote piezometriche che in alcuni casi risultano al di sotto del livello medio marino (figg. 6, 7). In questo caso le acque a cloruro sono rappresentate da originarie acque di mare che interagiscono con sedimenti a granulometria fine, tipo argille, subendo il processo di scambio ionico Na-Ca. La forma dell'anomalia e le caratteristiche della piezometria inducono a pensare ad un fenomeno di *up-coning* indotto dall'intenso sfruttamento della locale della falda idrica.

3.5.4. - Mappe dei Nitrati

Le due campagne di monitoraggio del Giugno 2006 (155 analisi) e dell'Ottobre 2006 (115 analisi) risultano essere particolarmente interessanti per finalità di mappatura idrogeochimica, sia per l'alta densità spaziale dei dati sia perchè si riferiscono ad una finestra temporale molto ristretta, e vanno ad aggiungersi al *database* delle 367 analisi di cui si è

Fig. 60 – Variogramma omnidirezionale per il logaritmo naturale della concentrazione (in mg/L) di Cl per le acque dei CISS 32CT010+32CT030. La linea spezzata rappresenta il trend del variogramma sperimentale, i numeri associati ai punti verdi si riferiscono al numero di coppie trovato ad ogni lag (866m), mentre la linea rossa continua rappresenta il modello matematico scelto.

– Omnidirectional variogram for ln(Cl) (mg/L) for the waters relative to the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean Water Bodies). Numbers in green refer to the number of pairs for each lag (866 m). The red line is the selected numerical model. detto nel capitolo 3.1.

Per modellizzare il comportamento dei valori dei NO3 relativi ai periodi di Giugno e Ottobre 2006 con modelli Normale e/o Log-normale, quali variabili aleatorie adatte a descrivere i fenomeni investigati, è stata valutata l'ipotesi nulla di accordo tra la distribuzione teorica (Normale e/o Log-normale) e dati analitici (sia tali e quali che trasformati mediante la funzione logaritmica), mediante il test di Kolmogorov-Smirnov. I risultati del test per i dati dei NO₃ di Giugno e Ottobre 2006 indicano che le variabili trasformate con il logaritmo naturale possono seguire il modello Log-normale nelle loro unità originarie, con una significatività di 0.05, nonostante siano individuabili due popolazioni distinte mediante l'uso dei diagrammi di probabilità (vedi paragrafo 3.5.2).

Le mappe del logaritmo naturale della concentrazione di NO₃ per il Giugno e l'Ottobre 2006 sono state ottenute processando i dati con il programma ISATIS. Anche in questo caso il modello che meglio riproduce la forma del *variogramma* sperimentale omnidirezione, riportato in figura 63, è risultato essere quello sferico con effetto *nugget* ed è caratterizzato dai seguenti parametri:

Sill: rispettivamente 0.964 e 1.265 per Giugno e Ottobre 2006;

Range: rispettivamente 3722 e 4364 m per Giugno e Ottobre 2006;

Nugget effect: rispettivamente 0.57 e 0.58 per Giugno e Ottobre 2006.

La verifica del modello matematico scelto è stata effettuata mediante la tecnica della *validazione incrociata* mediante la quale ogni singolo punto di misura viene temporaneamente eliminato e, conseguentemente, viene stimato il valore della variabile investigata in quello stesso punto attraverso il modello matematico. I valori stimati e quelli misurati sono poi confrontati mediante i grafici delle figure 64 e 65. Osservando tali grafici si vede come il modello scelto dia buone stime ad eccezione di 5 punti per il Giugno e 3 punti per l'Ottobre 2006 (circoli pieni verdi). Questo significa che per i punti anomali, il modello scelto, pur rappresentando il migliore fra quelli possibili, stima tali valori con un errore piuttosto elevato (deviazione superiore a 2.5 σ).

Elaborando i logaritmi della concentrazione del NO₃ e combinando l'applicazione di algoritmi del *kriging* con il modello sferico, scelto come rappresentativo del *variogramma* sperimentale, sono state costruite le carte dei logaritmi naturali delle iso-concentrazioni (figg. 66, 67). Inoltre, come già detto, nell'elaborazione di una mappa è importante conoscere quale confidenza accordare; pertanto sono state costruite anche le rispettive mappe del ln (NO₃) e della deviazione *standard* sulla stima,

Fig. 61 – Validazione incrociata del modello matematico scelto come rappresentativo del variogramma sperimentale per il logaritmo naturale della concentrazione (in mg/L) di Cl per le acque dei CISS 32CT010+32CT030 e 32CT050. I circoli pieni verdi rappresentano le misure considerate anomale.
 – Cross validation of the numerical model selected for ln(Cl) (mg/L) for the waters relative to the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean Water Bodies). Solid green circles are referred to anomalous values.

cioè le carte dell'errore insito nella stima del logaritmo della concentrazione di NO₃ in siti dove non è stata eseguita questa misura. Va detto che la isolinea di 1.2 (σ del ln NO₃), che delimita in prima approssimazione l'area oggetto di campionamento, corrisponde a 3.3 mg NO₃ /L, in termini di concentrazione. Si tratta quindi di una incertezza decisamente accettabile.

Nelle mappe delle figure 66 e 67, sia nel Giugno 2006 che nel successivo mese di Ottobre, sono ben riconoscibili due zone di massimo principali, una nei pressi di Donoratico (nella parte meridionale dell'area investigata), l'altra a N-E del comune di Cecina (nel settore settentrionale dell'area di studio). I due massimi assoluti sono collegati da una fascia di massimi relativi. Sia i massimi assoluti che i massimi relativi sono più evidenti nel Giugno 2006 che nell'Ottobre 2006. Per interpretare questa evoluzione temporale, è necessario ricordare che la principale sorgente di nitrato è rappresen-

Fig. 62 – Mappa del logaritmo naturale della concentrazione (in mg/L) di Cl e della deviazione standard (St. Dev.) sulla stima per le acque dei CISS 32CT010+32CT030. e 32CT050.
 Maps ln(Cl) (mg/L) and Standard Deviation (St.Dev.) for the waters relative to the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean Water Bodies).

Fig. 63 – Variogramma omnidirezionale per i logaritmi naturali delle concentrazioni di NO_3 nel Giugno e nell'Ottobre 2006 per le acque dei CISS 32CT010+32CT030. La linea spezzata rappresenta il *trend* del variogramma sperimentale, i numeri associati ai punti verdi si riferiscono al numero di coppie trovato ad ogni lag (870 m nel Giugno 2006) e (1000 m nell'Ottobre 2006), mentre la linea rossa continua rappresenta il modello matematico scelto. – Omnidirectional variogram for the June and October In(NO_3) (mg/L), respectively, for the waters relative to the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean Water Bodies). Green numbers are referred to the number of pairs for each lag (June and October: 870 and 1000 m, respectively). The red line represents the selected numerical model.

Fig. 64 – Validazione incrociata del modello matematico scelto come rappresentativo del variogramma sperimentale per i logaritmi naturali delle concentrazioni (in mg/L) di NO₃ nel Giugno 2006 per le acque dei CISS 32CT010+32CT030 e 32CT050. I circoli pieni verdi rappresentano le misure considerate anomale. – Cross validation of the numerical model selected for June ln(NO₃) (mg/L) for the waters relative to the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean Water Bodies). Solid green circles are referred to anomalous values.

tata dall'uso di fertilizzanti, che tendono a prevalere sul contributo relazionato agli scarichi civili, nonostante non sia facile distinguere queste due sorgenti a causa del mascheramento determinato dai processi di denitrificazione (NISI *et alii*, 2007, CAPRI *et alii*, 2009). Va inoltre ricordato che i concimi vengono applicati ai terreni nel periodo primaverile. Di conseguenza, il declino generalizzato delle concentrazione di nitrato disciolto nelle acque della falda freatica, da Giugno a Ottobre 2006, è totalmente in linea con quanto atteso.

3.5.5. - Mappe del Boro

La mappa geochimica di isoconcentrazione del boro è stata costruita utilizzando 126 analisi di

Fig. 65 - Validazione incrociata del modello matematico scelto come rappresentativo del variogramma sperimentale per i logaritmi naturali delle concentrazioni (in mg/L) di NO₃ nell'Ottobre 2006 per le acque dei CISS 32CT010+32CT030 e 32CT050. I circoli pieni verdi rappresentano le misure considerate anomale. – Cross validation of the numerical model selected for October ln(NO₃) (mg/L) for the waters relative to the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean Water Bodies). Solid green circles are referred to anomalous values.

acque sotterranee presenti nel *database* generale. Anche in questo caso il modello che meglio riproduce la forma del *variogramma* sperimentale omnidirezionale è ancora una volta quello sferico con effetto *nugget*. I parametri descrittivi di tale modello sono: *Sill* = 0.41; *Range* = 4228 m; *Nugget* = 0.385 (fig. 68).

La tecnica della validazione incrociata ha evi-

denziato la presenza di soli 2 punti in cui il modello non riproduce con buona affidabilità i valori sperimentali determinati in laboratorio (fig. 69).

Processando come di consueto i dati attraverso il *software* ISATIS si ottiene la mappa di isoconcentrazione del boro di figura 70, dalla quale risulta evidente che la porzione sud-est non è attendibile visto lo scarso numero di punti di misura ed è stata

Fig. 66 – Mappa dei logaritmi naturali delle concentrazioni di NO₃ (in mg/L) nel Giugno 2006 e della deviazione standard sulla stima per le acque dei CISS 32CT010+32CT030 e 32CT050.
 – Maps of ln(NO₃) (mg/L) and Standard Deviation (St.Dev.) for June 2006 for the waters relative to the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean)

Water Bodies).

qui riportata soltanto per completezza. Il settore nord invece mostra come il corso del Fiume Cecina sia caratterizzato da anomale concentrazioni di boro. È infatti noto da tempo che tale corso d'acqua presenta questo tipo di problematica.

3.6. - Geochimica isotopica

3.6.1. - Ossigeno-18

Nel *database* per i CISS 32CT010+32CT030 e 32CT050, sono disponibili solamente 41 dati relativi al rapporto isotopico ¹⁸O/¹⁶O (12% del totale dei campioni), che si riferiscono a due campagne di prelievi effettuate nel Maggio e nell'Ottobre 1998 da PRANZINI G. (2004a) (Tabella H in appendice). Essi sono confrontati con le corrispondenti concentrazioni di cloruro (in scala logaritmica) nel diagramma di correlazione di figura 71, in cui è riportato anche il punto dell'acqua di mare media, che rappresenta lo *standard* di riferimento per i valori di δ^{18} O.

Nell'insieme è riconoscibile il *trend* di miscela fra acque meteoriche povere di Cl e acqua di mare

ricca in questo costituente disciolto. Le acque di falda con concentrazioni di Cl comprese fra 50 e 300 mg/L mostrano una considerevole dispersione dei valori di δ^{18} O, di almeno 1.2 unità ‰, che è potenzialmente imputabile:

(i) ad una variazione della quota delle aree di ricarica di circa 600 m, assumendo per l'area in esame un gradiente isotopico ragionevole di -0.2 ‰/100 m (MUSSI *et alii*, 1998; MUSSI & DOVERI, 2006). In effetti, i pozzi che mostrano rapporti isotopici relativamente inferiori sono ubicati nella fascia più interna, a testimonianza di una chiara alimentazione dai rilievi collinari;

(ii) e/o a variazioni stagionali dei valori di δ^{18} O delle precipitazioni; va ricordato che l'escursione annua delle medie pesate dei valori di δ^{18} O delle precipitazioni è dell'ordine di 2-3 unità ‰ per le stazioni IAEA-WMO-GNIP di Genova-Sestri Ponente e di Pisa, con valori più elevati nel periodo estivo e valori minimi nel periodo invernale (dati accessibili mediante il sistema WISER - *Water Isotope System for data analysis, visualization and Electronic Retrieval*, attraverso il sito web:

http://nds121.iaea.org/wiser/).

Fig. 67 – Mappa dei logaritmi naturali delle concentrazioni di NO₃ (in mg/L) nell'Ottobre 2006 e della deviazione standard sulla stima per le acque dei CISS 32CT010+32CT030 e 32CT050.
 – Maps of ln(NO₃) (mg/L) and Standard Deviation (St.Dev.) for October 2006 for the waters relative to the 32CT010+32CT030 and 32CT050 SSWB (Significant

Subterranean Water Bodies).

3.6.2. - Trizio

Anche i dati di trizio per i CISS 32CT010+32CT030 e 32CT050 sono relativamente scarsi (31 campioni, pari all'8%) e provengono tutti dalle due campagne effettuate nel Maggio e nell'Ottobre 1998 da PRANZINI G. (2004a) (Tabella H in appendice). Anche nel caso del trizio è utile confrontare i dati disponibili con le concentrazioni di cloruro, mediante il diagramma di correlazione di figura 72. Nel complesso è evidenziabile all'aumentare della concentrazione di cloruro, una concomitante diminuzione dell'unità trizio (una unità tritio -U.T. – corrisponde a 1 atomo di tritio per 10¹⁸ atomi di idrogeno ed equivale a 0.118 Bq/L) imputabile all'aumento della componente marina povera dell'isotopo radioattivo dell'idrogeno. Altrettanto evidente è una considerevole dispersione dei dati, di almeno 4-6 unità trizio verosimilmente attribuibile a variazioni stagionali.

In effetti, le medie pesate mensili dell'attività trizio nelle acque di pioggia campionate presso le stazioni IAEA-WMO-GNIP di Genova-Sestri Ponente e Pisa mostrano variazioni stagionali dello stesso ordine, con massimi primaverili e minimi autunnali.

4. - CONSIDERAZIONI CONCLUSIVE E MODELLO CONCETTUALE DEI CISS

Sulla base dell'elaborazione dei dati geologici, idrogeologici e geochimici, vengono di seguito sintetizzati i principali aspetti relativi al CISS della valle del Cecina (32CT050) ed ai CISS costieri tra il Fiume Fine e San Vincenzo (32CT010+32CT030).

A - Il CISS della valle del Cecina ha caratteristiche freatiche su tutta la sua estensione, sviluppandosi nei depositi alluvionali dell'omonimo fiume rappresentati prevalentemente da termini ad alta permeabilità, quali ghiaie (52%) e ghiaie sabbiose (16%). In accordo con queste informazioni derivanti dai dati stratigrafici, prove di emungimento eseguite nella zona a valle di Saline mostrano valori medi di conducibilità idraulica e di trasmissività di 10⁻³ m/s e 10⁻² m²/s rispettivamente, nonché una porosità efficace del 16%

Fig. 68 – Variogramma omnidirezionale per il logaritmo naturale della concentrazione (in mg/L) di B per le acque dei CISS 32CT010+32CT030 e 32CT050. La linea spezzata rappresenta il trend del variogramma sperimentale, i numeri associati ai punti verdi si riferiscono al numero di coppie trovato ad ogni lag (655m), mentre la linea rossa continua rappresenta il modello matematico scelto.

– Omnidirectional variogram for ln(B) (mg/L) for the waters relative to the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean Water Bodies). Green numbers are referred to the number of pairs found for each lag (655m). Red line represents the selected numerical model.

(PRANZINI, 2004b e riferimenti citati). I depositi argillosi e limosi costituiscono orizzonti perlopiù discontinui e di limitato spessore; solamente nel settore occidentale, nei pressi di S. Martino di Riparbella, è presente uno strato argilloso di spessore considerevole (dell'ordine dei 5 metri), che tuttavia costituisce un corpo lenticolare. Sulla maggior parte dell'estensione del CISS, la sequenza alluvionale poggia su di un substrato praticamente impermeabile costituito da depositi prevalentemente argillosi di età mio-pliocenica; solamente nel tratto a valle della confluenza del Fiume Cecina con il Torrente Lopia, il substrato dell'acquifero alluvionale è costituito da termini permeabili pleistocenici a granulometria prevalentemente sabbiosa, con i quali si possono avere scambi idrici sotterranei, anche significativi. Gli spessori dei depositi alluvionali non superano i 15 metri nella parte più a monte, mentre raggiungono valori di 35-40 metri nel settore più a valle; il volume complessivo dei terreni permeabili costituenti il CISS ammonta a circa 280 milioni di m³.

B - I due CISS costieri costituiscono un unico sistema acquifero multistrato, caratterizzato dall'alternanza di livelli olocenico-pleistocenici permeabili (essenzialmente ghiaie e sabbie, talvolta cementate, che nell'insieme rappresentano il 55% dei depositi) ed impermeabili presenti in maniera discontinua (limi e argille, che congiuntamente contribuiscono per poco più del 40% all'intera successione). L'eterogeneità e la variabilità spaziale della successione è confermata dai dati di conducibilità idraulica media, che variano da 10⁻² - 10⁻³ m/s, in prossimità dell'entrata del Fiume Cecina nella piana costiera, a 10⁻⁴ m/s, nella zona tra Cecina e Vada ed a $10^{-4} - 10^{-5}$ m/s nella zona Donoratico-Castagneto. La natura del substrato dei CISS non è sempre ricostruibile a causa della carenza di dati stratigrafici idonei allo scopo. Indicazioni più certe si hanno nel settore meridionale, dove è stato raggiunto un bedrock costituito da Unità Liguri a permeabilità limitata; nel settore settentrionale, a nord del Fiume Cecina, il substrato coincide presumibilmente con la formazione delle Sabbie e Argille ad Arctica islandica del Pleistocene inferiore, mentre, nel settore compreso tra il Fiume Cecina e Bolgheri, le argille individuate alla base dell'acquifero sono attribuibili o alla formazione anzidetta o a formazioni argillose di età pliocenica. I 5 principali orizzonti acquiferi individuati nella successione multistrato presentano uno spessore medio di 15 metri, mentre lo spessore medio totale dei termini permeabili è valutabile in poco più di 80 metri. Va comunque precisato che questo spessore medio non può attribuirsi ad un qualsiasi punto dell'area esaminata; in effetti solamente i due livelli acquiferi più superficiali si estendono sia in destra, sia in sinistra Fiume Cecina, andando ad interessare la quasi totalità dell'area di pertinenza dei CISS costieri. Il volume totale relativo agli orizzonti permeabili è stimabile in 4630 milioni di m³.

C - La superficie piezometrica dell'acquifero freatico intravallivo è principalmente regolata dal corso d'acqua e dalle pendenze del suo sub-alveo. L'escursione media dei livelli tra il periodo di magra e quello di morbida (Luglio e Dicembre 2003) è pari a 0.6 metri. Il calcolo dei volumi idrici immagazzinati in acquifero in questi due periodi ha fornito valori di circa 28,9 e 31,3 milioni di m³. Dalle ricostruzioni delle condizioni piezometriche (Maggio e Settembre 2002) per i CISS costieri, deriva una distribuzione dei carichi idraulici che suggerisce la "natura monofalda" dell'acquifero multistrato; ciò può esser attribuito in parte alla discontinuità degli interstrati impermeabili ed in parte alla presenza di numerosi pozzi che, intercettando differenti livelli acquiferi e mettendoli in comunicazione idraulica tra di loro, favoriscono la creazione di un unico carico piezometrico d'equilibrio. Mediando le differenze Settembre-Maggio sull'intero CISS, la superficie piezometrica mostra un abbassamento di circa 10 centimetri; in ragione di un particolare regime pluviometrico nel 2002, nonché dei differenti usi della risorsa idrica sotterranea sul territorio, sono stati tuttavia riscontrate ampie zone in cui i livelli piezometrici di Settembre

Fig. 69 – Validazione incrociata del modello matematico scelto come rappresentativo del variogramma sperimentale per il logaritmo naturale della concentrazione (in mg/L) di B per le acque dei CISS 32CT010+32CT030 e 32CT050. I circoli pieni verdi rappresentano le misure considerate anomale. – Cross validation of the numerical model selected for ln(B) (mg/L) for the waters relative to the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean Water Bodies). Solid green circles are referred to anomalous values.

risultavano maggiori di quelli di Maggio. In questi due periodi i volumi idrici immagazzinati nel sistema multistrato sono stati valutati in circa 398 milioni e 394 milioni di m³, rispettivamente. La morfologia delle superfici piezometriche di magra e di morbida elaborate, suggerisce un'alimentazione dai rilievi collinari. Ben evidenti sono inoltre le ampie depressioni piezometriche (con valori minimi fino a circa -2,5 m s.l.m.) presenti nella zona di Cecina e tra questa e l'abitato di Vada; importanti depressioni piezometriche, limitate alla fascia costiera, si riscontrano anche tra Marina di Bibbona e Castagneto Carducci, nonché più a sud verso S. Vincenzo.

D - Da un punto di vista geochimico, nella zona costiera si rilevano acque sotterranee chiaramente interessate da un mescolamento con acqua di mare. I fenomeni di ingressione marina sono ben

Fig. 70 – Mappa del logaritmo naturale della concentrazione (in mg/L) di B e della deviazione standard sulla stima per le acque dei CISS 32CT010+32CT030 e 32CT050. Le aree bianche a tratteggio si riferiscono a zone nelle quali non erano disponibili le concentrazioni di Boro.
 – Maps of ln(B) (mg/L) and Standard Deviation (St. Dev.) for the waters relative to the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean Water Bodies). The white dotted areas refer to those zones for which the concentrations of Boron were not available.

evidenziati dalle composizioni Na-Cl, indicative di un semplice mescolamento fra acque di falda e acqua di mare, e da quelle Ca-Cl e Ca(Mg)-Cl, legate sia ad una miscela con acque marine e/o salmastre, sia a successive reazioni di scambio ionico per interazione con i terreni che ospitano il sistema acquifero. Queste acque, caratterizzate da elevate concentrazioni di cloruro disciolto, in genere superiori a 10 meq/L (pari a 350 mg/L), presentano valori di δ^{18} O tendenti a quelli tipici dell'acqua marina. Pure presenti sono acque appartenenti alla facies Na-HCO₃, che hanno origine per fenomeni di freshening, ossia di riflusso delle acque di falda Ca-HCO3 o Ca(Mg)-HCO3 entro sedimenti alluvionali saturati (durante precedenti fasi di ingressione marina) da ioni Na⁺, che vengono rilasciati alle acque di falda stesse, in cambio di ioni $Ca^{2+} e/o$ Mg²⁺. Le acque Ca-HCO₃ e Ca(Mg)-HCO₃ rappresentano la facies idrochimica più frequente e vengono generate principalmente per dissoluzione di calcite e dolomite, fasi minerali caratterizzate da cinetiche di dissoluzione molto più rapide di quelle dei minerali silicatici ed Al-silicatici. E probabile che i processi di dissoluzione di queste fasi carbonatiche abbiano essenzialmente luogo nelle prime fasi dei processi di interazione acqua-roccia, in quanto la maggior parte delle acque Ca-HCO₃ e Ca(Mg)-HCO₃ risulta essere sovrassatura rispetto a queste fasi minerali. Va sottolineato che la condizione di equilibrio o quasi-equilibrio rispetto a calcite e dolomite, alle fugacità di CO2 presenti negli acquiferi in esame (fra 10⁻³ e 10⁻¹ bar, nella maggior parte dei casi), rappresenta una efficace barriera geochimica che impedisce il raggiungimento delle condizioni di saturazione rispetto a fasi calciche (es. plagioclasi ricchi della componente anortitica), magnesiache (es. serpentino e cloriti) e calcico-magnesiache (es. diopside), come mostrato dai diagrammi di attività. Inoltre, va sottolineato che, mentre la precipitazione di dolomite è poco probabile per ragioni cinetiche, la velocità di precipitazione della calcite diventa molto rapida quando l'indice di saturazione è maggiore di circa 0.3, fatto molto frequente nell'area in esame; questo processo tende a ridurre la

Fig. 71 – Diagramma di correlazione fra valori di δ^{18} O (in scala lineare) e concentrazioni di cloruro (in scala logaritmica) per le acque dei CISS 32CT010+32CT030 e 32CT050. – Correlation plot between δ^{18} O (linear scale) and Cl concentrations (logarithmic scale) for the waters relative to the 32CT010+32CT030 and 32CT050 SSWB

(Significant Subterranean Water Bodies).

porosità dell'acquifero, ma la precipitazione della calcite può favorire inglobamento di diversi metalli in traccia, anche nocivi (es. Cd), mantenendo basse le loro concentrazioni nelle acque sotterranee. Tornando a considerare i differenti tipi chimici presenti nell'area in esame, vanno ricordate le acque Ca- SO_4 , che si originano per dissoluzione di gesso e/anidrite, presenti sia nelle sequenze evaporitiche affioranti, sia come costituenti clastici nelle sequenze alluvionali, anche se in proporzioni generalmente modeste. Va altresí ricordato che oltre alla ingressione di acqua di mare, i CISS considerati sono localmente caratterizzati anche da altre criticità, dettate dalla presenza di elevate concentrazioni di: (i) nitrato disciolto, fino ad un massimo di circa 300 mg/L, derivante principalmente all'intensa attività floro-vivaistica e secondariamente agli scarichi di natura domestica e civile; (ii) boro disciolto, che viene veicolato nell'acquifero vallivo dal Torrente Possera lungo il quale, nella zona di Larderello sono in atto fenomeni di rilascio di boro, di origine non definita (GRASSI & SQUARCI, 2004); (iii) cromo esavalente disciolto, che localmente supera il limite di legge di 5 µg/L; accettando che si tratti di Cr(VI) di origine naturale, va detto che i fenomeni che controllano il rilascio alle acque del Cr dalle rocce ultramafiche variamente serpentinizzate (nei cui minerali è presente allo stato trivalente) sono oggetto di un rinnovato interesse da parte della comunità scientifica internazionale; in particolare, OZE et alii (2007), hanno segnalato che la dissoluzione ossidativa (ossia governata da ossidi di Mn tri-tetravalenti, quali la birnessite) della cromite (un

minerale tradizionalmente considerato assolutamente inerte) procede in realtà con una cinetica apprezzabile.

E - Infine, sempre relativamente agli aspetti idrogeochimici, i dati isotopici disponibili, sia pur in numero limitato, oltre a contribuire ad individuare le situazioni di ingressione marina, mettono in evidenza una considerevole dispersione dei valori di δ^{18} O; ciò è in parte attribuibile alla variabilità isotopica stagionale delle precipitazioni ed in parte alle differenti quote medie d'infiltrazione relative alle componenti che alimentano il sistema acquifero. Risulta in particolare piuttosto chiara la presenza di un'alimentazione dai rilievi collinari verso gli acquiferi costieri, dal momento che i più bassi valori di δ^{18} O sono prevalentemente riscontrati in pozzi ubicati nella fascia più interna della pianura.

L'insieme delle informazioni geologiche, idrogeologiche e geochimiche, sopra sintetizzate, consente di giungere ad un modello concettuale della circolazione idrica che si sviluppa nei CISS esaminati, nonché di evidenziare le maggiori criticità che riguardano i sistemi acquiferi stessi.

In particolare, il CISS intravallivo del Cecina ha le caratteristiche di un acquifero freatico e si sviluppa nelle alluvioni prevalentemente ghiaiose e sabbiose depositate dal fiume omonimo. Il sistema costiero compreso tra il Fiume Fine e San Vincenzo è viceversa un corpo multistrato caratterizzato da un'alternanza tra livelli permeabili, costituiti in prevalenza da sabbie ed in misura minore da ghiaie, e livelli impermeabili o di scarsa permeabilità a composizione argillosa e limo-argillosa; la non

Fig. 72 – Diagramma di correlazione fra attività trizio e concentrazioni di cloruro per le acque dei CISS 32CT010+32CT030 e 32CT050.
– Correlation plot between Tritium (T.U.) and Cl concentrations for the waters relative the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean Water Bodies).

continuità di quest'ultimi orizzonti e il consistente numero di pozzi che verosimilmente mettono in collegamento i vari orizzonti permeabili, rendono il sistema un multistrato monofalda. Tra il sistema della valle del Cecina e quello costiero non vi sono evidenti limiti idrogeologici che ne impediscono la continuità idraulica; pertanto questi corpi idrici sono da considerarsi tra di loro comunicanti.

A causa della prevalenza di litotipi di scarsa permeabilità nel bacino del Fiume Cecina, il CISS intravallivo trae alimentazione in maniera preponderante dalle acque di scorrimento superficiale che si infiltrano nel corpo alluvionale di fondo valle. La parte terminale di tale CISS ed i CISS costieri sono invece ricaricati sia da precipitazioni locali, soprattutto per quanto riguarda le zone di pianura, sia da acque meteoriche che si infiltrano sui rilievi collinari, ove affiorano litotipi permeabili (es. sabbie pleistoceniche) e relativamente permeabili (es. ofioliti). Per i CISS costieri vi sono di fatto chiare indicazioni sia piezometriche, sia idrogeochimiche (in particolare isotopiche), di una significativa alimentazione dai rilievi collinari. Relativamente ai rapporti tra i corpi idrici sotterranei ed il Fiume

Cecina, quest'ultimo, escludendo i momenti di piena, nel tratto a monte dell'entrata nella piana costiera, risulta prevalentemente drenare la falda; viceversa nel tratto finale percorso dal fiume prima della foce, l'acquifero è interessato da un'ampia depressione piezometrica centrata sull'abitato di Cecina, la quale favorisce un'alimentazione da parte del corso d'acqua verso i corpi idrici sotterranei.

La depressione piezometrica sopra citata così come quelle che si individuano lungo la costa tra Marina di Bibbona e Castagneto Carducci e più a sud verso S. Vincenzo sono da imputare a situazioni di sovra-sfruttamento del corpo idrico. In queste condizioni, come viene confermato dai dati chimici ed isotopici delle acque, è favorito un apporto in acquifero di acqua di mare, sia per avanzamento del cuneo salino dalla linea di costa, sia per richiamo di acqua salmastra dai corsi d'acqua. In questo senso la maggior criticità è presente nella zona dell'abitato di Cecina, dove si rilevano livelli piezometrici inferiori a zero fino a 5 km di distanza dalla costa. La diretta implicazione dell'eccessivo sfruttamento della risorsa idrica sul fenomeno dell'intrusione di acqua di mare è ben evidente dalla figura 73; in ef-

Fig. 73 – Mappa della piezometria e dei tipi chimici dei CISS studiati. – Chemical composition and piezometric map of the study area (SSWB 32CT010+32CT030 and 32CT050). fetti, è proprio in corrispondenza delle marcate depressioni piezometriche che si riscontrano acque con caratteristiche chimiche indubbiamente riconducibili ad un *mixing*, conservativo e non, tra acque di falda e acque marine.

Anche se da un confronto tra le piezometrie di anni diversi non sembra che abbia luogo un significativo ampliamento delle zone a piezometria depressa, bisogna comunque sottolineare che, in particolar modo per la zona tra Cecina e Vada, le condizioni esistenti inducono un continuo richiamo di acqua salata in acquifero. Per scongiurare l'ulteriore degrado della qualità delle risorse idriche sotterranee, sarebbe dunque auspicabile sia la riduzione progressiva degli emungimenti nella zona costiera sia la adozione di altre strategie per sopperire alle idroesigenze, quali ad esempio il riutilizzo delle acque di scarico per i settori industriale ed agricolo, piuttosto che, o contestualmente, la "migrazione" dei pozzi idropotabili verso l'acquifero intravallivo del Cecina.

Ringraziamenti

Gli autori della monografia ringraziano il Dott. DOMENICO MORINI, Responsabile del Servizio Geologico Regionale, l'Ing. GILDA RUBERTI, Reponsabile del Settore TUTELA DELLE ACQUE INTERNE E DEL MARE - SERVIZI IDRICI della Regione Toscana e la Dott.ssa ALESSANDRA PEI del Settore TU-TELA DELLE ACQUE INTERNE E DEL MARE - SERVIZI IDRICI della Regione Toscana, per aver creduto nella necessità di questo tipo di studi come passo propedeutico-preliminare per la modellizzazione numerica degli acquiferi e come strumento tecnico-conoscitivo per la gestione e la salvaguardia delle risorse idriche sotterranee.

Si ringraziano inoltre tutti coloro che hanno gentilmente fornito i dati geologici, idrogeologici e idrogeochimici in base ai quali è stato possibile portare a compimento questo studio, ossia (in ordine alfabetico): il Dott. MICHELE AMBROSIO dell'AF Geoscience and Tecnology Consulting, il Dott. Geol. CLAUDIO BENUCCI ed il Dott. Ing. CARLO CALASTRI dell'ASA (Gestore Unico del Servizio Idrico Integrato ATO 5), la Dott.ssa MARIA TERESA FAGIOLI dell'AF Geoscience and Tecnology Consulting, il Dott RICCARDO FRULLINI del Dipartimento di Scienze della Terra (DST) dell'Università degli Ŝtudi di Firenze, il Dott. SERGIO GRASSI dell'Istituto di Geoscienze e Georisorse del C.N.R., il Dott. Geol. FEDERICO LAZZARONI dell'Autorità di Bacino Toscana Costa, il Dott. Geol. STEFANO LORENZINI consulente tecnico ASA, il Dott. Geol. STEFANO MENICHETTI di ARPAT-Firenze e la Dott.ssa MADDALENA PENNISI dell'Istituto di Geoscienze e Georisorse del C.N.R.

Al Prof. ORLANDO VASELLI (DST Università degli Studi di Firenze) e al Prof. GIOVANNI PRANZINI (DST Università degli Studi di Firenze) va il nostro più sentito ringraziamento per aver messo a disposizione numerosi dati pregressi ed inediti ma soprattutto per la cura con cui hanno revisionato la prima versione del presente manoscritto.

Ultimo, ma non per importanza, va un sentito ringraziamento al Consorzio Regionale LAMMA che ha finanziato questo lavoro.

BIBLIOGRAFIA

- ACCORNERO M., MARINI L. & LELLI M. (2008) The dissociation constant of antimonic acid at 10-40°C. Journal of Solution Chemistry, 37(6), 785-800.
- ACCORNERO M., MARINI L. & LELLI M. (2009) Prediction of the thermodynamic properties of metal-chromate aqueous complexes to high temperatures and pressure and implications for the speciation of hexavalent chromium in some natural waters. Applied Geochemistry (submitted).
- ACCORNERO M., MARINI L., OTTONELLO G. & VETUSCHI ZUCCOLINI M. (2005) - The fate of major constituents and chromium and other trace elements when acid waters from the derelict Libiola mine (Italy) are mixed with stream waters. Applied Geochemistry, 20, 1368-1390.
- AF-⁵ STUDIO GEOLOGICO GEOSCIENCE AND TECNOLOGY CONSULTING (1997) - *Bilancio idrogeologico del Bacino del Fiume Cecina*. Relazione finale, **35**, 8 all.
- AITCHISON J. (1986/2003) The statistical analysis of compositional data. Monographs on statistics and applied probability. Chapman & Hall Ltd., London, 416 pp. (Ristanpato nel 2003 dal Blackburn Press, England), ISBN-10: 1930665784; ISBN-13: 978-1930665781.
- ALLÈGRE C.J. & LEWIN E. (1995) Scaling laws and geochemical distributions. Earth Planet. Sci. Lett., **132**, 1-13.
- APOLLARO C., ACCORNERO M., MARINI L., BARCA D. & DE ROSA R. (2008) - The impact of dolomite and plagioclase weathering on the chemistry of shallow groundwaters circulating in a granodiorite-dominated catchment of the Sila Massif (Calabria, Southern Italy). Applied Geochemistry, 24, 957-979.
- APPELO C.A.J. (1996) Multicomponent ion exchange and chromatography in natural systems. In: P.C. LICHTNER, C.I. STEE-FEL & E.H. OELKERS (Eds.) Reactive Transport in Porous Media, Reviews in Mineralogy, 34, 193-227.
- APPELO C.A.J. & POSTMA D. (1996) Geochemistry, groundwater and pollution. A.A. Balkema, Rotterdam.
- ARPAT (2003) Studio idrogeologico con utilizzo di modelli numerici di simulazione per la definizione dei meccanismi d'arricchimento in nitrati delle acque sotterranee nell'area compresa tra gli stradoni del Lupo, del Tripesce, la SS. nº 206, Vada e S. Pietro in Palazzi. Relazione Finale, 40 pp., 24 figg. f.t.
- BALE C.W., CHARTRAND P., DEGTREV S.A., ERIKSSON G., HACK K., BEN MAHFOUD R., MELANCON J., PELTON A.D. & PETERSEN S. (2002) - Fact Sage thermochemical software and databases. Calphad 26, 189-228.
- BERTINI G., CAMELI G.M., COSTANTINI A., DECANDIA F.A., DI FILIPPO M., DINI I., ELTER F.M., LAZZAROTTO A., LIOTTA D., PANDELI E., SANDRELLI F. & TORO B. (1991) - Struttura geologica fra i Monti di Campiglia e Rapolano Terme (Toscana meridionale) : stato attuale delle conoscenze e problematiche. Studi Geologici Camerti, vol. sp., 1994/1, 129-137.
- BOCCALETTI M., CERRINA FERONI A., MARTINELLI P., MO-RATTI G., PLESI G. & SANI F. (1992) - Late Miocene-Quaternary compressive events in the Tyrrhenian side of the northern Apennines. Annal. Tectonicae, 6, 214-230.
- BOCCALETTI M., CERRINA FERONI A., MARTINELLI P., MO-RATTI G., PLESI G. & SANI F. (1994) - L'area Tosco-Laziale come dominio di transizione tra il bacino tirrenico e i thrust esterni: rassegna di dati mesostrutturali e possibili relazioni con le discontinuità del "ciclo neoautoctono". Mem. Descr. Carta Geol. It., 49, 9-22.
- BOSSIO A., COSTANTINI A., LAZZAROTTO A., LIOTTA D., MAZZANTI R., MAZZEI R., SALVATORINI G. & SANDRELLI F. (1993) - Rassegna delle conoscenze sulla stratigrafia del Neoautoctono toscano. Mem. Soc. Geol. It., 49, 17-98.
- BÖHM B. & FISCHER W.R. (2004) Short communication. Kinetics of chromium (III) - oxidation in topsoils. J. Plant Nutr. Soil Sci., 167, 22-23.

- BOSCHIAN G., BOSSIO A., DALL'ANTONIA B. & MAZZANTI R. (2006) - Il Quaternario della Toscana Costiera. Studi Costieri, 12, 207.
- BÖTTCHER J., STREBEL O., VOERKELIUS S. & SCHMIDT H.L. (1999) - Using isotope fractionation of nitrate nitrogen and nitrate oxygen for evaluation of the denitrification in a sandy aquifer. J. Hydrol., **114**, 413-424.
- BROOKINS D.G. (1988) *Eh-pH diagrams for geochemistry*. Springer-Verlag, New York.
- BROZZO G., LELLI M. & MARINI L. (2008) I rapporti isotopici del piombo come traccianti dei fenomeni di corrosione delle tubazioni idriche. Reti idriche e gas, 5, 10.
- BUCCIANTI A., ROSSO F. & VLACCI F. (2003) Metodi matematici e statistici nelle Scienze della Terra, 3, Tecniche statistiche, Liguori Editore, 538 pp.
- CAPRI E., CIVITA M., CORNIELLO A., CUSIMANO G., DE MAIO M., DUCCI D., FAIT G., FIORUCCI A., HAUSER S., PISCIOTTA A., PRANZINI G., TREVISAN M., DELGADO HUERTAS A., FERRARI F., FRULLINI R., NISI B., OFFI M., VASELLI O. & VASSALLO M. (2009) - Assessment of nitrate contamination risk: The Italian experience. Journal of Geochemical Exploration, doi: 10.1016/j.gexpl0.2009.02.006.
- CARMIGNANI L., DECANDIA F.A., FANTOZZI P., LAZZAROTTO A., LIOTTA D. & MECCHERI M. (1994) - Tertiary extensional tectonics in Tuscany (Northern Apennines, Italy). Tectonophysics, 238, 295-315.
- CERRINA FERONI A., BONINI M., MARTINELLI P., MORATTI G., SANI F., MONTANARI D. & DEL VENTISETTE C. (2006) - Lithological control on thrust-related deformation in the Sassa-Guardistallo Basin (Northern Apennines hinterland, Italy). Basin Research, 18, 301-321.
- CERRINA FERONI A., ELLERO A., MOSCA P., OTTRIA B., PIANA F. & MUSSO A. (2009) - Oligocene-Miocene transpression in Ligurian Alps, Tertiary Piemonte Basin and Northern Apennines. Geoitalia 2009. VII Forum di Scienze della Terra, Rimini 9-11 settembre 2009. (abstract).
- CERRINA FERONI A., PATACCA E. & PLESI G. (1973) La Zona di Lanciaia fra il Cretaceo inferiore e l'Eocene inferiore. Atti Soc. Tosc. Sc. Nat. Mem., **73**, 412-468.
- CIONI R., GAMBARDELLA B. & MARINI L. (2007) Field determination of total dissolved inorganic carbon (TDIC) in natural waters using an IR analyzer. I. Preliminary laboratory tests. Geothermics, **36**, 47-62.
- CRESSIE N. (1991) Statistics for spatial data, Wiley & Sons., Inc., NY, 900.
- DAVIS J.C. (2002) Statistics and Data Analysis in Geology, third edition, John Wiley & Sons, New York, 638 pp.
- DECANDIA F.A., LAZZAROTTO A. & LIOTTA D. (1993) La "serie ridotta" nel quadro dell'evoluzione della Toscana meridionale. Mem. Soc. Geol. It., 49, 181-191.
- DI LUCA M. & MONTAGNANI F. (2003) Studio idrogeologico dell'area Castagneto Carducci-Bolgheri mare mediante modello di flusso alle differenze finite per la fattibilità di un campo pozzi. Eseguito per l'Azienda Servizi Ambientali ASA, Livorno.
- EARY L.E. & RAI D. (1987) Kinetics of chromium (III) oxidation to chromium (VI) by reaction with manganese dioxide. Environ. Sci. Technol., 21, 1187-1193.
- ESSINGTON M.E. (1992) Formation of calcium and magnesium molybdate complexes in dilute aqueous solutions. Soil Sci. Soc. Am. J., 56, 1124-1127.
- FANTONI D., BROZZO G., CANEPA M., CIPOLLI F., MARINI L., OTTONELLO G. & VETUSCHI ZUCCOLINI M. (2002) - Natural hexavalent chromium in groundwaters interacting with ophiolitic rocks. Environmental Geology, 42, 871-882.
- FEDERICI P.R. & MAZZANTI R. (1995) Note sulle pianure costiere della Toscana. Mem. Soc. Geogr. It., 13, 165-270.
- FENDORF S.E. & ZASOSKI R.J. (1992) Chromium (III) oxidation by d-MnO₂. I: Characterization. Environ. Sci. Technol.,

26, 79-85

- FRULLINI R., GARDIN L., MORINI D., NEVINI R. & PRANZINI G. (2007) - Carta della vulnerabilità all'inquinamento della pianura costiere fra Rosignano e San Vincenzo (LI): Confronto fra diversi metodi di valutazione del parametro suolo. IGEA - Ingegneria e Geologia degli Acquiferi, 22, 113-126.
- GAMBARDELLA B., MARINI L. & BANESCHI I. (2005) Dissolved potassium in the shallow groundwaters circulating in the volcanic rocks of central-southern Italy. Appl. Geochem., 20, 875-897.
- GEOVARIANCES (2004) Isatis Software Manual, 5th Edition, Geovariances & Ecole des Mines de Paris, 710 pp.
- GIANNELLI L., MAZZANTI R., MAZZEI R. & SALVATORINI G. (1981) - I sedimenti del Pliocene e del Pleistocene inferiore della zona compresa tra Riparbella e Bibbona (Provincie di Pisa e Livorno). Boll. Soc. Geol. It., 100, 41-56.
- GIANNINI E. (1955) Geologia dei Monti di Campiglia Marittima (Livorno). Boll. Soc. Geol. It., 74, 219-296.
- GIGLIA G. (1974) L'insieme Corsica-Sardegna e i suoi rapporti con l'Appennino settentrionale:rassegna di dati cronologici e strutturali. In: Graficoop, Bologna, Paleogeografia del Terziario sardo nell'ambito del Mediterraneo occidentale. Rendiconti del Seminario della Facolta di Scienze della Universita di Cagliari, 43, 245–272.
- GRASSI S., CORTECCI G. & SQUARCI P. (2007) Groundwater resource degradation in coastal plains: The example of the Cecina area (Tuscany – Central Italy). Appl. Geochem., 22, 2273– 2289.
- GRASSI S., ROSSI S. & SQUARCI P. (2000) Studio idrogeologico ed idrogeochimico dell'area della pianura costiera tra il Fiume Fine a nord e il Fosso della Madonna a sud nei comuni di Rosignano Marittimo e Cecina in provincia di Livorno. Rapporto tecnicoscientifico IRGG/CNR – ASA Livorno, 36 pp., 14 tavv.
- GRASSI S. & SQUARCI P. (2004) La contaminazione da boro lungo il Fiume Cecina. Atti Soc. Tosc. Sci. Nat., Mem., 109, 21-28.
- GRENTHE I., FUGER J., KONINGS R.J.M., LEMIRE R.J., MULLER A.B., NGUYEN-TRUNG C. & WANNER H. (1992) *Chemical Thermodynamics of Uranium* (H. WANNER & I. FOREST, Nuclear Energy Agency, Organisation for Economic Co-operation, Development eds.), 1, Chemical Thermodynamics, North Holland Elsevier Science Publishers B.V., Amsterdam, 715 pp.
 GUILLAUMONT R., FANGHANEL T., NECK V., FUGER J.,
- GUILLAUMONT R., FANGHANEL T., NECK V., FUGER J., PALMER D.A., GRENTHE I. & RAND M.H. (2003) - Update on the chemical thermodynamics of uranium, neptunium, plutonium, americium and technetium (F.J. MOMPEAN, M. ILLEMASSENE, C. DOMENECH-ORTI & K. BEN-SAID, Nuclear Energy Agency Data Bank, Organisation for Economic Co-operation, Development eds.), 5, Chemical Thermodynamics, North Holland Elsevier Science Publishers B.V., Amsterdam, 964 pp.
- ISAAKS E.H. & SRIVASTAVA M. (1989) An introduction to applied geostatistics. Oxforde University Press, New York, 561 pp.
- JAMBOR J.L. & DUTRIZAC J.E. (1998) Occurrence and constitution of natural and synthetic ferrihydrite, a widespread iron oxyhydroxide. Chem. Rev., 98, 2549-2585.
- JOHNSON C.A. & XYLA A.G. (1991) The oxidation of chromium (III) to chromium (VI) on the surface of manganite (g-MnOOH). Geochim. Cosmochim. Acta, **55**, 2861-2866.
- JOHNSON J.W., OELKERS E.H. & HELGESON H.C. (1992) -SUPCRT92: a software package for calculating the standard molal thermodynamic properties of minerals gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000°C. Computers & Geosciences, 18, 899-947.
- LANGELIER W.F. & LUDWIG H.F. (1942) *Graphical methods for indicating the mineral character of natural waters.* Journal of the American Water Association, **34**, 335 – 352.
- LANGMUIR D. (1997) Aqueous Environmental Geochemistry.

Prentice Hall, 600 pp.

- LAZZAROTTO A. & MAZZANTI R. (1978) Geologia dell'alta Val di Cecina. Boll. Soc. Geol. It., 95, 1365-1487.
- LEMIRE R.J., FUGER J., NITSCHE H., POTTER P.E., RAND M.H., RYDBERG J., SPAHIU K., SULLIVAN J.C., ULLMAN W.J., VITORGE P. & WANNER H. (2001) - *Chemical Thermodynamics of Neptunium and Plutonium* (Nuclear Energy Agency Data Bank, Organisation for Economic Co-operation, Development ed.), 4, Chemical Thermodynamics, North Holland Elsevier Science Publishers B.V., Amsterdam. 845 pp.
- MARINI L. (2007) Geological Sequestration of Carbon Dioxide -Thermodynamics, Kinetics, and Reaction Path Modeling. Developments in Geochemistry, 11, 453 pp.
- opments in Geochemistry, **11**, 453 pp. MARINI L. & ACCORNERO M. (2007) - Prediction of the thermodynamic properties of metal-arsenate and metal-arsenite aqueous complexes to high temperatures and pressures and some geological consequences. Environmental Geology, **52**, 1343-1363.
- MARINI L, GAMBARDELLA B., PRINCIPE C., ARIAS A., BROM-BACH T. & HUNZIKER J.C. (2002) - Characterization of magmatic sulfur in the Aegean island arc by means of the d34S values of fumarolic gases, elemental sulfur, and hydrothermal gypsum of Nisyros and Milos islands. Earth Planet. Sci. Letters, 200, 15-31.
- MARINI L. & OTTONELLO G. (Eds.) (2002) Atlante degli acquiferi della Liguria. Volume III: Le acque dei complessi ofiolitici (bacini: Arrestra, Branega, Cassinelle, Cerusa, Erro, Gorzente, Leira, Lemme, Lerone, Orba, Piota, Polcevera, Rumaro, Sansobbia, Stura, Teiro, Varenna, Visone). Pacini Editore, Pisa, 102 pp. (CD con documenti cartografici allegato).
- MARTINI I.P. & SAGRI M. (1993) Tectono-sedimentary characteristics of Late Miocene-Quaternary extensional basins of the Northern Apennines, Italy. Earth Sci. Rev., 34, 197-233.
- MAZZANTI R. (1984) Il punto sul Quaternario della fascia costiera e dell'arcipelago di Toscana. Boll. Soc. Geol. It., 102, 419-556.
- MUSSI M. & DOVERI M. (2006) Idrogeologia isotopica dei sistemi acquifero ubicati in destra Fiume Albegna nell'area "Magliano in Toscana – Scansano". Rapporto Scientifico CNR-IGG, convenzione CNR/IGG - AATO6 "Ombrone", 28 pp.
- MUSSI M., LEONE G. & NARDI I. (1998) Isotopic geochemistry of natural water from the Alpi Apuane-Garfagnana area, Northern Tuscany, Italy. Miner. Petrogr. Acta, 41, 163–178.
- NISI B., CAPECCHIACCI F., FRULLINI R., HUERTAS DELGADO A., VASELLI O. & PRANZINI G. (2007) - Inquinamento naturale ed antropico delle acque di falda della pianura costiera livornese fra Rosignano e San Vincenzo (Toscana Centro-occidentale): evidenze geochimiche ed isotopiche. Acque Sotterranee, **110**, 11-20.
- NISI B., VASELLI O. & DELGADO HUERTAS A. (2009) Tracing the source of dissolved nitrate in the Cecina Valley (centralwestern Italy) by nitrogen and oxygen isotopes. Sciences of the Total Environmental (in prep.).
- NORDSTROM D.K. (2002) Aqueous Redox Chemistry and the Behavior of Iron in Acid Mine Waters. Workshop on Monitoring Oxidation-Reduction Processes for Ground-water Restoration. Dallas, Texas - April 25-27, 2000, T. RICHARD (Eds.), EPA/600/R-02/002, 43-47.
- NORDSTROM D.K., PLUMMER L.N., WIGLEY T.M.L., WOLERY T.J., BALL J.W., JENNE E.A., BASSETT R.L., CRERAR D.A., FLORENCE T.M., FRITZ B., HOFFMAN M., HOLDREN G.R. JR., LAFON G.M., MATTIGOD S.V., MCDUFF R.E., MOREL F., REDDY M.M., SPOSITO G. & THRAILKILL J. (1979) - A comparison of computerized chemical models for equilibrium calculations in aqueous systems. In: E.A. JENNE (Eds.), Chemical Modeling in Aqueous Systems, American Chemical Society Symposium Series, 93, 857-892.
- OELKERS E.H. (1996) Physical and chemical properties of rocks and fluids for chemical mass transport calculations. In: Reactive

Transport in Porous Media, P.C. LICHTNER, C.I. STEEFEL & E.H. OELKERS (Eds.), Reviews in Mineralogy, Mineralogical Society of America, **34**, 131-191.

- OELKERS E.H. (2001) General kinetic description of multioxide silicate mineral and glass dissolution. Geochim. Cosmochim. Acta, 65, 3703-3719.
- OTTONELLO G., PODOSEK F., OBERLI F., PETRINI R., ACCORNERO M., MARINI L., VETUSCHI ZUCCOLINI M. & QUITTE G. (2004) - Isotopic fractionation induced by partial oxidation of Cr(III) to Cr(VI): Implications on the assessment of environmental contamination and human health. 5th European Meeting on Environmental Chemistry. 12-16 December 2004, Bari, 12 pp.
- OZE C., BIRD D.K. & FENDORF S. (2007) Genesis of hexavalent chromium from natural sources in soil and groundwater. PNAS, 104, 6544-6549.
- OZE C., FENDORF S., BIRD D.K. & COLEMAN R.G. (2004) -Chromium geochemistry in serpentinized ultramafic rocks and serpentine soils from the Franciscan Complex of California. Am. J. Sci., **304**, 67-101.
- PENNISI M., GONFIANTINI R., GRASSI S. & SQUARCI P. (2006) - The utilization of boron and strontium isotopes for the assessment of boron contamination of the Cecina River alluvial aquifer (central-western Tuscany, Italy). Applied Geochemistry, 21, 643– 655.
- PERTUSATI P.C., PLESI G., & CERRINA FERONI A. (1978) Un episodio di raccorciamento interposto tra fasi di distensione nel Calcare di Rosignano (Neoautoctono) del bacino della Fine (Toscana meridionale). Boll. Soc. Geol. It., 99, 175-181.
- PETRINI R., SLEJKO F.F., OTTONELLO G., MARINI L., ACCORNERO M. & VETUSCHI ZUCCOLINI M. (2005) -Chromium isotopic fractionation during Cr(VI) reduction in groundwaters. Geochimica et Cosmochimica Acta, Goldschmidt Conference Abstracts 2005, Non-Traditional Stable Isotopes, 69/10, Supplement 2, A220.
- POURBAIX M. (1966) Atlas of electrochemical equilibria in aqueous solutions. Houston, Tex.: National Association of Corrosion Engineers.
- PRANZINI G. (2004a) Studio Idrogeologico della Pianura Costiera fra Rosignano e San Vincenzo. Relazione inedita per Autorità di Bacino Toscana Costa, 174 pp.
- PRANZINI G. (2004b) Studio idrogeologico del Bacino del Fiume Cecina. Relazione Gennaio 2004, Regione Toscana, Dipartimento delle politiche territoriali e ambientali – Autorità di Bacino Toscana Costa, 55 pp.
- RAPHAEL M.W. & BOULIS S.N. (1982) Kinetics of the oxidation of chromium (III) ions by trimanganese tetraoxide and by manganese (III) oxide. Surf. Technol., 16, 243-248.
- RARD J.A., RAND M.H., ANDEREGG G. & WANNER H. (1999) - Chemical Thermodynamics of Technetium (SANDINO M.C.A., OSTHOLS E., Nuclear Energy Agency Data Bank, Organisation for Economic Co-operation, Development eds.), vol. 3, Chemical Thermodynamics, North Holland Elsevier Science Publishers B.V., Amsterdam, 544 pp.
- RICCI LUCCHI F. (1986) The Oligocene to Recent foreland basins of the Northern Apennines. In: PH. ALENN, Homewood (Eds.), Foreland basins. International Association of Sedimentologists, 8, 105-140.
- SERVIZIO GEOLOGICO DELLA REGIONE TOSCANA (2004) -Carta geologica della Toscana (1:250.000). Litografia Artistica Cartografica S.r.l., Firenze.
- SERVIZIO GEOLOGICO DELLA REGIONE TOSCANA (2004) -Carta geologica della Regione Toscana (1:10.000). Sez. 305080. http://www.regione.toscana.it/geologia/
- SERVIZIO GEOLOGICO DELLA REGIONE TOSCANA (2005) -Carta geologica della Regione Toscana (1:10.000). Sez. 294040. http://www.regione.toscana.it/geologia/
- Servizio Geologico della Regione Toscana (2006) -

Carta geologica della Regione Toscana (1:10.000). Sez. 317020 - 317030. http://www.regione.toscana.it/geologia/

- SERVIZIO GEOLOGICO DELLA REGIONE TOSCANA (2007) -Carta geologica della Regione Toscana (1:10.000). Sez. 305120. http://www.regione.toscana.it/geologia/
- SALEH F.Y., PARKETON T.F., LEWIS R.V., HUANG J.H. & DICKSON K.L. (1989) Kinetics of chromium transformations in the environment. Sci. Tot. Environ., 86, 25-41.
- SILVA R.J., BIDOGLIO G., RAND, M.H., ROBOUCH P.B., WAN-NER H. & PUIGDOMENECH I. (1995) - Chemical Thermodynamics of Americium (Nuclear Energy Agency, Organisation for Economic Co operation, Development ed.), vol. 2, Chemical Thermodynamics, North Holland Elsevier Science Publishers B.V., Amsterdam, 374 pp.

SINCLAIR A.J. (1974) - Selection of threshold values in geochemical data

using probability graphs. Jour. Geochem. Expl., **3**, 129-149. S.I.R.A. - Sistema Informativo Regionale Ambientale della Toscana.

- http://sira.arpat.toscana.it/sira/acqua.html.
- TAKENO N. (2005) Atlas of Eh-pH diagrams. Intercomparison of thermodynamic databases. Geological Survey of Japan Open File Report No. 419. National Institute of Advanced Industrial Science and Technology. Research Center for Deep Geological Environments.
- TREVISAN L. (1951) Sul complesso sedimentario del Miocene superiore e del Pliocene della Val di Cecina e sui movimenti tettonici tardivi in rapporto ai giacimenti di lignite e del salgemma. Boll. Soc. Geol. It., 70, 65-78.
- WOLERY T.W. & JAREK R.L. (2003) Software user's manual. EQ3/6, Version 8.0. Sandia National Laboratories – U.S. Dept. of Energy Report.

Tab. A - Concentrazioni degli elementi maggiori, minori e specie azotate per le acque dei CISS 32CT010+32CT030 e 32CT050. pH (*): valore stimato assumendo la condizione di saturazione (equilibrio) rispetto alla calcite. Eh: valore calcolato vincolando le condizioni ossido-riduttive di nitrato e ammonio. Le coordinate sono espresse in UTM/Gauss-Boaga. EC: conducibilità elettrica. n.d. : non determinato; n.r. : non rilevabile.

– Concentrations of main, minor and nitrogenated species for the waters relative the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean Water Bodies). pH (*): values estimated assuming the saturation conditions respect to calcite. Eh: values calculated setting the redox conditions to nitrite and ammonium. East and North coordinates are expressed in UTM/Gauss-Boaga. EC: electro conducibility. n.d. : not determined; n.r. : below detection limit.

Sigla	EstG_B_	Nord G_B_	Eh	pН	EC	t	Ca	Mg	Na	K	HCO ₃	so ₄	Cl	SiO ₂	NH4	NO ₂	NO ₃	Br	F	В	Fe	Mn	Dati bibliografici
	(UTM)	(UTM)	(V)		μS/cm	°C	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	
BC 100	1617855	4798840	n.d.	8,05	54400	20,6	528	1421	11484	445	244	2710	20833	23	n.d.	n.d.	n.d.	n.d.	n.d.	5,120	0,97	0,3500	AF-Studio Geologico (1997)
BC 55	1618250	4798300	n.d.	7,17	7430	9,1	449	164	995	13	433	399	2265	22	n.d.	n.d.	17,00	n.d.	n.d.	0,540	0,85	0,3100	AF-Studio Geologico (1997)
BC 21	1618575	4797560	n.d.	8,68	23200	16,9	600	914	4087	140	345	1052	9571	21	n.d.	n.d.	1,00	n.d.	n.d.	0,789	1,55	2,4000	AF-Studio Geologico (1997)
BC 21	1618575	4797560	n.d.	6,85	31400	17,0	741	1104	4343	128	300	957	10800	21	0,818	n.d.	n.d.	32,0	n.d.	0,643	4,09	2,8000	AF-Studio Geologico (1997)
BC 15	1619715	4798368	n.d.	6,85	2460	17,2	247	84	241	4	375	152	673	24	n.d.	n.d.	126,00	n.d.	n.d.	0,123	n.d.	0,0002	AF-Studio Geologico (1997)
BC 15	1619715	4798368	0,387	7,18	2940	16,8	272	108	234	7	417	135	754	25	0,268	n.d.	105,00	1,9	n.d.	0,073	n.r.	n.r.	AF-Studio Geologico (1997)
BC 6	1620750	4796195	n.d.	6,92	2110	13,2	155	105	260	2	619	252	397	32	n.d.	n.d.	96,00	n.d.	n.d.	0,538	n.d.	0,0006	AF-Studio Geologico (1997)
BC 6	1620750	4796195	n.d.	7,29	2690	16,5	120	122	384	11	686	222	594	34	n.d.	n.d.	30,00	2,0	n.d.	0,467	n.r.	n.r.	AF-Studio Geologico (1997)
BC 5	1621370	4797025	n.d.	6,95	1232	16,6	138	77	96	6	366	118	294	25	n.d.	n.d.	43,00	n.d.	n.d.	0,158	0,76	0,0172	AF-Studio Geologico (1997)
BC 5	1621370	4797025	n.d.	7,42	1427	16,9	119	75	108	10	407	82	278	26	n.d.	n.d.	39,00	1,2	n.d.	0,149	0,40	n.r.	AF-Studio Geologico (1997)
BC 8	1621492	4794917	n.d.	7,34	1541	14,8	175	60	156	15	558	172	273	22	n.d.	n.d.	39,00	n.d.	n.d.	0,232	n.d.	0,0002	AF-Studio Geologico (1997)
BC 8	1621492	4794917	n.d.	7,61	1588	18,9	163	58	110	16	550	124	220	22	n.d.	0,100	41,00	0,5	n.d.	0,192	n.r.	0,4000	AF-Studio Geologico (1997)
BC 14	1621630	4799305	n.d.	7,60	764	14,6	119	22	60	1	418	43	82	22	n.d.	n.d.	27,00	n.d.	n.d.	n.d.	0,03	0,0115	AF-Studio Geologico (1997)
BC 14	1621630	4799305	0,389	7,05	962	20,1	120	24	65	3	434	43	94	23	0,096	n.d.	36,00	n.d.	n.d.	0,067	n.r.	n.r.	AF-Studio Geologico (1997)
BC 22	1622040	4795657	n.d.	7,25	1469	16,8	210	60	109	6	433	240	273	19	n.d.	n.d.	31,00	n.d.	n.d.	0,608	0,63	0,0750	AF-Studio Geologico (1997)
BC 22	1622040	4795657	0,401	6,88	1683	17,5	217	60	104	12	470	222	272	18	0,424	n.d.	30,00	0,6	n.d.	0,361	n.r.	0,1000	AF-Studio Geologico (1997)
BC 20	1622577	4793237	n.d.	7,31	610	17,1	104	36	62	1	418	54	96	24	n.d.	n.d.	1,00	n.d.	n.d.	n.d.	0,59	1,1000	AF-Studio Geologico (1997)
BC 20	1622577	4793237	n.d.	7,04	944	17,5	98	36	66	7	464	44	99	24	0,068	n.d.	n.d.	0,3	n.d.	0,196	9,00	1,4000	AF-Studio Geologico (1997)
BC26	1622640	4796825	0,320	8,04	1534	16,5	135	35	170	12	246	245	282	17	0,106	n.d.	7,00	0,3	n.d.	0,554	17,00	0,6000	AF-Studio Geologico (1997)
BC 11	1622712	4799000	n.d.	6,90	747	17,5	135	15	62	1	390	51	81	21	n.d.	n.d.	50,00	n.d.	n.d.	n.d.	0,33	0,0040	AF-Studio Geologico (1997)
BC 11	1622712	4799000	n.d.	7,08	878	17,2	126	14	61	2	414	78	41	21	n.d.	n.d.	40,00	n.d.	n.d.	0,069	n.r.	n.r.	AF-Studio Geologico (1997)
BC 12	1623080	4800740	n.d.	7,15	685	18,0	130	18	64	1	408	42	74	21	n.d.	n.d.	36,00	n.d.	n.d.	n.d.	0,01	0,0019	AF-Studio Geologico (1997)
BC 12	1623080	4800740	n.d.	7,12	807	16,9	121	17	51	1	424	58	36	22	n.d.	n.d.	43,00	n.d.	n.d.	0,060	n.r.	n.r.	AF-Studio Geologico (1997)
BC 18	1623535	4790720	n.d.	7,18	963	17,9	98	47	85	3	399	135	120	25	n.d.	n.d.	17,00	n.d.	n.d.	n.d.	1,15	0,3500	AF-Studio Geologico (1997)
BC 18	1623535	4790720	n.d.	6,97	1020	18,7	145	46	58	4	430	137	130	22	n.d.	n.d.	17,00	0,5	n.d.	0,096	n.r.	0,3000	AF-Studio Geologico (1997)
BC 13	1623960	4801920	n.d.	7,00	1357	18,4	200	68	82	2	473	200	245	21	n.d.	n.d.	1,00	n.d.	n.d.	0,127	2,40	0,3000	AF-Studio Geologico (1997)
BC 13	1623960	4801920	0,407	6,98	1626	17,4	209	79	79	4	512	280	8	21	0,050	n.d.	213,00	0,7	n.d.	0,194	8,00	0,2000	AF-Studio Geologico (1997)
BC 1	1624212	4795755	n.d.	7,01	2180	17,1	211	50	129	5	287	117	415	18	n.d.	n.d.	47,00	n.d.	n.d.	0,121	0,23	0,0035	AF-Studio Geologico (1997)
BC 1	1624212	4795755	0,403	6,99	2020	16,6	200	54	164	8	372	92	475	21	0,050	n.d.	45,00	1,0	n.d.	0,119	0,10	n.r.	AF-Studio Geologico (1997)
BC 4	1624250	4794332	n.d.	7,19	1532	17,1	215	33	172	4	421	171	333	18	n.d.	n.d.	54,00	n.d.	n.d.	n.d.	n.d.	n.d.	AF-Studio Geologico (1997)
BC 4	1624250	4794332	n.d.	7,15	1849	17,2	199	33	190	6	434	157	334	19	n.d.	n.d.	59,00	0,6	n.d.	0,071	n.r.	n.r.	AF-Studio Geologico (1997)
BC 3	1624562	4792587	n.d.	7,30	1400	13,8	117	77	190	2	415	325	255	26	n.d.	n.d.	14,00	n.d.	n.d.	0,310	n.d.	0,0005	AF-Studio Geologico (1997)
BC 3	1624562	4792587	n.d.	7,23	1687	17,7	121	74	179	4	551	245	208	27	n.d.	0,300	25,00	0,8	n.d.	0,171	n.r.	n.r.	AF-Studio Geologico (1997)
BC 17	1624702	4790931	n.d.	7,00	1267	16,4	168	66	79	2	518	185	156	25	n.d.	n.d.	71,00	n.d.	n.d.	0,158	0,02	0,0065	AF-Studio Geologico (1997)
BC 17	1624702	4790931	0,371	7,36	1327	18,9	156	56	67	4	454	153	135	24	0,080	n.d.	68,00	0,5	n.d.	0,087	0,10	n.r.	AF-Studio Geologico (1997)
BC61	1625100	4791900	n.d.	8,03	2100	8,5	242	77	120	2	384	600	162	16	n.d.	n.d.	32,30	n.d.	n.d.	0,210	0,45	0,0400	AF-Studio Geologico (1997)
BC 19	1625552	4796260	n.d.	7,52	945	15,9	194	30	98	2	525	106	206	21	n.d.	n.d.	26,00	n.d.	n.d.	n.d.	n.d.	0,0001	AF-Studio Geologico (1997)
BC 19	1625552	4796260	n.d.	7,06	1379	16,1	192	29	116	3	525	90	227	20	n.d.	n.d.	23,00	0,5	n.d.	0,073	n.r.	n.r.	AF-Studio Geologico (1997)
BC 10	1625925	4798455	n.d.	7,16	1566	16,5	192	86	115	3	778	72	262	29	n.d.	n.d.	17,00	n.d.	n.d.	0,655	4,30	0,3500	AF-Studio Geologico (1997)
BC 10	1625925	4798455	0,381	6,93	2070	17,3	198	89	119	5	745	52	345	29	2,720	1,400	0,70	1,2	n.d.	0,473	7,50	0,4000	AF-Studio Geologico (1997)
BC 9	1626044	4793989	n.d.	7,18	929	16,9	136	26	78	3	335	60	163	20	n.d.	n.d.	21,00	n.d.	n.d.	n.d.	0,51	0,0115	AF-Studio Geologico (1997)
BC 9	1626044	4793989	n.d.	7,06	1166	16,6	134	21	102	5	376	76	158	20	n.d.	n.d.	33,00	0,5	n.d.	0,077	n.r.	n.r.	AF-Studio Geologico (1997)
BC 2	1626475	4795522	n.d.	7,43	1398	17,1	206	27	130	2	323	99	368	18	n.d.	n.d.	35,00	n.d.	n.d.	n.d.	0,13	0,0037	AF-Studio Geologico (1997)
BC 2	1626475	4795522	n.d.	7,14	1648	16,7	241	25	105	4	307	90	385	14	n.d.	4,700	25,00	1,0	n.d.	0,093	0,40	n.r.	AF-Studio Geologico (1997)
BC 16	1626657	4792817	n.d.	7,04	1201	16,7	190	34	96	4	457	116	227	20	n.d.	n.d.	45,00	n.d.	n.d.	n.d.	n.d.	n.d.	AF-Studio Geologico (1997)
BC 16	1626657	4792817	n.d.	7,07	1284	16,9	181	33	87	7	420	72	240	19	n.d.	n.d.	39,00	0,5	n.d.	0,089	0,20	n.r.	AF-Studio Geologico (1997)
BC 27	1627660	4799720	0,352	7,60	1585	16,4	132	38	164	11	283	262	255	18	0,104	n.d.	7,00	0,3	n.d.	0,521	16,00	0,6000	AF-Studio Geologico (1997)

Sigla	Est G_B_	Nord G_B_	Eh	pН	EC	t	Ca	Mg	Na	K	HCO ₃	\mathbf{so}_4	Cl	SiO ₂	NH4	NO ₂	NO ₃	Br	F	В	Fe	Mn	Dati bibliografici
	(UTM)	(UTM)	(V)		μS/cm	°C	mg/L	mg/L	.mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	
BC39	1632400	4800440	n.d.	8,05	1580	17,4	273	49	153	11	665	378	213	15	n.d.	n.d.	12,70	n.d.	n.d.	0,650	15,00	0,6000	AF-Studio Geologico (1997)
BC60	1635000	4798850	n.d.	8,08	920	8,6	111	37	41	2	353	143	51	22	n.d.	n.d.	12,50	n.d.	n.d.	0,160	n.d.	0,2500	AF-Studio Geologico (1997)
BC29	1635450	4798125	n.d.	8,05	1622	16,2	232	46	184	13	433	430	264	13	n.d.	n.d.	10,70	n.d.	n.d.	0,810	8,10	0,2400	AF-Studio Geologico (1997)
BC28	1635775	4796675	n.d.	7,71	901	16,4	184	40	48	3	488	237	63	19	n.d.	n.d.	6,68	n.d.	n.d.	0,240	3,50	0,1200	AF-Studio Geologico (1997)
BC30	1641175	4798950	n.d.	7,90	882	21,7	118	56	35	2	402	207	45	23	n.d.	n.d.	5,88	n.d.	n.d.	0,445	n.d.	n.d.	AF-Studio Geologico (1997)
BC38	1641190	4799650	n.d.	7,44	1184	19,2	204	69	77	6	634	253	123	21	n.d.	n.d.	4,04	n.d.	n.d.	0,810	0,12	n.d.	AF-Studio Geologico (1997)
BC25b	1645625	4801875	n.d.	8,28	1183	8,6	146	36	77	7	305	270	97	17	n.d.	n.d.	6,70	n.d.	n.d.	0,760	0,64	0,0500	AF-Studio Geologico (1997)
BC25	1645625	4801875	n.d.	7,63	1890	14,1	99	27	182	89	292	297	223	19	n.d.	n.d.	6,45	n.d.	n.d.	1,660	n.d.	n.d.	AF-Studio Geologico (1997)
BC40	1645740	4802000	n.d.	7,95	7600	22,8	348	51	1165	689	427	606	2475	25	n.d.	n.d.	13,80	n.d.	n.d.	2,510	3,10	0,2500	AF-Studio Geologico (1997)
BC37	1645750	4802000	n.d.	7,29	8950	18,5	979	119	1553	152	1098	1920	2585	22	n.d.	n.d.	6,96	n.d.	n.d.	3,080	43,00	1,3000	AF-Studio Geologico (1997)
BC62	1646375	4803300	n.d.	8,30	2140	8,2	260	74	177	6	372	733	191	12	n.d.	n.d.	19,90	n.d.	n.d.	0,445	1,00	0,2000	AF-Studio Geologico (1997)
BC31	1646500	4802250	n.d.	7,88	7890	25,3	367	48	1133	829	244	624	2590	26	n.d.	n.d.	14,10	n.d.	n.d.	2,870	0,34	0,1400	AF-Studio Geologico (1997)
BC57	1646625	4801500	n.d.	7,35	1518	16,6	200	45	150	4	390	420	220	17	n.d.	n.d.	5,44	n.d.	n.d.	2,300	n.d.	n.d.	AF-Studio Geologico (1997)
BC32	1650625	4799625	n.d.	8,26	743	22,0	138	32	38	2	366	193	44	19	n.d.	n.d.	4,06	n.d.	n.d.	2,830	0,55	0,0400	AF-Studio Geologico (1997)
BC58	1650825	4788700	n.d.	8,05	656	6,9	96	20	23	1	323	66	24	21	n.d.	n.d.	2,42	n.d.	n.d.	1,860	n.d.	n.d.	AF-Studio Geologico (1997)
BC332	1652825	4789000	n.d.	8,44	635	9,9	100	16	16	3	286	86	19	20	n.d.	n.d.	4,79	n.d.	n.d.	4,400	0,13	n.d.	AF-Studio Geologico (1997)
BC33	1652825	4789000	n.d.	8,32	825	17,0	119	23	43	100	488	183	21	21	n.d.	n.d.	7,40	n.d.	n.d.	26,500	0,14	0,0300	AF-Studio Geologico (1997)
BC331	1653312	4787475	n.d.	8,34	544	9,0	94	13	10	1	262	61	18	20	n.d.	n.d.	4,47	n.d.	n.d.	0,190	n.d.	n.d.	AF-Studio Geologico (1997)
BC34	1655100	4798325	n.d.	8,18	823	22,6	176	43	50	4	561	213	37	20	n.d.	n.d.	2,73	n.d.	n.d.	13,700	2,00	0,1200	AF-Studio Geologico (1997)
BC35mix	1655800	4797100	n.d.	7,63	846	13,0	101	33	27	1	311	136	32	22	n.d.	n.d.	8,38	n.d.	n.d.	0,240	n.d.	n.d.	AF-Studio Geologico (1997)
BC35	1655800	4797100	n.d.	8,28	852	12,5	104	34	28	1	311	145	34	21	n.d.	n.d.	9,52	n.d.	n.d.	0,310	n.d.	n.d.	AF-Studio Geologico (1997)
BC36	1656000	4798000	n.d.	8,24	527	22,3	84	25	24	1	268	105	27	22	n.d.	n.d.	0,37	n.d.	n.d.	0,240	0,12	n.d.	AF-Studio Geologico (1997)
BC 24 (07-05-96)	1657800	4789775	n.d.	8,50	628	16,3	115	22	26	1	271	154	25	19	n.d.	n.d.	2,00	n.d.	n.d.	0,164	n.d.	0,0530	AF-Studio Geologico (1997)
BC 23	1657800	4789775	n.d.	7,39	615	16,9	147	20	26	1	506	61	28	21	n.d.	n.d.	1,94	n.d.	n.d.	0,240	0,14	n.d.	AF-Studio Geologico (1997)
BC25	1660525	4794950	n.d.	7,71	1055	15,3	113	30	107	28	290	264	131	14	n.d.	n.d.	2,00	n.d.	n.d.	1,060	n.d.	0,0034	AF-Studio Geologico (1997)
BC 24 (07-05-96)	1660525	4794950	n.d.	7,90	710	15,6	106	28	31	1	274	184	38	20	n.d.	n.d.	1,54	n.d.	n.d.	0,370	0,97	0,0300	AF-Studio Geologico (1997)
BC56	1661000	4777800	n.d.	8,29	414	8,3	74	6	5	0	213	24	12	20	n.d.	n.d.	0,10	n.d.	n.d.	0,075	n.d.	n.d.	AF-Studio Geologico (1997)
BC59	1663375	4798150	n.d.	8,05	965	7,1	136	31	45	2	427	126	53	21	n.d.	n.d.	10,90	n.d.	n.d.	0,130	0,27	0,4000	AF-Studio Geologico (1997)
P18bis	1615820	4805331	0,391	7,14	n.d.	17,9	156	35	116	2	411	165	158	21	0,050	0,036	77,00	0,4	n.d.	n.d.	n.d.	n.d.	NISI et alii (2007)
P27	1616534	4804200	0,394	7,10	n.d.	16,5	166	24	244	2	476	260	226	18	0,040	0,016	20,00	0,5	n.d.	n.d.	n.d.	n.d.	NISI et alii (2007)
P4	1616570	4806386	0,419	6,80	n.d.	17,0	178	24	66	1	516	140	100	21	0,010	0,010	26,00	0,4	n.d.	n.d.	n.d.	n.d.	NISI et alii (2007)
P13	1617386	4805549	0,363	7,46	n.d.	19,5	114	50	69	3	422	103	116	25	0,040	0,200	35,00	0,3	n.d.	n.d.	n.d.	n.d.	NISI et alii (2007)
P34	1617460	4803187	n.d.	7,67	n.d.	16,8	91	40	75	9	498	60	86	25	0,030	0,023	11,00	0,3	n.d.	n.d.	n.d.	n.d.	NISI et alii (2007)
P49bis	1617795	4802080	0,405	6.88 (*)	n.d.	17,5	197	50	149	26	697	212	224	19	0,060	0,023	14,00	0,5	n.d.	n.d.	n.d.	n.d.	NISI et alii (2007)
P8bis	1618014	4805915	0,403	6,96	n.d.	16,7	110	20	148	2	500	135	59	22	0,050	0,036	24,00	0,3	n.d.	n.d.	n.d.	n.d.	NISI et alii (2007)
P59	1618394	4801742	0,382	7,30	n.d.	16,5	174	19	73	2	405	105	159	20	0,060	0,420	65,00	0,5	n.d.	n.d.	n.d.	n.d.	NISI et alii (2007)
P147	1618632	4798162	0,372	7,31	n.d.	14,5	310	163	659	60	655	753	1043	9	0,170	0,030	2,00	2,4	n.d.	n.d.	n.d.	n.d.	NISI et alii (2007)
P167	1619040	4797520	0,377	7,20	n.d.	17,4	360	214	924	30	484	343	2145	28	0,260	0,470	11,50	5,7	n.d.	n.d.	n.d.	n.d.	NISI et alii (2007)
SR4_S1	1620181	4801918	0,411	6,90	n.d.	17,4	153	11	60	1	386	96	68	20	0,050	0,001	103,00	0,2	n.d.	n.d.	n.d.	n.d.	NISI et alii (2007)
BV5_S5	1620578	4800515	0,393	7,07	n.d.	18,3	148	22	76	2	464	96	99	22	0,100	0,033	63,00	0,3	n.d.	n.d.	n.d.	n.d.	NISI et alii (2007)
P28	1620590	4803916	0,394	7,05	n.d.	20,1	152	18	115	1	437	95	158	22	0,050	0,033	90,00	0,4	n.d.	n.d.	n.d.	n.d.	NISI et alii (2007)
P58bis	1620622	4801880	0,359	7,43	n.d.	18,6	87	47	43	2	438	47	87	27	0,120	0,016	9,00	0,3	n.d.	n.d.	n.d.	n.d.	NISI et alii (2007)
P188	1620735	4796185	0,392	7.12 (*)	n.d.	17,5	127	76	225	3	620	166	343	31	0,060	0,033	47,00	0,9	n.d.	n.d.	n.d.	n.d.	NISI et alii (2007)
P35bis	1621426	4803444	0,394	7,12	n.d.	17,8	170	49	130	1	404	90	328	25	0,050	0,013	107,00	0,6	n.d.	n.d.	n.d.	n.d.	NISI et alii (2007)
P64	1621450	4801590	0,396	7,08	n.d.	17,5	155	45	69	1	449	111	163	24	0,060	0,007	68,00	0,4	n.d.	n.d.	n.d.	n.d.	NISI et alii (2007)
P210bis	1621511	4795101	0,371	7,45	n.d.	16,7	151	55	121	9	474	127	276	24	0,030	0,066	33,00	0,5	n.d.	n.d.	n.d.	n.d.	NISI et alii (2007)
SP_S6	1621513	4799053	0,365	7,35	n.d.	16,9	60	10	15	3	250	8	19	22	0,180	0,023	4,20	n.d.	n.d.	n.d.	n.d.	0,0000	NISI et alii (2007)
SP_S7	1621515	4799063	0,397	6,90	n.d.	17,4	161	27	110	7	633	99	141	22	0,220	0,190	5,80	0,3	n.d.	n.d.	n.d.	n.d.	NISI et alii (2007)

NTM OY OY oF Port Port Port Port Port <th>Sigla</th> <th>EstG_B_</th> <th>Nord G_B_</th> <th>Eh</th> <th>pН</th> <th>EC</th> <th>t</th> <th>Ca</th> <th>Mg</th> <th>Na</th> <th>к</th> <th>HCO₃</th> <th>\mathbf{SO}_4</th> <th>Cl</th> <th>SiO₂</th> <th>NH_4</th> <th>NO₂</th> <th>NO₃</th> <th>Br</th> <th>F</th> <th>в</th> <th>Fe</th> <th>Mn</th> <th>Dati bibliografici</th>	Sigla	EstG_B_	Nord G_B_	Eh	pН	EC	t	Ca	Mg	Na	к	HCO ₃	\mathbf{SO}_4	Cl	SiO ₂	NH_4	NO ₂	NO ₃	Br	F	в	Fe	Mn	Dati bibliografici
1 1		(UTM)	(UTM)	(V)		μS/cm	°C	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	
12200 40200 40300 4030 13 998 97 163 2 120 1000 50 64 75 75 76	P40	1622170	4802550	0,394	7,10	n.d.	17,5	202	12	77	1	434	151	110	19	0,130	0,260	127,00	0,3	n.d.	n.d.	n.d.	n.d.	NISI et alii (2007)
Price Human Constraint Human Inter aff Solution Inter aff Solution	P226	1622910	4794151	0,383	7.21(*)	n.d.	17,5	140	37	103	3	398	97	183	22	0,120	0,002	53,00	n.d.	n.d.	n.d.	n.d.	n.d.	NISI et alii (2007)
Pick Bick Pick Pick <th< td=""><td>P245</td><td>1622952</td><td>4792466</td><td>0,201</td><td>9,48</td><td>n.d.</td><td>18,4</td><td>5</td><td>15</td><td>72</td><td>5</td><td>110</td><td>1</td><td>113</td><td>24</td><td>0,250</td><td>0,002</td><td>0,30</td><td>n.d.</td><td>n.d.</td><td>n.d.</td><td>n.d.</td><td>n.d.</td><td>NISI et alii (2007)</td></th<>	P245	1622952	4792466	0,201	9,48	n.d.	18,4	5	15	72	5	110	1	113	24	0,250	0,002	0,30	n.d.	n.d.	n.d.	n.d.	n.d.	NISI et alii (2007)
PYN RX318 PYNS RX38 PYNS RX38 PYNSS RX38 RX38 <thrx38< th=""> <thrx38< th=""> <thrx38< th=""></thrx38<></thrx38<></thrx38<>	P244	1624562	4792587	0,367	7,29	n.d.	23,0	138	37	101	5	316	137	176	20	0,060	0,002	45,00	n.d.	n.d.	n.d.	n.d.	n.d.	NISI et alii (2007)
P321 H3232 P1780 Q40 Q10 Q10 Q40 Q400 Q	P370	1625188	4782906	0,372	7,09	n.d.	18,1	110	95	240	12	498	70	578	32	2,090	0,049	2,40	1,1	n.d.	n.d.	n.d.	n.d.	NISI et alii (2007)
P1263 162332 477 6. 164 174 174 18 2 3 362 101 0 100 0 100	P324	1625282	4785894	0,381	6,99	n.d.	20,1	105	28	43	2	437	14	78	24	0,080	0,002	0,60	n.d.	n.d.	n.d.	n.d.	n.d.	NISI et alii (2007)
Pieke 162376 Pieke Pieke 162368 4798.30 0.71 n.d. 1.50 10 10 16 16 23 811 65 413 313 0.10 n.d. N.SF or diff	P253	1625321	4791535	0,400	7,07	n.d.	16,4	134	49	81	9	515	141	95	25	0,050	0,002	88,00	n.d.	n.d.	n.d.	n.d.	n.d.	NISI et alii (2007)
P1496 103388 47898 38 1 7.0 1.0	P464	1625747	4776130	0,372	7.38(*)	n.d.	17,5	101	31	82	3	362	101	80	23	0,130	0,002	70,00	n.d.	n.d.	n.d.	n.d.	n.d.	NISI et alii (2007)
P280 153007 478916 a.d. 7.4 151 17 62 15 4 377 283 301 23 0800 0.00 82,00 a.d. a.d. a.d. Nat addition P203 163308 477855 0.399 0.575 r.d. 17.5 21.2 21.8 30.8 2 41.0 20.0 0.318 12.0 0.4 a.d. a.d. Nat And Nat Nat And Nat And Nat Nat And Nat And	P145bis	1625838	4798287	0,381	7,10	n.d.	15,0	190	96	162	3	811	65	421	33	4,130	0,180	13,00	1,2	n.d.	n.d.	n.d.	n.d.	NISI et alii (2007)
P228 103004 473989 0.574 7.26 n.d. 1.71 12 12 13 393 54 398 22 0.081 2.00 n.d. n.d. n.d. N.Bit addit (2007) P04 1036164 4788070 1.75 1.61 1.64 64 8 429 120 102 20 0.08 0.08 0.08 0.08 0.08 0.08 0.01 <th< td=""><td>P280</td><td>1626037</td><td>4789163</td><td>n.d.</td><td>7,43</td><td>n.d.</td><td>15,5</td><td>179</td><td>62</td><td>145</td><td>4</td><td>377</td><td>283</td><td>301</td><td>23</td><td>0,080</td><td>0,003</td><td>81,00</td><td>n.d.</td><td>n.d.</td><td>n.d.</td><td>n.d.</td><td>n.d.</td><td>NISI et alii (2007)</td></th<>	P280	1626037	4789163	n.d.	7,43	n.d.	15,5	179	62	145	4	377	283	301	23	0,080	0,003	81,00	n.d.	n.d.	n.d.	n.d.	n.d.	NISI et alii (2007)
PO 163618 477850 1.987 1.75 2.18 30 8 2 411 97 240 2.0 0.308 182.000 4.1 n.d. n.d. Not Addit 20001 P3416 1026344 4792230 0.387 7.19 n.d. 1.75 7.18 N.8 dail 1.4 7.0 N.8 dail 2.00 0.00 0.00 0.00 3.00 n.d.	P228	1626044	4793989	0,374	7,28	n.d.	18,7	173	32	96	3	393	54	308	22	0,080	0,002	22,00	n.d.	n.d.	n.d.	n.d.	n.d.	NISI et alii (2007)
PH46 16236 478901 A.2 7.5 n.4 1.6,1 1.6,1 1.6 5.6 8.8 4.20 1.02 0.00 0.00 0.00 0.00 n.4	PO	1626138	4778556	0,399	7.05(*)	n.d.	17,5	218	36	81	2	411	97	240	22	0,130	0,318	192,00	0,4	n.d.	n.d.	n.d.	n.d.	NISI et alii (2007)
P248 1 126454 479235 0,88 7,9 n.d. 17,8 17,6 17,5 17,5 17,5 2 442 29 10 21 0,00 3,80 n.d. n.d. n.d. N18 dial 1000000000000000000000000000000000000	P416	1626516	4780801	n.d.	7,56	n.d.	16,3	161	46	54	8	429	129	102	23	0,040	0,026	155,00	0,3	n.d.	n.d.	n.d.	n.d.	NISI et alii (2007)
P222 1626/2 479437 Q;T1 Z.1 Ad. 1/2 1/2 2 4/42 2 1/6 2 1/6 2 1/6 2 1/6 2 1/6 2 1/6 2 1/6 2 1/6 2 1/6 2 1/6 2 1/6 2 1/6 2 1/6 2 1/6 1/6 1/7 1/6 1/6 1/7 1/6 1/6 1/7 1/6 1/7 1/6 1/6 1/7 1/6 1/7 1/6 1/7 1/6 1/7 1/6 1/7 1/6 1/7 1/6 1/7 1/6 1/7 1/6 1/7 <td>P248</td> <td>1626544</td> <td>4792205</td> <td>0,385</td> <td>7,19</td> <td>n.d.</td> <td>17,8</td> <td>176</td> <td>85</td> <td>81</td> <td>1</td> <td>470</td> <td>360</td> <td>168</td> <td>25</td> <td>0,060</td> <td>0,002</td> <td>38,00</td> <td>n.d.</td> <td>n.d.</td> <td>n.d.</td> <td>n.d.</td> <td>n.d.</td> <td>NISI et alii (2007)</td>	P248	1626544	4792205	0,385	7,19	n.d.	17,8	176	85	81	1	470	360	168	25	0,060	0,002	38,00	n.d.	n.d.	n.d.	n.d.	n.d.	NISI et alii (2007)
P365 102621 478104 Qx83 x80 r r y80 r y80 r y80 r y80 r y80 z80 z80 z80 z80 z80 z80 z80 Qx00 Qx	P222	1626612	4794397	0,371	7,21	n.d.	19,2	136	19	54	2	442	29	116	21	0,120	0,003	3,80	n.d.	n.d.	n.d.	n.d.	n.d.	NISI et alii (2007)
PB 162628 4781146 0,38 7,26 n.1 6,3 147 40 85 1 441 118 158 25 0,05 0,01 8,01 0,1 n.d. n.d. n.d. n.d. n.d. n.d. N.IS <i>et alii</i> (2007) P1 162701 478380 0,39 7,30 n.d. 18,0 6 25 49 3 244 121 258 6 0,00 0,31 n.d. n.d. n.d. N.IS <i>et alii</i> (2007) P948 162700 4778333 0,416 6.82 n.d. 1.8 7 4 3 50 141 131 29 040 0,02 124,0 n.d. n.d. n.d. N.SI <i>et alii</i> (2007) P251 162844 4799533 0,43 6,5 n.d. 1.62 7.7 7.8 3 503 68 124 2 0,40 0,02 14,0 n.d. n.d. n.d. N.S. <i>e</i>	P365	1626621	4783104	0,363	7.36(*)	n.d.	17,5	92	26	33	1	369	55	52	24	0,290	0,060	6,00	0,3	n.d.	n.d.	n.d.	n.d.	NISI et alii (2007)
P239 1626677 4792817 0,380 7,20 n.d. 18,2 168 3 85 3 433 103 210 0,000 27,00 0,3 n.d. n.d. n.d. NIS <i>et alli</i> (2007) P1 1627011 4783890 0,39 7,30 n.d. 18,0 66 25 49 3 244 30 118 23 0,40 0,31 35.40 0.5 n.d. n.d. NIS <i>et alli</i> (2007) PA 1627030 4778333 0,41 6,8 n.d. 18,0 162 71 42 138 6 488 61 165 27 179 033 80.0 3. n.d. n.d. n.d. N.st <i>et alli</i> (2007) P205 1627407 478865 0,412 6,8 n.d. 17.7 9 2 5 3 5 3 68 122 140 0.00 1.0. n.d. n.d. N.st <i>et alli</i> (2007) P214 1629581 4780871 0,406 6,9 0.1 17.6 120 <	PB	1626628	4781146	0,386	7,26	n.d.	16,3	147	40	85	1	441	118	158	25	0,050	0,001	84,00	0,3	n.d.	n.d.	n.d.	n.d.	NISI et alii (2007)
PI 1627011 478380 0.39 7,30 nd. 18,0 66 25 49 3 244 30 118 23 0,40 0,31 0,41 n.d. N.St et difi (2007) PM 1627246 47793818 n.d. 7,60 n.d. 18,5 7.1 42 138 6 488 61 165 7.1 7.9 0.26 64 488 61 151 2.9 0,40 0,33 0,80 0,3 n.d. n.d. n.d. N.St et difi (2007) P295 16627407 4788265 0,41 6,63 n.d. 17.7 93 26 59 3 503 68 124 2 0,40 0,00 16,40 n.d. N.St et difi	P239	1626657	4792817	0,380	7,20	n.d.	19,2	168	33	85	3	433	103	219	21	0,060	0,003	27,00	0,3	n.d.	n.d.	n.d.	n.d.	NISI et alii (2007)
PA 1627090 4778333 0,416 6,82 n.d. 18,1 277 65 101 9 671 121 28 26 0,40 0,31 354,00 0,5 n.d. n.d. n.d. N.St et difficion P995 1627407 478826 0,41 6,88 n.d. 18,0 126 73 94 3 505 114 131 29 0,40 0,02 12,40 n.d. n.d. n.d. n.d. N.St et difficion P439 1628644 4779533 0,41 6,63 n.d. 17,7 93 26 59 3 503 68 124 26 0,50 0,00 n.d. n.d. n.d. N.St et difficion P272 1628880 478037 0,416 6,82 n.d. 17,5 126 22 64 19 12 12,000 0,00 n.d. n.d. n.d. N.St et difficion P36 1629537 478	PI	1627011	4783890	0,359	7,30	n.d.	18,0	66	25	49	3	244	30	118	23	0,040	0,341	0,10	0,3	n.d.	n.d.	n.d.	n.d.	NISI et alii (2007)
P94bis 1627246 4799818 n.d. 7.60 n.d. 18,5 7.1 42 138 6 488 61 165 27 1790 0.033 0.80 0.3 n.d. n.d. n.d. N.is <i>et alii</i> (2007) P295 1627407 4788265 0,412 6,88 n.d. 17,0 3 26 505 14 131 29 0,040 0,020 140,0 n.d. n.d. n.d. Nis <i>et alii</i> (2007) P272 1628884 479069 0,364 7,32 n.d. 102 45 95 3 503 68 122 21 0,000 0,02 1,00 n.d. n.d. n.d. Nis <i>et alii</i> (2007) P274 1629537 4784324 0,410 6,82 n.d. 19,5 126 22 62 2 994 66 109 22 0,400 0,10 n.d. n.d. n.d. Nis <i>et alii</i> (2007) 161654 1629531	PA	1627030	4778333	0,416	6,82	n.d.	18,1	297	65	101	9	671	121	258	26	0,140	0,131	354,00	0,5	n.d.	n.d.	n.d.	n.d.	NISI et alii (2007)
P295 1627407 4788826 0,412 6,88 n.d. 18,0 126 73 94 3 505 114 131 29 0,400 0,002 124,00 n.d. n.d. n.d. N.is< et alii (2007) P439 1028644 4779533 0,431 6,63 n.d. 17,7 93 26 59 3 503 68 124 26 0,050 0,002 64,0 n.d. n.d. n.d. Nis et alii (2007) P272 1628880 4789087 0,406 6,94 n.d. 17,6 120 45 95 3 503 68 124 26 0,000 0,002 1,00 n.d. n.d. n.d. Nist et alii (2007) P264 1629231 4780470 0,415 6,72 n.d. 19,5 126 22 64 2 387 19 0,013 0,000 n.d. n.d. n.d. Nist et alii (2007) 129 130 146	P94bis	1627246	4799818	n.d.	7,60	n.d.	18,5	71	42	138	6	488	61	165	27	1,790	0,033	0,80	0,3	n.d.	n.d.	n.d.	n.d.	NISI et alii (2007)
P439 1628644 4779533 0,431 6,63 n.d. 17,7 93 26 59 3 268 62 84 24 0,400 0,201 118,00 n.d. n.d. n.d. N.SIS <i>et allii</i> (2007) P272 1628880 4789069 0,466 694 n.d. 17,6 120 45 95 3 503 68 124 26 0,000 0,002 1,00 n.d. n.d. n.d. N.SIS <i>et allii</i> (2007) P264 1629537 4784324 0,410 6,82 n.d. 19,5 126 22 62 2 394 66 109 22 0,000 0,013 40,00 n.d. n.d. n.d. N.SIS <i>et allii</i> (2007) P386 1629581 4785080 0,421 6,72 n.d. 16,8 152 25 46 2 387 68 93 19 0,000 2,00 n.d. n.d. n.d. N.SIS <i>et allii</i> (2007)	P295	1627407	4788265	0,412	6,88	n.d.	18,0	126	73	94	3	505	114	131	29	0,040	0,002	124,00	n.d.	n.d.	n.d.	n.d.	n.d.	NISI et alii (2007)
P272 1628880 478087 0.406 6.94 n.d. 17.6 120 45 95 3 503 68 124 26 0.002 0.400 n.d. n.d. n.d. Nist <i>et alii</i> (2007) P264 1629231 4790609 0.364 7.32 n.d. 0.5 134 34 70 2 355 168 122 21 0.000 0.013 4.00 n.d. n.d. n.d. Nist <i>et alii</i> (2007) P386 1629581 47832071 0.415 6.72 n.d. 1.05 1.5 2 464 113 88 22 0.040 0.013 4.00 n.d. n.d. n.d. Nist <i>et alii</i> (2007) P329 1630905 4785308 0.42 6.72 n.d. 1.68 152 2.5 46 2 387 1.9 0.010 0.020 6.00 n.d. n.d. n.d. N.st <i>et alii</i> (2007) 229 1630905 478514	P439	1628644	4779533	0,431	6,63	n.d.	17,7	93	26	59	3	268	62	84	24	0,040	0,020	118,00	n.d.	n.d.	n.d.	n.d.	n.d.	NISI et alii (2007)
P264 1629231 4790609 0,364 7,32 n.d. 20,5 134 34 70 2 355 168 122 21 0,000 10,00 n.d. n.d. n.d. N.ISI <i>et alli</i> (2007) PM 1629537 4784324 0,410 6,82 n.d. 19,5 126 22 62 2 394 66 109 22 0,040 0,013 40,00 n.d. n.d. n.d. N.ISI <i>et alli</i> (2007) P386 1629581 4782071 0,415 6,72 n.d. 16,8 152 25 46 2 387 68 93 19 0,050 0,02 34,0 n.d. n.d. n.d. N.ISI <i>et alli</i> (2007) average SW 0,289 8,22 25,0 412 192 10768 399 132 2712 1935 26 0,030 0,020 5,06 0,6 n.d. n.d. n.d. N.BI <i>et alli</i> (2007) 122 166 <	P272	1628880	4789087	0,406	6,94	n.d.	17,6	120	45	95	3	503	68	124	26	0,050	0,002	64,00	n.d.	n.d.	n.d.	n.d.	n.d.	NISI et alii (2007)
PM 1629537 4784324 0,410 6,82 n.d. 19,5 126 22 62 2 394 66 109 22 0,040 0,013 40,00 n.d. n.d.<	P264	1629231	4790609	0,364	7,32	n.d.	20,5	134	34	70	2	355	168	122	21	0,090	0,002	10,00	n.d.	n.d.	n.d.	n.d.	n.d.	NISI et alii (2007)
P386 1629581 4782071 0,415 6,72 n.d. 20,0 149 35 45 2 464 113 88 22 0,001 26,00 n.d. n.d. n.d. N.Is et alii (2007) P329 1630905 4785308 0,421 6,72 n.d. 168 152 25 46 2 387 68 93 19 0,050 0,002 34,00 n.d. n.d. n.d. N.Is et alii (2007) average SW 0 289 8,22 25,0 412 129 10768 399 132 2712 19353 26 0,030 0,020 0,6 n.d. n.d. n.d. N.Is et alii (2007) 11 1615674 4805714 0,370 7,28 1895 17,5 162 46 156 9 625 186 203 23 0,150 0,020 5,06 0,6 n.d. n.d. </td <td>PM</td> <td>1629537</td> <td>4784324</td> <td>0,410</td> <td>6,82</td> <td>n.d.</td> <td>19,5</td> <td>126</td> <td>22</td> <td>62</td> <td>2</td> <td>394</td> <td>66</td> <td>109</td> <td>22</td> <td>0,040</td> <td>0,013</td> <td>40,00</td> <td>n.d.</td> <td>n.d.</td> <td>n.d.</td> <td>n.d.</td> <td>n.d.</td> <td>NISI et alii (2007)</td>	PM	1629537	4784324	0,410	6,82	n.d.	19,5	126	22	62	2	394	66	109	22	0,040	0,013	40,00	n.d.	n.d.	n.d.	n.d.	n.d.	NISI et alii (2007)
P329 1630905 4785308 0,421 6,72 n.d. 16,8 152 25 46 2 387 68 93 19 0,000 0,002 34,00 n.d. n.d. n.d. n.d. N.Is et alii (2007) average SW 0,289 8,22 25,0 412 1292 10768 399 132 2712 19353 26 0,030 0,20 0,29 67,3 1,39 4,620 0,002 NORESTROME alii (2007) 11 1616534 4804200 n.d. 7,65 1489 17,5 162 46 156 9 625 186 203 23 0,150 0,002 5,06 0,6 n.d. n.d. n.d. n.d. PRANZINI (2004a) 27 1616534 4806235 0,397 7,15 1879 17,5 199 31 140 3 382 251 19 0,010 0,020 84,36 0,9 n.d. n.d. <td>P386</td> <td>1629581</td> <td>4782071</td> <td>0,415</td> <td>6,72</td> <td>n.d.</td> <td>20,0</td> <td>149</td> <td>35</td> <td>45</td> <td>2</td> <td>464</td> <td>113</td> <td>88</td> <td>22</td> <td>0,040</td> <td>0,013</td> <td>26,00</td> <td>n.d.</td> <td>n.d.</td> <td>n.d.</td> <td>n.d.</td> <td>n.d.</td> <td>NISI et alii (2007)</td>	P386	1629581	4782071	0,415	6,72	n.d.	20,0	149	35	45	2	464	113	88	22	0,040	0,013	26,00	n.d.	n.d.	n.d.	n.d.	n.d.	NISI et alii (2007)
average SW 0,289 8,22 25,0 412 1292 10768 399 132 2712 19353 26 0,030 0,020 0,29 67,3 1,39 4,620 0,002 0,002 NORDSIRGMAR dali (179) 11 1615674 4805714 0,370 7,28 1895 17,5 162 46 156 9 625 186 203 23 0,150 0,020 5,06 0,6 n.d.	P329	1630905	4785308	0,421	6,72	n.d.	16,8	152	25	46	2	387	68	93	19	0,050	0,002	34,00	n.d.	n.d.	n.d.	n.d.	n.d.	NISI et alii (2007)
11 1615674 4805714 0,370 7,28 1895 17,5 162 46 156 9 625 186 203 23 0,150 0,020 5,06 0,6 n.d. n	average SW			0,289	8,22		25,0	412	1292	10768	399	132	2712	19353	26	0,030	0,020	0,29	67,3	1,39	4,620	0,002	0,0002	Nordstrom <i>et alii</i> (1979)
27 1616534 4804200 n.d. 7,65 1489 17,5 136 39 111 5 307 199 180 20 n.d. 0,040 37,75 0,4 n.d. n.	11	1615674	4805714	0,370	7,28	1895	17,5	162	46	156	9	625	186	203	23	0,150	0,020	5,06	0,6	n.d.	n.d.	n.d.	n.d.	Pranzini (2004a)
5 1616894 4806235 0,39/ 7,15 18/9 17,5 199 31 140 3 382 251 19 0,010 0,020 84,36 0,9 n.d.	27	1616534	4804200	n.d.	7,65	1489	17,5	136	39	111	5	307	199	180	20	n.d.	0,040	37,75	0,4	n.d.	n.d.	n.d.	n.d.	PRANZINI (2004a)
38 161/196 4802938 0,349 7,42 7/60 17,5 291 210 1066 29 808 540 1807 29 0,70 0,080 0,99 8,4 n.d. n.d. <t< td=""><td>5</td><td>1616894</td><td>4806235</td><td>0,397</td><td>7,15</td><td>18/9</td><td>17,5</td><td>199</td><td>31</td><td>140</td><td>3</td><td>382</td><td>251</td><td>251</td><td>19</td><td>0,010</td><td>0,020</td><td>84,36</td><td>0,9</td><td>n.d.</td><td>n.d.</td><td>n.d.</td><td>n.d.</td><td>PRANZINI (2004a)</td></t<>	5	1616894	4806235	0,397	7,15	18/9	17,5	199	31	140	3	382	251	251	19	0,010	0,020	84,36	0,9	n.d.	n.d.	n.d.	n.d.	PRANZINI (2004a)
42 1617920 4802430 n.d. /.06(°) 960 15,8 125 35 70 1 350 125 130 23 n.d. 0,020 65,00 0,1 n.d. 0,120 0,020 0,020 0,020 0,120 0,020 0,020 0,120 0,020 0,020 0,200 0,120 0,020 0,020 0,200 0,120 0,020 0,020 0,200 0,120 0,020 0,020 0,200 0,120 0,020 0,020 0,200 0,120 0,020 <t< td=""><td>38</td><td>161/196</td><td>4802938</td><td>0,349</td><td>7,42</td><td>7760</td><td>17,5</td><td>291</td><td>210</td><td>1066</td><td>29</td><td>808</td><td>540</td><td>1807</td><td>29</td><td>0,970</td><td>0,080</td><td>0,99</td><td>8,4</td><td>n.d.</td><td>n.d.</td><td>n.d.</td><td>n.d.</td><td>PRANZINI (2004a)</td></t<>	38	161/196	4802938	0,349	7,42	7760	17,5	291	210	1066	29	808	540	1807	29	0,970	0,080	0,99	8,4	n.d.	n.d.	n.d.	n.d.	PRANZINI (2004a)
7.5 161/926 480/105 0,380 7,16 1656 17,5 102 16 208 9 446 62 2.53 2.1 0,250 0,030 12,92 0,4 n.d. n.d. <t< td=""><td>42</td><td>161/920</td><td>4802430</td><td>n.d.</td><td>7.06(*)</td><td>960</td><td>15,8</td><td>125</td><td>35</td><td>70</td><td>1</td><td>350</td><td>125</td><td>130</td><td>23</td><td>n.d.</td><td>0,020</td><td>65,00</td><td>0,1</td><td>n.d.</td><td>0,120</td><td>0,02</td><td>0,0030</td><td>PRANZINI (2004a)</td></t<>	42	161/920	4802430	n.d.	7.06(*)	960	15,8	125	35	70	1	350	125	130	23	n.d.	0,020	65,00	0,1	n.d.	0,120	0,02	0,0030	PRANZINI (2004a)
133 1618000 4798840 0,490 5,56 3600 20,0 1000 56 9900 138 32.5 52.50 19400 2.5 0,010 0,010 2,50 n.d. n.d. n.d. n.d. 0,250 0,9300 PRANZINI (2004a) 133 1618080 4798840 n.d. 6.75(*) 38600 17,5 1660 36 9900 138 323 3250 13490 21 n.d. n.d. n.d. n.d. 0,25 0,3300 PRANZINI (2004a) 135 1618226 4798676 0,323 7,94 38900 17,5 522 843 5890 189 376 1200 11078 21 0,120 0,310 4,00 43,8 n.d.	122	161/926	4801105	0,580	7,16	29(00	20.0	102	26	208	120	202	2250	12400	21	0,250	0,050	2.50	0,4	n.d.	n.d.	n.d.	n.d.	PRANZINI (2004a)
135 1618080 4/98840 n.d. 6, /3(2) 3800 17,5 1600 36 9900 18 325 3250 13490 21 n.d. n.d. <td>135</td> <td>1618080</td> <td>4798840</td> <td>0,490</td> <td>5,50</td> <td>20(00</td> <td>20,0</td> <td>1000</td> <td>26</td> <td>9900</td> <td>138</td> <td>323</td> <td>3250</td> <td>12490</td> <td>23</td> <td>1,010</td> <td>0,010</td> <td>2,50</td> <td>n.d.</td> <td>n.d.</td> <td>n.d.</td> <td>0,25</td> <td>0,2200</td> <td>PRANZINI (2004a)</td>	135	1618080	4798840	0,490	5,50	20(00	20,0	1000	26	9900	138	323	3250	12490	23	1,010	0,010	2,50	n.d.	n.d.	n.d.	0,25	0,2200	PRANZINI (2004a)
155 1618226 4/980/6 0,22 7,94 38900 17,5 522 845 5890 189 5/6 1200 110/8 21 0,120 0,510 4,00 43,8 n.d.	135	1618080	4798840	n.d.	6./5(*)	38600	17,5	500	30	5900	138	323	3250	13490	21	n.d.	n.d.	3,00	n.d.	n.d.	n.d.	0,25	0,5500	PRANZINI (2004a)
55 1018598 4803511 0,580 7,24 1210 17,5 154 29 55 5 414 80 92 20 0,190 0,250 50,19 0,4 n.d. n.d. n.d. n.d. n.d. PRANZINI (2004a)	22	1618226	4/986/6	0,525	7,94	1216	17,5	154	84.5	5890	189	3/6	1200	02	20	0,120	0,310	4,00	43,8	n.d.	n.d.	n.d.	n.d.	PRANZINI (2004a)
(1)		1(19020	4805511	0,580	7,24	072	17,5	154	17	33	21	507	20	20	20	0,190	0,250	50,19	0,4	n.d.	n.d.	n.d.	n.d.	PRANZINI (2004a)
00 1010220 4001310 11.d. 7,20 7/2 17,3 112 17 47 31 307 30 36 10 0,300 0,010 n.d. 0,2 n.d. n.d. n.d. n.d. n.d. PRANZINI (2004a)	100	1610010	4001010	11.d.	1,28 8.24	020	16.2	112	17	4/	10	307	30	- 3ð - 71	22	0,530	0,070	11.d.	0,2	11.d.	11.d.	11.d.	11.d.	т кліндіні (2004-)
100 1012010 4000020 0.24 720 10.3 11 17 40 4 324 45 71 22 0.01 0.30 0.10 0.04 0.000 0.04 0.000 0.04 0.000 0.04 0.000 0.01 <th0.01< th=""> <th0.01< th=""> <th0.01< th=""></th0.01<></th0.01<></th0.01<>	Po11	1610010	4700002	0.204	7 10	920	17.0	127	17	40	- 4	240	43 57	/ I E 1	10	0,010	<0.010	70 70	0,1	11.d.	0,100	0,04	0,0040	т клімі (2004а)
Deri 1012012 4777322 0224 1,0 222 1,0 127 17 47 7 240 37 31 12 50 500 78,00 020 at 1.6 at	172	1610150	4707220	0,094	7 24	2220	17 5	15/	1/ Q/	125	7	548 605	125	324	27	0.010	0.00	10,10	1.6	n.d.	n.d.	n.d.	n.d.	т кліісті (2004а)
172 1012122 177520 II.d. 7,34 2230 17,5 105 04 155 7 005 125 530 27 001 0,020 n.d. 1,0 n.d. n.d. n.d. n.d. n.d. PRANZINI (2004a)	170	1610457	4/9/320	11.a.	7 52	11700	175	205	402	1.00	71	441	510	3000	21	0,010	0,020	0.25	1,0	11.d.	11.d.	11.d.	11.d.	т клімлі (2004а)
170 1012757 4770014 0.0017 0.0 107 17.5 154 46 162 1 409 192 244 25 0.020 0.00 57.41 0.7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1/8	1610520	4700070	0,238	7.04	11/90	17.5	154	402	1000	1	441	192	244	25	0,740	0,020	U,25	13,3	11.d.	11.d.	11.d.	11.d.	TRANZINI (2004)
120 1012300 4/70200 0.500 1.504 10.5 1 490 102 244 25 0.000 0.01 0.6 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. PRANZINI (2004a) Ba06 1610537 4902024 0.308 7.00 9.60 17.3 120 27 47 2 200 7.4 60 21 <0.01	120 P.00	1610527	4/909004	0,400	7,04	194/	17.2	124	40	10.5	2	498 200	102	60	23	0,000	0,010	37 70	0,7	11.d.	11.d.	11.d.	11.d.	TRANZINI (2004a)
52 1610500 4902010 0.397 7.25 003 16.6 132 22 49 1 279 7 64 20 0.010 0.010 0.010 0.00 - 1 0.100 0.22 0.0120 D	52	1610500	4002024	0,297	7,00	000	16.0	129	2/	4/	1	270	07	64	20	0.010	0.010	20.10	0,2	11.d.	11.d.	0.22	11.d.	т клидіні (2004а)
Ca03 1619755 4904646 0 380 7 10 1406 164 150 85 98 9 427 304 127 20 000 <001 470 0.0 ad	Ca03	1610755	4804646	0,280	7 10	1404	16.4	152	2.3 85	40	0	427	304	127	20	0,010	<0.010	4 70	0,0	n.d.	0,100	n d	n d	PRANZINI (2004a)

Sigla	Est G_B_	Nord G_B_	Eh	pН	EC	t	Ca	Mg	Na	к	HCO ₃	\mathbf{so}_4	Cl	SiO ₂	\mathbf{NH}_4	NO_2	NO ₃	Br	F	В	Fe	Mn	Dati bibliografici
	(UTM)	(UTM)	(V)		μS/cm	°C	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	
66	1619775	4801460	0,395	7,14	948	17,1	103	24	62	1	253	56	144	22	0,010	0,010	29,00	0,1	n.d.	0,110	0,02	0,0040	Pranzini (2004a)
Ca02	1619832	4804616	0,466	6,00	1336	16,7	140	82	98	3	500	232	111	24	< 0.1	< 0.01	7,20	0,5	n.d.	n.d.	n.d.	n.d.	Pranzini (2004a)
Be04	1619836	4801550	0,392	7,10	958	17,0	130	27	50	4	360	51	75	20	< 0.1	< 0.01	35,60	0,3	n.d.	n.d.	n.d.	n.d.	Pranzini (2004a)
Ca01	1619840	4804661	0,461	6,20	1378	13,2	148	81	79	2	506	267	103	24	< 0.1	< 0.01	17,00	0,4	n.d.	n.d.	n.d.	n.d.	Pranzini (2004a)
Mi05	1619851	4805130	0,325	7,60	1420	18,5	166	80	95	4	384	546	103	21	3,100	< 0.01	0,20	0,7	n.d.	n.d.	n.d.	n.d.	Pranzini (2004a)
Mi04	1619902	4805261	0,346	7,60	1367	17,3	127	69	97	3	427	372	82	26	3,200	< 0.01	65,00	0,7	n.d.	n.d.	n.d.	n.d.	Pranzini (2004a)
Mi06	1619922	4804935	0,384	7,20	1337	17,0	139	83	94	2	488	209	101	24	< 0.1	< 0.01	26,40	0,6	n.d.	n.d.	n.d.	n.d.	Pranzini (2004a)
Rm88	1620112	4797422	0,389	7,20	1887	17,5	250	64	154	4	360	228	419	19	< 0.05	n.d.	121,00	2,0	n.d.	n.d.	n.d.	n.d.	Pranzini (2004a)
170	1620112	4797422	0,369	7,52	1468	17,1	212	49	81	3	415	155	228	18	0,010	0,010	50,00	0,1	n.d.	0,200	0,02	0,0130	Pranzini (2004a)
146	1620120	4798185	0,399	7,06	5780	17,5	407	148	548	10	411	381	1453	21	0,040	0,020	84,25	6,5	n.d.	n.d.	n.d.	n.d.	Pranzini (2004a)
Mi02	1620130	4805548	0,388	6,80	1418	17,1	162	87	84	3	445	377	98	22	1,900	< 0.01	0,20	0,4	n.d.	n.d.	n.d.	n.d.	Pranzini (2004a)
54	1620160	4801930	0,404	7,02	1177	17,7	152	29	59	2	427	94	117	21	0,010	0,010	45,10	0,1	n.d.	0,100	0,08	0,0110	Pranzini (2004a)
Be10	1620190	4802194	0,398	7,00	1070	17,4	144	35	67	2	403	90	111	21	< 0.1	< 0.01	37,60	0,4	n.d.	n.d.	n.d.	n.d.	Pranzini (2004a)
R m70	1620195	4798360	n.d.	7,00	4330	17,5	471	178	404	5	421	313	1410	22	< 0.05	n.d.	103,00	5,7	n.d.	n.d.	n.d.	n.d.	Pranzini (2004a)
140	1620195	4798360	0,421	6,83	2729	16,4	320	94	176	4	451	131	722	21	0,010	0,010	52,00	0,3	n.d.	0,100	0,07	0,0160	Pranzini (2004a)
74	1620340	4801050	0,396	7,11	1209	18,4	180	19	68	2	403	120	149	19	0,010	0,010	46,10	0,1	n.d.	0,100	0,67	0,0130	Pranzini (2004a)
Be03	1620355	4801093	0,400	7,00	1136	17,0	162	21	74	2	384	82	131	19	< 0.1	< 0.01	49,50	0,5	n.d.	n.d.	n.d.	n.d.	Pranzini (2004a)
78	1620370	4800840	0,400	7,14	1188	15,9	187	20	67	2	420	95	135	18	0,010	0,010	52,90	0,0	n.d.	0,130	0,85	0,0130	Pranzini (2004a)
62	1620400	4801670	0,399	7,10	1198	17,1	157	28	70	2	397	130	131	20	0,010	0,010	41,20	0,0	n.d.	0,100	0,05	0,0060	Pranzini (2004a)
62	1620400	4801670	0,381	7,29	1079	18,5	120	29	85	1	384	85	142	23	0,010	0,010	30,00	0,1	n.d.	0,170	0,01	0,0040	Pranzini (2004a)
Be07	1620469	4801936	0,398	7,00	1107	17,6	143	32	74	2	397	99	110	20	< 0.1	< 0.01	35,40	< 0.1	n.d.	n.d.	n.d.	n.d.	Pranzini (2004a)
81	1620520	4800690	0,390	7,18	1020	17,6	145	24	53	2	403	74	96	20	0,010	0,010	19,80	0,1	n.d.	0,100	0,03	0,0040	Pranzini (2004a)
88	1620605	4800530	0,397	7,13	1278	17,3	175	26	75	2	427	117	156	20	0,010	0,010	46,90	0,1	n.d.	0,100	0,30	0,0060	Pranzini (2004a)
113	1620615	4799500	0,408	6,96	1197	18,1	174	32	68	1	433	113	131	20	0,010	0,010	50,00	0,1	n.d.	0,130	0,07	0,0110	Pranzini (2004a)
Rm93	1620620	4797080	n.d.	7,50	2520	17,5	250	139	209	5	397	277	660	26	< 0.05	n.d.	68,70	2,8	n.d.	n.d.	n.d.	n.d.	Pranzini (2004a)
Be05	1620660	4800579	0,392	7,10	1265	17,5	155	28	88	2	366	94	149	20	< 0.1	< 0.01	53,50	0,6	n.d.	n.d.	n.d.	n.d.	Pranzini (2004a)
58	1620700	4801750	0,404	7,06	1334	16,4	180	20	91	1	415	128	157	19	0,010	0,010	55,40	0,1	n.d.	0,100	0,06	0,0110	Pranzini (2004a)
Mi01	1620724	4805795	0,422	6,60	1768	17,1	323	77	92	2	275	888	66	21	< 0.1	< 0.01	5,90	0,2	n.d.	n.d.	n.d.	n.d.	Pranzini (2004a)
Rm101bis	1620735	4796185	n.d.	7,50	3050	17,5	238	140	405	3	531	369	723	30	< 0.05	n.d.	216,00	0,7	n.d.	n.d.	n.d.	n.d.	Pranzini (2004a)
188	1620735	4796185	0,384	7,31	2130	17,5	104	79	223	1	660	158	210	31	0,010	0,020	52,84	1,4	n.d.	n.d.	n.d.	n.d.	Pranzini (2004a)
46	1620740	4802280	0,401	7,03	1387	17,7	200	36	67	2	439	149	160	18	0,010	0,010	22,10	0,1	n.d.	0,100	0,04	0,0110	Pranzini (2004a)
Be08	1620798	4802018	0,408	6,90	1235	17,1	167	20	98	2	384	102	142	19	< 0.1	< 0.01	69,90	< 0.1	n.d.	n.d.	n.d.	n.d.	Pranzini (2004a)
Be09	1620852	4802598	0,399	7,00	1136	17,0	177	35	81	1	409	125	141	19	< 0.1	< 0.01	40,50	0,6	n.d.	n.d.	n.d.	n.d.	Pranzini (2004a)
98	1620880	4800085	n.d.	8,01	1320	18,1	172	35	80	2	433	124	156	20	0,010	0,010	46,00	0,1	n.d.	0,100	0,18	0,0080	Pranzini (2004a)
Mi00	1620922	4805922	0,405	6,90	1823	17,2	343	84	74	6	348	890	9	21	< 0.1	< 0.01	28,90	0,3	n.d.	n.d.	n.d.	n.d.	Pranzini (2004a)
148	1620990	4798140	0,396	7,18	1106	16,1	156	25	75	1	421	72	124	20	0,010	0,010	50,00	0,1	n.d.	0,300	0,03	0,0160	Pranzini (2004a)
207	1621354	4795186	0,375	7,33	1672	17,5	148	56	104	16	428	116	226	20	0,050	0,100	24,79	0,7	n.d.	n.d.	n.d.	n.d.	Pranzini (2004a)
130	1621362	4798875	0,322	8,13	1450	18,6	172	41	97	2	458	120	178	21	0,010	0,010	55,00	0,0	n.d.	0,100	0,02	0,0030	Pranzini (2004a)
64	1621450	4801590	0,357	7,87	1303	17,5	132	49	53	4	324	140	193	24	0,010	0,010	37,00	0,1	n.d.	n.d.	0,05	0,0100	Pranzini (2004a)
64	1621450	4801590	0,342	7,65	1159	17,9	146	44	73	1	393	138	192	24	0,010	0,010	37,00	0,1	n.d.	0,100	0,03	0,0030	Pranzini (2004a)
Cn21	1621508	4799169	0,378	7,30	1132	17,8	141	19	72	2	439	83	81	21	< 0.05	< 0.016	46,00	0,2	n.d.	n.d.	n.d.	n.d.	Pranzini (2004a)
Rm85	1621530	4797625	n.d.	7,50	1572	17,5	179	81	130	3	427	160	192	27	< 0.05	n.d.	276,00	< 0.1	n.d.	n.d.	n.d.	n.d.	Pranzini (2004a)
163	1621530	4797625	0,365	7,41	1470	17,5	176	65	98	3	470	129	170	20	0,010	0,010	21,80	0,1	n.d.	n.d.	0,07	0,0100	Pranzini (2004a)
121	1621530	4799030	0,374	7,57	1178	17,5	156	20	72	1	427	75	107	20	0,010	0,010	49,00	0,2	n.d.	0,120	0,04	0,0060	Pranzini (2004a)
210	1621541	4795093	0,369	7,52	1698	17,5	134	57	101	17	420	131	180	21	0,010	0,080	55,33	0,9	n.d.	n.d.	n.d.	n.d.	Pranzini (2004a)
Cn19	1621565	4798811	0,387	7,20	1165	17,3	158	21	90	2	409	73	91	18	< 0.05	< 0.016	48,00	0,3	n.d.	n.d.	n.d.	n.d.	Pranzini (2004a)
120	1621575	4799055	0,406	6,98	1223	18,0	155	19	84	2	415	112	106	20	0,010	0,010	48,50	0,0	n.d.	0,100	0,18	0,0050	Pranzini (2004a)
Cn06	1621587	4799095	0,395	7,10	1179	17,0	160	21	99	2	458	92	85	19	< 0.05	<0.016	50,50	1,0	n.d.	n.d.	n.d.	n.d.	Pranzini (2004a)
																							segue

Sigla	Est G_B_	Nord G_B_	Eh	pН	EC	t	Ca	Mg	Na	K	нсо3	\mathbf{so}_4	Cl	SiO ₂	\mathbf{NH}_4	NO ₂	NO ₃	Br	F	В	Fe	Mn	Dati bibliografici
	(UTM)	(UTM)	(V)		μS/cm	°C	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	
Cn08	1624416	4797293	0,434	6,50	1304	17,0	183	28	75	3	439	57	171	18	< 0.05	< 0.016	15,90	< 0.1	n.d.	n.d.	n.d.	n.d.	PRANZINI (2004a)
173	1624435	4797290	0,406	7,02	1397	15,6	185	30	63	3	402	64	207	19	0,010	0,010	19,20	0,1	n.d.	0,100	0,48	0,0080	PRANZINI (2004a)
196	1624445	4795990	0,404	6,95	2580	19,0	284	62	163	5	429	89	582	17	0,010	0,010	21,40	0,2	n.d.	0,180	0,90	0,0110	PRANZINI (2004a)
142	1624450	4798325	0,260	8,78	1020	17,5	72	45	95	4	409	35	128	26	0,300	0,200	5,00	0,1	n.d.	n.d.	0,09	0,0100	PRANZINI (2004a)
Rm139	1624562	4792587	n.d.	7,30	1275	17,5	186	41	70	4	427	157	144	20	< 0.05	n.d.	84,60	0,6	n.d.	n.d.	n.d.	n.d.	PRANZINI (2004a)
244	1624562	4792587	0,404	7,03	1811	15,4	170	66	155	3	555	204	250	24	0,010	0,010	11,40	0,1	n.d.	0,130	0,20	0,0630	PRANZINI (2004a)
136	1624575	4798555	0,351	7,67	1227	18,6	96	57	86	4	439	80	157	27	0,010	0,050	13,00	0,1	n.d.	0,180	0,08	0,0050	PRANZINI (2004a)
136	1624575	4798555	0,340	7,88	978	17,5	102	59	81	2	480	102	145	28	0,010	0,010	22,00	0,1	n.d.	0,160	0,02	0,0040	PRANZINI (2004a)
141	1624790	4798335	0,236	9,05	1264	17,5	56	49	127	7	348	60	203	26	0,800	0,020	2,60	0,1	n.d.	n.d.	0,16	0,1200	PRANZINI (2004a)
Cn12	1624820	4794674	0,413	6,80	1248	17,5	137	34	81	4	348	53	186	20	< 0.05	< 0.016	20,70	< 0.1	n.d.	n.d.	n.d.	n.d.	PRANZINI (2004a)
219	1624820	4794660	0,393	7,15	1332	17,5	147	37	70	4	341	68	242	22	0,010	0,010	21,80	0,1	n.d.	0,100	0,07	0,0050	PRANZINI (2004a)
323	1624829	4785628	0,371	7,31	961	17,5	99	32	47	3	445	20	60	24	0,010	0,020	0,97	0,3	n.d.	n.d.	n.d.	n.d.	PRANZINI (2004a)
Rm141	1625080	4792260	n.d.	7,40	1656	17,5	173	93	136	3	549	230	224	28	< 0.05	n.d.	121,00	0,9	n.d.	n.d.	n.d.	n.d.	PRANZINI (2004a)
247	1625080	4792260	0,408	6,95	1278	14,8	96	47	68	3	312	111	135	23	0,010	0,010	5,10	0,1	n.d.	0,100	0,12	0,1370	PRANZINI (2004a)
233	1625084	4793523	0,390	7,20	2430	17,5	202	47	193	3	425	153	434	21	0,010	0,010	28,67	1,6	n.d.	n.d.	n.d.	n.d.	PRANZINI (2004a)
262	1625155	4790646	0,373	7,38	1707	17,5	157	51	109	9	404	158	233	21	0,050	0,080	45,24	0,0	n.d.	n.d.	n.d.	n.d.	PRANZINI (2004a)
398	1625262	4781646	0,368	7,33	4110	17,5	148	170	402	6	511	530	779	36	0,010	0,020	0,53	2,8	n.d.	n.d.	n.d.	n.d.	PRANZINI (2004a)
319	1625272	4785928	0,377	7,26	1061	17,5	99	41	54	3	441	27	122	26	0,010	0,020	2,00	0,8	n.d.	n.d.	n.d.	n.d.	PRANZINI (2004a)
77 Ca	1625289	4781731	0,315	8,10	832	17,6	109	26	47	2	384	22	64	22	<0.1	<0.01	14,30	0,2	n.d.	n.d.	n.d.	n.d.	PRANZINI (2004a)
375	1625315	4782649	0,331	7,58	1882	17,5	76	54	176	10	375	0	347	26	4,190	0,020	0,52	1,9	n.d.	n.d.	n.d.	n.d.	PRANZINI (2004a)
253	1625321	4791535	0,387	7,24	1544	17,5	175	57	67	2	450	166	127	23	0,030	0,020	98,89	0,6	n.d.	n.d.	n.d.	n.d.	PRANZINI (2004a)
2/5	1625338	4789465	0,364	7,49	1026	17,5	93	42	35	3	308	51	131	25	0,040	0,010	27,71	0,5	n.d.	n.d.	n.d.	n.d.	PRANZINI (2004a)
/4 Ca	1625356	4/8169/	0,317	8,10	/82	17,3	107	23	40	2	366	23	5/	22	<0.1	<0.01	17,20	0,2	n.d.	n.d.	n.d.	n.d.	PRANZINI (2004a)
/5Ca	1(25220	4/81/84	0,322	8,00	601	17,0	77	10	49	2	205	25	15	22	<0.1	< 0.01	2 00	0,2	n.d.	n.d.	n.d.	n.d.	PRANZINI (2004a)
400	1625204	4776901	0,342	7,09	1004	17,5	100	10	116	2	402	02	202	20	0,080	0,010	3,09 405.01	0,5	n.d.	11.d.	n.d.	11.d.	PRANZINI (2004a)
401	1625411	4777483	0,302	7,42	1788	17,5	173	34	03	2	380	87	173	23	0,010	0,020	164.13	1.1	n.d.	n.d.	n.d.	n.d.	DRANZINI (2004a)
455	1625414	4778220	0,395	7,19	1608	17,5	176	38	84	2	423	75	108	22	0,050	0.030	127.36	1,1	n.d.	n.d.	n.d.	n.d.	PRANIZINI (2004a)
465	1625424	4775870	0,387	7.18	1320	17,5	121	31	80	3	357	69	194	23	0.040	0.020	31.24	1,7	n.d.	n.d.	n.d.	n d	PRANIZINI (2004a)
76.Ca	1625438	4781741	0,308	8 20	816	17,5	109	26	44	2	403	23	60	22	<0.1	<0.01	16.30	0.2	n.d.	n.d.	n.d.	n d	PRANZINI (2004a)
Cn10	1625571	4798541	n d	7.80	1265	18.3	92	58	80	5	470	5	159	26	1 460	<0.01	n d	0.4	n.d.	n d	n d	n d	PRANZINI (2004a)
Cn02	1625612	4797898	0.372	7.30	1114	17.3	101	52	54	3	470	55	113	26	< 0.05	< 0.016	4.10	0.3	n.d.	n.d.	n.d.	n.d.	PRANZINI (2004a)
467	1625619	4774859	0.384	7.26	1217	17.5	112	23	106	3	402	0	39	21	0.050	0.010	101.00	0.5	n.d.	n.d.	n.d.	n.d.	PRANZINI (2004a)
168	1625665	4797480	0,291	8,57	1076	15,7	109	19	98	2	439	36	103	22	0,010	0,010	6,10	0,1	n.d.	0,100	0,03	0,0020	PRANZINI (2004a)
149	1625740	4798100	0,338	7,88	1070	16,1	88	52	65	2	396	40	134	26	0,010	0,010	4,00	0,0	n.d.	0,100	0,09	0,0400	PRANZINI (2004a)
Cn01	1625745	4798138	0,391	7,00	904	17,4	106	37	55	3	415	29	77	22	< 0.05	< 0.016	1,90	0,2	n.d.	n.d.	n.d.	n.d.	PRANZINI (2004a)
257 Bi	1625842	4790163	0,362	7,50	968	17,5	111	32	38	2	366	45	111	23	< 0.05	n.d.	18,70	0,5	n.d.	n.d.	n.d.	n.d.	PRANZINI (2004a)
252 Bi	1625868	4792110	0,356	7,60	1470	16,9	150	45	61	2	427	111	160	22	< 0.05	n.d.	20,00	0,5	n.d.	n.d.	n.d.	n.d.	PRANZINI (2004a)
256 Bi	1625886	4790072	0,371	7,40	1050	17,4	125	36	48	2	366	60	125	23	< 0.05	n.d.	32,00	< 0.1	n.d.	n.d.	n.d.	n.d.	PRANZINI (2004a)
145	1625900	4798210	0,402	7,01	958	15,1	115	32	45	3	366	48	105	22	0,010	0,010	3,50	0,0	n.d.	0,100	0,03	0,0050	PRANZINI (2004a)
192	1625950	4796085	0,309	8,22	1211	17,5	147	31	76	4	381	52	221	21	0,010	1,010	2,30	0,0	n.d.	0,100	0,13	0,0100	PRANZINI (2004a)
225	1625962	4794312	n.d.	7,14	1160	17,5	116	24	70	4	391	34	143	22	n.d.	0,010	12,59	0,5	n.d.	n.d.	n.d.	n.d.	PRANZINI (2004a)
228	1626044	4793989	0,414	6,89	1221	15,8	205	26	75	4	463	62	242	19	0,010	0,010	17,10	0,1	n.d.	0,100	0,21	0,0110	PRANZINI (2004a)
118	1626125	4799150	0,267	8,82	1170	16,6	96	41	104	5	451	48	142	24	0,010	0,010	1,90	0,1	n.d.	0,210	0,08	0,0130	PRANZINI (2004a)
292	1626148	4788297	n.d.	7,36	1114	17,5	94	46	58	3	401	49	141	26	n.d.	0,010	7,56	0,5	n.d.	n.d.	n.d.	n.d.	PRANZINI (2004a)
137	1626170	4798550	0,352	7,42	1309	18,1	90	57	97	6	409	83	179	26	0,500	0,060	2,20	0,0	n.d.	0,140	0,13	0,1760	PRANZINI (2004a)
137	1626170	4798550	0,342	7,60	1234	17,7	85	54	63	4	380	65	177	27	0,400	0,010	3,00	0,0	n.d.	0,100	0,30	0,2600	PRANZINI (2004a)
424	1626384	4780221	0,314	7,95	1288	17,5	152	36	63	4	530	73	99	22	1,340	0,600	3,50	0,6	n.d.	n.d.	n.d.	n.d.	PRANZINI (2004a)
																							segue

Sigla	EstG B	Nord G B	Eh	pН	EC	t	Ca	Mg	Na	к	HCO ₃	SO₁	Cl	SiO ₂	NH	NO ₂	NO ₃	Br	F	в	Fe	Mn	Dati bibliografici
	(UTM)	(UTM)	(V)	1	μS/cm	°C	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	
451	1626416	4778537	0,402	7,01	1797	17,5	237	41	78	3	359	303	173	15	0,050	0,370	84,65	0,8	n.d.	n.d.	n.d.	n.d.	PRANZINI (2004a)
204	1626510	4795410	0,378	7,34	870	15,1	110	35	49	4	371	26	128	22	0,010	0,050	2,90	0,0	n.d.	0,100	0,33	0,0080	PRANZINI (2004a)
261	1626516	4790836	0,381	7,31	1431	17,5	130	32	101	2	437	54	187	23	0,010	0,010	18,12	1,1	n.d.	n.d.	n.d.	n.d.	PRANZINI (2004a)
222	1626612	4794397	0,411	6,86	990	15,8	177	17	52	3	451	60	121	18	0,010	0,010	2,90	0,1	n.d.	0,140	0,30	0,0160	PRANZINI (2004a)
239	1626657	4792817	0,436	6,66	1386	14,3	227	31	80	4	476	89	235	17	0,010	0,010	41,00	0,1	n.d.	0,100	0,03	0,0130	PRANZINI (2004a)
374	1626723	4782739	n.d.	7,36	1300	17,5	140	50	45	1	353	169	124	22	n.d.	0,010	17,64	0,5	n.d.	n.d.	n.d.	n.d.	PRANZINI (2004a)
458	1626745	4777809	n.d.	7,39	1342	17,5	120	30	90	4	294	46	168	23	n.d.	0,020	115,65	0,9	n.d.	n.d.	n.d.	n.d.	PRANZINI (2004a)
371	1626921	4782776	0,382	7,22	973	17,5	116	25	46	2	409	30	88	22	0,030	0,020	11,88	0,4	n.d.	n.d.	n.d.	n.d.	PRANZINI (2004a)
317	1627010	4786148	0,376	7,35	1443	17,5	162	35	75	5	469	50	147	21	0,060	0,020	61,11	0,6	n.d.	n.d.	n.d.	n.d.	PRANZINI (2004a)
101	1627025	4800000	0,280	8,67	1358	16,9	86	64	81	3	384	106	186	28	0,010	0,010	4,00	0,1	n.d.	1,000	0,07	0,0080	PRANZINI (2004a)
259	1627032	4790960	0,396	7,12	1628	17,5	147	34	129	3	428	79	237	22	0,010	0,020	32,00	1,1	n.d.	n.d.	n.d.	n.d.	PRANZINI (2004a)
253 Bi	1627065	4792180	0,372	7,40	1968	17,0	184	51	148	4	427	175	321	21	< 0.05	n.d.	35,00	1,0	n.d.	n.d.	n.d.	n.d.	PRANZINI (2004a)
236	1627085	4793290	0,390	7,27	1616	16,1	232	31	136	6	610	127	249	19	0,010	0,010	56,40	0,2	n.d.	0,100	0,08	0,0050	PRANZINI (2004a)
94	1627100	4800250	0,300	8,35	1536	19,1	100	71	88	3	451	142	193	28	0,010	0,010	4,20	0,1	n.d.	1,300	0,06	0,0050	PRANZINI (2004a)
94	1627100	4800250	0,297	8,35	3120	17,6	91	65	98	2	427	156	185	28	0,010	0,010	3,00	0,1	n.d.	1,000	0,04	0,0040	PRANZINI (2004a)
249	1627865	4792091	0,388	7,25	1333	16,1	170	41	100	4	543	153	160	22	0,010	0,010	17,30	0,1	n.d.	0,100	0,02	0,0080	PRANZINI (2004a)
254 Bi	1627968	4790178	0,363	7,50	1210	17,4	130	35	71	2	390	88	135	22	0,050	n.d.	26,00	0,6	n.d.	n.d.	n.d.	n.d.	PRANZINI (2004a)
394	1628340	4781738	0,371	7,45	969	17,5	115	34	27	1	318	66	65	24	0,040	0,010	96,16	0,2	n.d.	n.d.	n.d.	n.d.	PRANZINI (2004a)
250	1628498	4792019	0,378	7,30	1799	17,5	150	70	110	4	336	395	149	20	0,010	0,020	6,02	0,5	n.d.	n.d.	n.d.	n.d.	PRANZINI (2004a)
39 AL	1628636	4791024	n.d.	7,40	1505	18,5	146	40	86	3	366	108	220	22	< 0.05	n.d.	10,00	0,7	n.d.	n.d.	n.d.	n.d.	PRANZINI (2004a)
67 Ca	1628818	4787611	0,332	7,90	1391	17,9	108	69	96	2	537	71	137	28	< 0.1	< 0.01	36,20	0,6	n.d.	n.d.	n.d.	n.d.	PRANZINI (2004a)
282	1628880	4789087	0,353	7,77	1314	17,5	82	44	103	1	350	112	95	27	0,010	0,010	129,70	0,7	n.d.	n.d.	n.d.	n.d.	PRANZINI (2004a)
356	1629103	4783258	0,365	7,49	819	17,5	90	34	30	1	344	109	33	23	0,010	0,020	8,35	0,2	n.d.	n.d.	n.d.	n.d.	PRANZINI (2004a)
59TG	1629123	4783603	0,317	8,10	925	17,0	115	26	48	2	378	41	72	21	<0.1	< 0.01	13,40	0,3	n.d.	n.d.	n.d.	n.d.	PRANZINI (2004a)
21 Ca	1629288	4784375	0,422	6,70	1079	16,9	139	29	69	3	415	59	80	21	< 0.1	< 0.01	57,00	0,4	n.d.	n.d.	n.d.	n.d.	PRANZINI (2004a)
69 Ca	1629364	4784015	0,333	7,90	993	16,9	127	29	62	3	390	50	96	21	< 0.1	< 0.01	23,30	0,3	n.d.	n.d.	n.d.	n.d.	PRANZINI (2004a)
68 Ca	1629397	4784157	0,340	7,80	1012	17,0	130	29	62	3	415	46	87	21	<0.1	< 0.01	27,20	0,4	n.d.	n.d.	n.d.	n.d.	PRANZINI (2004a)
71 Ca	1629496	4783820	0,332	8,20	955	16,5	115	32	43	2	415	57	79	23	< 0.1	< 0.01	25,00	0,3	n.d.	n.d.	n.d.	n.d.	PRANZINI (2004a)
78 Ca	1629588	4780008	0,338	7,90	982	16,0	118	30	49	3	372	29	82	22	<0.1	< 0.01	57,00	0,3	n.d.	n.d.	n.d.	n.d.	PRANZINI (2004a)
77TG	1629609	4780066	0,358	7,60	1067	16,8	127	36	52	3	378	34	91	22	< 0.1	< 0.01	59,00	0,3	n.d.	n.d.	n.d.	n.d.	PRANZINI (2004a)
79 Ca	1629692	4780022	0,341	7,80	775	16,8	87	26	42	2	281	23	77	22	< 0.1	< 0.01	29,00	0,2	n.d.	n.d.	n.d.	n.d.	PRANZINI (2004a)
72 Ca	1629759	4783131	0,314	8,00	1110	17,1	155	39	41	1	445	166	71	21	< 0.1	0,030	0,60	0,2	n.d.	n.d.	n.d.	n.d.	PRANZINI (2004a)
70 Ca	1630037	4783251	0,331	7,90	1023	17,5	124	29	55	2	439	54	93	23	<0.1	< 0.01	19,10	0,3	n.d.	n.d.	n.d.	n.d.	PRANZINI (2004a)
MAT-P130	1619030	4800020	0,406	6.96(*)	916	17,5	134	8	54	5	365	61	57	21	< 0.05	n.d.	107,00	n.d.	0.08	0,080	0,28	0,0061	S.I.R.A.
MAT-P132	1619590	4802010	0,401	6.97(*)	998	18,2	121	23	42	2	378	68	60	22	< 0.05	n.d.	44,70	n.d.	0.52	n.d.	0,01	< 0.002	S.I.R.A.
MAT-P325	1620195	4798360	0,430	6.60(*)	3500	18,4	326	65	248	7	481	252	847	24	< 0.05	n.d.	109,00	n.d.	0.06	0,120	0,02	< 0.002	S.I.R.A.
MAT-P326	1620200	4801940	0,405	6.87(*)	1205	17,6	149	33	74	3	438	106	130	22	0,180	n.d.	40,20	n.d.	0.13	n.d.	0,03	< 0.002	S.I.R.A.
MAT-P131	1620370	4800840	0,407	6.93(*)	1250	17,5	146	21	74	3	378	88	119	20	< 0.05	n.d.	67,50	n.d.	0.14	n.d.	0,02	< 0.002	S.I.R.A.
MAT-P129	1620615	4799500	0,410	6.88(*)	1265	17,9	146	28	70	2	426	98	89	22	< 0.05	n.d.	73,90	n.d.	1.12	n.d.	0,07	0,0027	S.I.R.A.
MAT-P133	1620770	4802260	0,410	6.84(*)	1425	18,2	155	23	76	1	438	115	144	22	< 0.05	n.d.	40,20	n.d.	0.13	n.d.	n.d.	n.d.	S.I.R.A.
MAT-P323	1621530	4797625	0,415	6.99(*)	1510	13,0	151	58	101	7	426	152	139	25	< 0.05	n.d.	198,00	n.d.	0.38	0,130	0,02	< 0.002	S.I.R.A.
MAT-P328	1621610	4799240	0,409	6.92(*)	1104	16,6	148	18	83	3	396	93	113	20	< 0.05	n.d.	57,40	n.d.	0.17	0,110	0,03	0,0029	S.I.R.A.
MAT-P117	1622510	4800820	0,402	7.01(*)	868	16,1	121	13	62	2	365	58	77	21	< 0.05	n.d.	38,90	n.d.	0.23	n.d.	0,01	< 0.002	S.I.R.A.
MAT-P116	1622590	4799010	0,399	7.01(*)	1204	17,1	122	45	93	4	396	129	158	23	< 0.05	n.d.	22,90	n.d.	0.1	2,100	0,03	< 0.002	S.I.R.A.
MAT-P112	1622710	4795100	0,409	6.91(*)	2140	16,6	190	55	162	9	359	128	440	21	< 0.05	n.d.	50,40	n.d.	n.d.	n.d.	0,02	< 0.002	S.I.R.A.
MAT-P113	1622785	4796640	0,406	6.87(*)	1700	19,2	153	47	119	5	432	153	229	22	< 0.05	n.d.	32,70	n.d.	0.1	0,200	0,01	0,0058	S.I.R.A.
MAT-P092	1623971	4791667	0,413	6.84(*)	1530	16,8	158	64	106	4	487	132	238	25	< 0.05	n.d.	34,90	n.d.	0.19	n.d.	0,02	0,0026	S.I.R.A.
MAT-P324	1624092	4797625	0,421	7.00(*)	2160	9,0	143	78	259	3	548	218	383	30	< 0.05	n.d.	108,00	n.d.	0.29	0,590	0,02	< 0.002	S.I.R.A.
Sigla	Est G_B_	Nord G_B_	Eh	pН	EC	t	Ca	Mg	Na	К	HCO ₃	so ₄	Cl	SiO ₂	\mathbf{NH}_4	NO ₂	NO ₃	Br	F	В	Fe	Mn	Dati bibliografici
----------	----------	-----------	-------	----------	-------	------	------	------	------	------	------------------	-----------------	------	------------------	-----------------	------------------------	-----------------	------	------	-------	--------	---------	-----------------------
	(UTM)	(UTM)	(V)		μS/cm	°C	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	
MAT-P533	1624325	4789717	0,409	6.89 (*)	1248	16,8	152	38	86	5	414	79	198	22	< 0.05	n.d.	41,30	n.d.	n.d.	n.d.	0,01	< 0.002	S.I.R.A.
MAT-P114	1624490	4797465	0,421	6.65 (*)	1567	18,7	219	37	80	6	505	85	261	19	< 0.05	n.d.	20,80	n.d.	0,3	0,540	0,13	0,0113	S.I.R.A.
MAT-P111	1624860	4794674	0,398	6.99 (*)	1380	18,5	129	34	79	7	353	63	208	22	< 0.05	n.d.	26,60	n.d.	0,2	n.d.	0,13	0,0091	S.I.R.A.
MAT-P101	1625717	4779015	0,412	6.90 (*)	1348	17,1	172	39	87	2	378	85	180	22	< 0.05	n.d.	141,00	n.d.	n.d.	0,100	0,14	0,0089	S.I.R.A.
MAT-P104	1625839	4782093	0,392	7.04 (*)	777	18,4	101	25	46	4	365	25	70	22	< 0.05	n.d.	14,50	n.d.	0,28	n.d.	0,04	0,0067	S.I.R.A.
MAT-P091	1625886	4790072	0,396	7.01 (*)	900	17,6	115	35	36	4	365	42	111	22	< 0.05	n.d.	17,90	n.d.	0,12	n.d.	0,02	< 0.002	S.I.R.A.
MAT-P110	1625910	4793455	0,410	6.81 (*)	1920	18,7	181	39	76	7	408	84	299	21	< 0.05	n.d.	23,30	n.d.	n.d.	n.d.	0,02	< 0.002	S.I.R.A.
MAT-P105	1626460	4784050	0,405	6.95 (*)	871	17,1	127	21	52	2	396	40	80	22	< 0.05	n.d.	45,40	n.d.	n.d.	n.d.	0,03	< 0.002	S.I.R.A.
MAT-P109	1626896	4788279	0,407	6.93 (*)	1335	17,7	121	67	93	3	487	102	132	28	< 0.05	n.d.	105,00	n.d.	n.d.	0,120	0,01	< 0.002	S.I.R.A.
MAT-P093	1627065	4792180	0,417	6.78 (*)	1842	16,9	205	52	163	7	457	170	357	20	< 0.05	n.d.	40,80	n.d.	0,36	n.d.	0,02	< 0.002	S.I.R.A.
MAT-P107	1627066	4786158	0,407	6.95 (*)	1284	17,3	140	58	65	2	396	69	180	25	< 0.05	n.d.	98,30	n.d.	0,1	n.d.	0,01	< 0.002	S.I.R.A.
MAT-P207	1627094	4800255	0,382	7.06 (*)	1386	16,6	99	80	139	3	463	137	250	28	0,430	n.d.	2,40	n.d.	0,2	0,640	0,36	0,3010	S.I.R.A.
MAT-P321	1627968	4790178	0,406	6.89 (*)	1230	17,7	140	35	72	5	426	87	144	22	< 0.05	n.d.	29,50	n.d.	n.d.	0,160	0,02	< 0.002	S.I.R.A.
MAT-P103	1628311	4781019	0,359	7.66 (*)	485	15,1	54	18	28	1	171	51	32	24	< 0.05	n.d.	67,40	n.d.	0,3	0,620	0,07	0,0042	S.I.R.A.
MAT-P106	1628415	4784270	0,401	6.96 (*)	796	18,3	119	25	53	6	396	48	92	22	< 0.05	n.d.	31,80	n.d.	n.d.	1,590	0,01	< 0.002	S.I.R.A.
MAT-P322	1628430	4786590	0,412	6.87 (*)	1367	17,6	155	65	88	3	451	126	169	26	< 0.05	n.d.	132,00	n.d.	n.d.	n.d.	0,02	< 0.002	S.I.R.A.
MAT-P532	1628460	4790966	0,407	6.85 (*)	1275	17,8	165	38	89	5	408	94	226	20	< 0.05	n.d.	19,60	n.d.	n.d.	n.d.	0,02	< 0.002	S.I.R.A.
MAT-P108	1629000	4787627	0,395	7.04 (*)	980	18,2	95	51	58	5	426	55	96	25	< 0.05	n.d.	28,50	n.d.	0,2	n.d.	0,04	< 0.002	S.I.R.A.
MAT-P102	1629581	4780058	0,399	7.02 (*)	880	17,2	111	29	45	5	378	32	103	23	< 0.05	n.d.	49,20	n.d.	0,06	0,150	0,01	< 0.002	S.I.R.A.
MAT-P531	1629619	4782873	0,404	6.89 (*)	957	18,3	134	29	51	4	426	83	86	21	< 0.05	n.d.	21,60	n.d.	n.d.	n.d.	0,02	0,0030	S.I.R.A.
MAT-P214	1631726	4799646	0,400	6.93 (*)	1755	16,7	167	75	185	4	402	217	349	22	< 0.05	n.d.	4,50	n.d.	0,1	1,770	0,36	0,0210	S.I.R.A.
MAT-P204	1641875	4799875	0,405	6.92 (*)	1604	15,3	157	73	155	6	457	257	305	24	< 0.05	n.d.	8,20	n.d.	0,3	0,960	0,01	< 0.005	S.I.R.A.
MAT-P205	1643825	4800975	0,395	7.09 (*)	1805	15,0	128	40	311	27	396	299	385	16	< 0.05	n.d.	10,00	n.d.	0,2	1,430	0,02	0,0170	S.I.R.A.
MAT-P206	1645625	4801875	0,392	7.11 (*)	796	14,5	123	34	63	18	335	215	86	17	< 0.05	n.d.	5,20	n.d.	0,2	0,880	0,02	< 0.005	S.I.R.A.
MAT-P535	1648721	4800955	0,404	7.02 (*)	1102	13,6	146	47	120	3	390	257	143	20	< 0.05	n.d.	18,50	n.d.	0,2	1,120	0,02	< 0.005	S.I.R.A.
MAT-P534	1651533	4799420	0,371	7.23 (*)	658	19,1	89	29	28	2	274	128	32	21	0,060	n.d.	2,60	n.d.	0,1	0,640	0,11	0,0140	S.I.R.A.
MAT-P213	1655845	4797300	0,363	7.32 (*)	591	16,3	82	23	20	1	244	99	24	21	0,250	n.d.	1,20	n.d.	0,1	0,250	< 0.01	< 0.005	S.I.R.A.

 Tab. B - Concentrazioni degli elementi in tracce per le acque dei CISS 32CT010+32CT030 e 32CT050. Le coordinate sono espresse in UTM/Gauss-Boaga. n.d. : non determinato; n.r. : non rilevabile.

 Concentrations of trace elements for the waters relative the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean Water Bodies). East and North coordinates are expressed in UTM/Gauss-Boaga. EC: electrical conductivity. n.d: not determined; n.r: below detection limit.

Sigla	EstG B	Nord G B	Cu	Ni	Zn	Al	As	Hg	Cr	Cd	Pb	Se	Dati bibliografici
	(UTM)	(UTM)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	µg/L	µg/L	µg/L	μg/L	
BC 20	1622577	4793237	n.d.	n.d.	n.d.	n.d.	28,00	n.d.	n.d.	n.d.	n.d.	n.d.	AF-Studio Geologico (1997)
BC 14	1621630	4799305	n.d.	n.d.	n.d.	n.d.	1,00	n.d.	n.d.	n.d.	n.d.	n.d.	AF-Studio Geologico (1997)
BC 18	1623535	4790720	n.d.	n.d.	n.d.	n.d.	1,00	n.d.	n.d.	n.d.	n.d.	n.d.	AF-Studio Geologico (1997)
BC 25	1660525	4794950	n.d.	n.d.	n.d.	n.d.	15,00	n.d.	n.d.	n.d.	n.d.	n.d.	AF-Studio Geologico (1997)
BC 16	1626657	4792817	n.d.	n.d.	n.d.	n.d.	1,00	n.d.	n.d.	n.d.	n.d.	n.d.	AF-Studio Geologico (1997)
BC 19	1625552	4796260	n.d.	n.d.	n.d.	n.d.	2,00	n.d.	n.d.	n.d.	n.d.	n.d.	AF-Studio Geologico (1997)
BC 22	1622040	4795657	n.d.	n.d.	n.d.	n.d.	1,00	n.d.	n.d.	n.d.	n.d.	n.d.	AF-Studio Geologico (1997)
BC 26	1622640	4796825	n.d.	n.d.	n.d.	n.d.	6,00	2,00	n.d.	n.d.	n.d.	n.d.	AF-Studio Geologico (1997)
BC 8	1621492	4794917	n.d.	n.d.	n.d.	n.d.	2,00	n.d.	n.d.	n.d.	n.d.	n.d.	AF-Studio Geologico (1997)
BC 10	1625925	4798455	n.d.	n.d.	n.d.	n.d.	7,00	n.d.	n.d.	n.d.	n.d.	n.d.	AF-Studio Geologico (1997)
BC 27	1627660	4799720	n.d.	n.d.	n.d.	n.d.	5,00	2,00	n.d.	n.d.	n.d.	n.d.	AF-Studio Geologico (1997)
BC 8	1621492	4794917	n.d.	n.d.	n.d.	n.d.	8,00	n.d.	n.d.	n.d.	n.d.	n.d.	AF-Studio Geologico (1997)
BC 13	1623960	4801920	n.d.	n.d.	n.d.	n.d.	5,00	n.d.	n.d.	n.d.	n.d.	n.d.	AF-Studio Geologico (1997)
BC 22	1622040	4795657	n.d.	n.d.	n.d.	n.d.	1,00	n.d.	n.d.	n.d.	n.d.	n.d.	AF-Studio Geologico (1997)
BC 10	1625925	4798455	n.d.	n.d.	n.d.	n.d.	5,00	n.d.	n.d.	n.d.	n.d.	n.d.	AF-Studio Geologico (1997)
BC 21	1618575	4797560	n.d.	n.d.	n.d.	n.d.	4,00	n.d.	n.d.	n.d.	n.d.	n.d.	AF-Studio Geologico (1997)
BC 21	1618575	4797560	n.d.	n.d.	n.d.	n.d.	7,00	n.d.	n.d.	n.d.	n.d.	n.d.	AF-Studio Geologico (1997)
S.W.			0,70	1,70	4,90	2,00	4,00	0,03	0,30	0,10	0,05		NORDSTROM et alii (1979)
MAT-P103	1628311	4781019		3,00	n.d.	12,00	<1	< 0.5	3,00	<2	<5	<5	S.I.R.A.
MAT-P213	1655845	4797300	<3	2,00	6,00	n.d.	<1	< 0.5	<1	n.d.	<5	n.d.	S.I.R.A.
MAT-P534	1651533	4799420	<3	2,00	13,00	n.d.	4,00	< 0.5	1,00	n.d.	<5	n.d.	S.I.R.A.
MAT-P104	1625839	4782093	n.d.	2,00	0,00	11,00	<1	< 0.5	1,00	<2	<5	<5	S.I.R.A.
MAT-P106	1628415	4784270	<3	2,00	58,00	n.d.	<1	< 0.5	8,00	<2	<5	<5	S.I.R.A.
MAT-P206	1645625	4801875	<3	6,00	14,00	n.d.	12,00	< 0.5	4,00	n.d.	<5	n.d.	S.I.R.A.
MAT-P117	1622510	4800820	n.d.	n.d.	n.d.	n.d.	<5	n.d.	15,80	n.d.	n.d.	n.d.	S.I.R.A.
MAT-P105	1626460	4784050	n.d.	<10	n.d.	n.d.	< 0.5	< 0.5	3,00	n.d.	n.d.	<1	S.I.R.A.
MAT-P102	1629581	4780058	n.d.	n.d.	n.d.	n.d.	< 0.5	< 0.5	<2000	n.d.	<5	<1	S.I.R.A.
MAT-P091	1625886	4790072	n.d.	2,00	n.d.	17,00	<1	< 0.5	1,00	<2	<5	<5	S.I.R.A.
MAT-P130	1619030	4800020	n.d.	n.d.	n.d.	n.d.	<5	n.d.	2,60	n.d.	n.d.	n.d.	S.I.R.A.
MAT-P531	1629619	4782873	3,00	1,00	133,00	n.d.	<1	< 0.5	2,20	<2	<5	<5	S.I.R.A.
MAT-P108	1629000	4787627	<3	<1	8,00	n.d.	<1	< 0.5	2,00	<2	<5	n.d.	S.I.R.A.
MAT-P132	1619590	4802010	n.d.	n.d.	n.d.	n.d.	<5	n.d.	6,90	n.d.	n.d.	n.d.	S.I.R.A.
MAT-P535	1648721	4800955	<3	2,00	10,00	n.d.	<1	< 0.5	<1	n.d.	<5	n.d.	S.I.R.A.
MAT-P328	1621610	4799240	n.d.	n.d.	n.d.	n.d.	<5	n.d.	2,10	n.d.	n.d.	n.d.	S.I.R.A.
MAT-P116	1622590	4799010	n.d.	n.d.	n.d.	n.d.	<5	n.d.	3,90	n.d.	n.d.	n.d.	S.I.R.A.
MAT-P326	1620200	4801940	n.d.	n.d.	n.d.	n.d.	<5	n.d.	11,00	n.d.	n.d.	n.d.	S.I.R.A.
MAT-P321	1627968	4790178	<3	<10	<10	n.d.	n.d.	< 0.5	<2	<2	<5	<5	S.I.R.A.
MAT-P533	1624325	4789717	<3	<1	<10	n.d.	<1	< 0.5	2,00	n.d.	<5	n.d.	S.I.R.A.
MAT-P131	1620370	4800840	n.d.	n.d.	n.d.	n.d.	<5	0,00	1,50	n.d.	n.d.	n.d.	S.I.R.A.
MAT-P129	1620615	4799500	n.d.	n.d.	n.d.	n.d.	<5	<0.7	1,90	n.d.	n.d.	n.d.	S.I.R.A.
MAT-P532	1628460	4/90966	< 3	<1	114,00	n.d.	2,00	<0.5	29,00	<2	<5	<1	S.I.R.A.
MAT-P107	162/066	4/86158	<3	<1	20,00	n.d.	<5	<0.5	<1	<2	<5	n.d.	S.I.R.A.
MAT-P109	1626896	4/882/9	< 3	3,00	17,00	n.d.	< 5	<0.5	3,00	<2	<5	n.d.	S.I.R.A.
MAT-P101	1625/17	47/9015	n.d.	n.d.	n.d.	n.d.	<0.5	< 0.5	4,00	n.d.	<5	<1	S.I.K.A.
MAT-P322	1628450	4/86590	< 3	1,00	65,00	n.d.	< 5	< 0.5	2,00	<2	<5	n.d.	S.I.K.A.
MAT-PITI	1624860	4/946/4	< 3	<10	<10	n.d.	<1	< 0.5	9,00	<2	< 5	< 5	S.I.K.A.
MAT-P20/	162/094	4800255	< 2	5,00	9,00	n.d.	<1	< 0.5	<1	n.d.	< 5	n.d.	S.I.K.A.
MAT D222	1621520	4802200	11.d.	11.d.	11.d.	11.d.	11.d.	n.d.	2.20	11.d.	11.d.	11.d.	S.I.N.A.
MAT D002	1622071	4797623	11.d.	11.d.	11.d.	7.00	<1	-0.5	2.00		11.d.	11.d.	S.I.K.A.
MAT-P092	1624400	4/9100/	n.a.	2.00	n.d.	7,00	<1	<0.5	2,00	<2	<5	< >)	S.I.K.A.
MAT-P114	1624490	4/9/405	6,00	2,00	91,00	n.d.	<1	<0.5	2,00	~2	< 5	n.d.	S.I.K.A.
MAT D112	1622705	4706640	~ 3	10.00	<10	n.d.	~1	<0.5	4.00	a.	~5	a.	5.1.К.Л. СТР А
MAT D214	1631726	4790646	< 3	6.00	10.00	n.d.	~1	<0.5	5.00	<	<5	~> n.4	SIRA SIPA
MAT D205	1643825	4799040	<3	<1	14.00	n.d.	2.00	<0.5	1.00	n d	<5	n.d.	SIRA.
MAT. D003	1627065	4702180	nd	<10	nd	nd	2,00	<0.5	15.00	nd	nd	2.00	STR A
MAT_P110	1625010	4793455	3.00	<1	22.00	n.d.	<5	<0.5	<1	</td <td><5</td> <td>2,00</td> <td>SIR A</td>	<5	2,00	SIR A
MAT-P112	1622710	4795100	<3	<10	14.00	n.u.	1.00	<0.5	9.30	<2	<5	<5	SIRA
MAT-P324	1624092	4797625	nd	nd	n d	n d	<5	n d	3.00	nd	nd	nd	SIRA
MAT-P325	1620195	4798360	n d	nd	nd	n d	<5	n d	1 70	nd	n d	n d	SIR A
	1 1020175		11.0.	41.04.	11.04.	41.01.	-5		1,10	1			0.1.11.1.1.

Sigla	C_tot	log	log	log	log	log	SI	SI	Si	SI	SI	SI	SI	SI	SI	SI	SI	SI	SI
	mg	[aCa/(aH)2]	[aMg/(aH)2]	[aNa/aH]	[aK/aH	[a _{Si} O ₂]	muscovite	calcite	dolomite	albite	K-feldspato	anidrite	gesso	anortite	magnesite	crisot	forsterite	diopside	clorite
Cn11	491	10,77	10,48	4,46	2,78	-3,47	-0,66	-0,24	0,40	-1,69	-0,19	-1,78	-1,53	-9,74	-1,04	-7,61	-11,33	-7,26	-13,65
Cn16	649	10,53	10,04	4,23	2,41	-3,58	-1,03	-0,23	0,20	-2,15	-0,79	-1,81	-1,56	-9,98	-1,25	-9,18	-12,34	-8,17	-16,00
Cn14	631	10,58	10,32	4,40	2,59	-3,45	-0,83	-0,22	0,47	-1,75	-0,41	-1,71	-1,47	-9,78	-0,98	-7,85	-11,44	-7,45	-13,97
Cn15	490	10,79	10,38	4,41	2,69	-3,49	-0,75	-0,21	0,34	-1,80	-0,35	-1,91	-1,66	-9,66	-1,13	-7,88	-11,49	-7,34	-14,01
Cn07	469	10,92	10,53	4,48	2,68	-3,52	-0,76	-0,11	0,56	-1,79	-0,42	-1,85	-1,60	-9,54	-1,02	-7,51	-11,23	-7,13	-13,33
MAT-P112	449	11,20	10,90	4,69	3,22	-3,45	-0,23	-0,01	0,84	-1,41	0,30	-1,70	-1,45	-9,34	-0,83	-6,32	-10,49	-6,38	-11,56
P370	579	11,31	11,49	5,03	3,50	-3,27	0,07	0,08	1,51	-0,74	0,88	-2,21	-1,97	-9,09	-0,25	-4,04	-8,97	-5,22	-8,08
140	583	11,22	10,94	4,63	2,78	-3,46	-0,67	0,16	1,20	-1,48	-0,14	-1,60	-1,34	-9,33	-0,65	-6,28	-10,47	-6,36	-11,49
206	550	11,25	10,71	4,53	2,90	-3,53	-0,53	0,17	0,97	-1,77	-0,23	-1,61	-1,37	-9,15	-0,87	-6,87	-10,78	-6,58	-12,20
P35bis	466	11,58	11,28	4,81	2,60	-3,37	-0,83	0,24	1,34	-1,16	-0,20	-1,86	-1,61	-8,84	-0,57	-4,88	-9,51	-5,37	-9,28
258	147	13,47	14,15	6,03	4,48	-3,38	1,04	0,26	2,34	0,09	1,71	-3,77	-3,52	-6,98	0,40	3,65	-3,84	-0,63	4,90
196	521	11,43	11,01	4,72	2,98	-3,52	-0,44	0,28	1,32	-1,58	-0,18	-1,74	-1,50	-8,88	-0,63	-5,85	-10,06	-6,01	-10,45
205	448	11,75	11,41	5,00	3,31	-3,45	-0,13	0,31	1,46	-1,13	0,35	-1,66	-1,40	-8,73	-0,53	-4,72	-9,40	-5,29	-8,85
398	557	11,82	12,12	5,48	3,42	-3,22	-0,02	0,33	2,18	-0,19	0,92	-1,40	-1,15	-8,63	0,17	-1,96	-7,63	-3,98	-4,77
375	395	12,19	12,28	5,40	3,95	-3,36	0,52	0,36	1,96	-0,53	1,19	-5,08	-4,83	-8,26	-0,08	-1,95	-7,57	-3,78	-4,43
Rm88	405	11,86	11,51	4,95	3,13	-3,48	-0,31	0,37	1,57	-1,24	0,11	-1,39	-1,14	-8,59	-0,47	-4,39	-9,16	-5,09	-8,22
233	480	11,79	11,39	5,05	3,10	-3,45	-0,34	0,37	1,53	-1,07	0,14	-1,61	-1,36	-8,66	-0,52	-4,71	-9,39	-5,23	-8,83
146	477	11,71	11,52	5,33	3,37	-3,44	-0,07	0,37	1,75	-0,77	0,44	-1,19	-0,94	-8,74	-0,30	-4,27	-9,10	-5,14	-8,12
P228	434	11,93	11,43	4,84	3,11	-3,43	-0,32	0,43	1,53	-1,28	0,14	-2,03	-1,79	-8,41	-0,57	-4,46	-9,18	-4,95	-8,37
Rm70	497	11,66	11,49	5,14	3,00	-3,44	-0,44	0,39	1,78	-0,96	0,07	-1,22	-0,97	-8,79	-0,28	-4,39	-9,17	-5,23	-8,32
226	259	12,56	12,15	5,25	3,61	-3,44	0,17	0,44	1,64	-0,84	0,68	-2,10	-1,85	-7,89	-0,49	-2,46	-7,89	-3,69	-5,11
Rm129	444	12,01	11,52	4,92	3,19	-3,48	-0,25	0,48	1,63	-1,26	0,18	-1,83	-1,58	-8,44	-0,52	-4,43	-9,19	-4,95	-8,29
186	504	11,93	11,39	5,12	3,14	-3,57	-0,31	0,54	1,72	-1,24	-0,05	-1,27	-1,01	-8,56	-0,50	-5,01	-9,56	-5,37	-9,07
208	418	11,97	11,37	5,00	3,13	-3,68	-0,31	0,52	1,63	-1,59	-0,29	-1,21	-0,96	-8,48	-0,57	-5,25	-9,67	-5,54	-9,18
181	366	12,54	12,05	5,24	3,31	-3,47	-0,12	0,69	2,08	-0,93	0,31	-1,53	-1,28	-7,86	-0,29	-2,71	-8,03	-3,81	-5,42
Rm93	420	12,43	12,42	5,37	3,51	-3,36	0,08	0,67	2,51	-0,58	0,73	-1,40	-1,15	-8,02	0,16	-1,43	-7,22	-3,37	-3,55
Rm101bis	562	12,38	12,40	5,65	3,40	-3,29	-0,04	0,74	2,69	-0,15	0,76	-1,34	-1,09	-8,07	0,27	-1,33	-7,18	-3,29	-3,56
BC1	344	11,45	11,06	4,69	3,09	-3,51	-0,35	0,05	0,88	-1,55	0,03	-1,69	-1,43	-9,04	-0,85	-5,91	-10,18	-6,06	-10,70
BC2	347	12,29	11,64	5,11	3,09	-3,52	-0,35	0,52	1,57	-1,13	0,02	-1,73	-1,48	-8,20	-0,64	-4,17	-9,02	-4,65	-7,81
BC5	480	11,16	10,93	4,79	2,82	-3,39	-0,62	0,02	0,98	-1,20	0,01	-1,60	-1,35	-9,32	-0,71	-6,03	-10,29	-6,23	-11,19
BC1	450	11,38	11,05	4,77	3,27	-3,45	-0,18	0,11	1,04	-1,33	0,34	-1,82	-1,57	-9,15	-0,75	-5,89	-10,21	-6,06	-10,85
BC2	352	11,78	11,03	4,73	3,11	-3,61	-0,34	0,27	0,96	-1,69	-0,13	-1,72	-1,47	-8,75	-0,00	-6,25	-10,39	-5,99	-11,09
BC15	471	11,85	11,70	5,10	3,35	-3,38	-0,10	0,42	1,84	-0,87	0,56	-1,65	-1,39	-8,66	-0,26	-3,79	-8,82	-4,79	-7,50
191	494	11,31	11,01	4,66	2,99	-3,47	-0,44	0,14	1,16	-1,52	-0,05	-1,56	-1,32	-9,05	-0,65	-5,79	-10,06	-6,06	-10,51
MAT-P325	707	10,76	10,31	4,55	2,82	-3,39	-0,61	-0,02	0,70	-1,48	-0,06	-1,31	-1,07	-9,61	-0,95	-7,72	-11,38	-7,16	-13,92
186	476	11.22	10.91	4.74	2.97	-3.43	-0.45	0.06	0.98	-1.38	-0.02	-1.90	-1.67	-9.04	-0.74	-5.88	-10.09	-6.09	-10.69

Tab. C - Paramentri termodinamici per le acque Ca-Cl relative ai CISS 32CT010+32CT030 e 32CT050. – Thermodynamic parameters for the Ca-Cl waters relative to the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean Water Bodies).

Sigla	C_tot	logPco2	log	log	log	log	log	SI	SI	Si	SI	SI	SI	SI	SI	SI	SI
	mgHCO ₂ /L	log Atm	$[a_{C_2}/(a_H)^2]$	$[a_{M\alpha}/(a_H)^2]$	[a _{No} /a _H]	[a _K /a _H]	[asico]	muscovite	calcite	dolomite	albite	K-feldspato	anidrite	gesso	anortite	magnesite	crisotilo
Ca02	1550	-0,41	9,22	9,23	3,56	1,83	-3,39	-1,62	-0,92	-0,65	-2,44	-0,99	-1,58	-1,32	-11,30	-1,41	-11,15
Ca01	1220	-0,63	9,64	9,62	3,67	1,93	-3,38	-1,54	-0,75	-0,36	-2,23	-0,72	-1,53	-1,24	-11,21	-1,31	-10,40
P439	403	-1,29	10,40	10,08	3,99	2,58	-3,39	-0,86	-0,61	-0,37	-2,02	-0,27	-2,12	-1,87	-10,03	-1,44	-8,55
Cn08	729	-0,97	10,39	9,82	3,95	2,34	-3,51	-1,11	-0,30	-0,02	-2,29	-0,73	-1,98	-1,73	-10,10	-1,40	-9,68
247	390	-1,57	11,02	10,95	4,36	2,82	-3,40	-0,65	-0,29	0,50	-1,61	0,06	-1,94	-1,67	-9,68	-0,90	-6,32
21_Ca	591	-1,18	10,69	10,25	4,12	2,55	-3,45	-0,89	-0,22	0,28	-2,00	-0,39	-2,04	-1,78	-9,82	-1,19	-8,29
Cn12	464	-1,36	10,88	10,51	4,29	2,77	-3,46	-0,67	-0,20	0,40	-1,85	-0,20	-2,10	-1,85	-9,57	-1,08	-7,42
P329	544	-1,23	10,77	10,22	3,96	2,48	-3,48	-0,96	-0,19	0,23	-2,21	-0,51	-1,94	-1,68	-9,75	-1,26	-8,42
Cn20	556	-1,27	10,86	10,64	4,57	2,78	-3,43	-0,65	-0,13	0,70	-1,53	-0,17	-1,81	-1,57	-9,50	-0,84	-6,80
PM	516	-1,30	10,89	10,37	4,20	2,60	-3,42	-0,82	-0,12	0,41	-1,91	-0,38	-1,99	-1,76	-9,38	-1,13	-7,51
P386	641	-1,14	10,74	10,34	3,95	2,48	-3,43	-0,94	-0,10	0,59	-2,17	-0,52	-1,74	-1,52	-9,48	-0,97	-7,50
66	292	-1,83	11,46	11,06	4,52	2,61	-3,43	-0,83	-0,09	0,58	-1,56	-0,30	-2,13	-1,88	-9,02	-1,01	-5,76
PI	270	-1,99	11,62	11,42	4,58	3,14	-3,40	-0,30	-0,10	0,78	-1,46	0,26	-2,53	-2,28	-8,79	-0,80	-4,52
Cn04	621	-1,15	10,77	10,40	4,47	2,63	-3,46	-0,80	-0,09	0,63	-1,71	-0,41	-1,65	-1,41	-9,54	-0,95	-7,52
239	702	-1,12	10,79	10,16	4,13	2,69	-3,53	-0,78	-0,08	0,36	-2,08	-0,31	-1,77	-1,49	-9,97	-1,26	-9,03
Cn03	427	-1,70	11,34	11,58	4,75	3,24	-3,34	-0,18	-0,06	1,28	-1,19	0,42	-2,75	-2,52	-8,90	-0,32	-3,71
145	446	-1,56	11,24	10,92	4,25	2,95	-3,44	-0,51	-0,06	0,71	-1,80	0,12	-2,19	-1,92	-9,43	-0,92	-6,46
SP_S6	275	-2,03	11,71	11,16	4,13	3,29	-3,43	-0,16	-0,04	0,51	-1,94	0,39	-3,06	-2,81	-8,80	-1,13	-5,53
194	478	-1,61	11,25	11,34	4,85	3,18	-3,35	-0,26	-0,09	1,07	-1,07	0,43	-2,46	-2,21	-9,20	-0,52	-4,73
P295	642	-1,28	10,97	10,97	4,43	2,71	-3,31	-0,72	-0,03	1,11	-1,44	0,01	-1,88	-1,63	-9,44	-0,53	-5,66
SR4_S1	489	-1,41	11,13	10,22	4,26	2,51	-3,46	-0,93	-0,01	0,25	-1,88	-0,46	-1,77	-1,52	-9,33	-1,42	-8,28
MAT-P111	427	-1,54	11,24	10,90	4,47	3,21	-3,43	-0,23	-0,01	0,81	-1,63	0,25	-2,04	-1,80	-9,11	-0,86	-6,06
MAT-P107	488	-1,46	11,19	11,04	4,35	2,76	-3,36	-0,68	-0,00	1,02	-1,60	-0,02	-2,02	-1,76	-9,28	-0,66	-5,66
MAT-P092	632	-1,27	10,98	10,83	4,44	2,78	-3,38	-0,66	-0,02	0,98	-1,53	-0,01	-1,75	-1,49	-9,53	-0,68	-6,35
MAT-P129	543	-1,35	11,06	10,59	4,31	2,56	-3,43	-0,88	-0,01	0,68	-1,79	-0,38	-1,81	-1,56	-9,36	-0,98	-7,07
MAT-P207	547	-1,51	11,22	11,37	4,78	2,95	-3,32	-0,50	-0,02	1,28	-1,06	0,28	-1,92	-1,66	-9,31	-0,38	-4,63
MAT-P110	534	-1,30	11,00	10,58	4,27	3,04	-3,44	-0,39	-0,02	0,72	-1,86	0,05	-1,83	-1,60	-9,34	-0,94	-7,02
MAT-P131	471	-1,45	11,17	10,57	4,39	2,84	-3,46	-0,60	-0,01	0,56	-1,75	-0,14	-1,84	-1,59	-9,28	-1,11	-7,22
MAT-P324	681	-1,43	11,22	11,20	4,98	2,81	-3,30	-0,/1	-0,01	1,09	-0,65	0,51	-1,68	-1,35	-10,04	-0,63	-6,09
MAT-P104	435	-1,56	11,2/	10,89	4,30	3,06	-3,43	-0,37	-0,01	0,77	-1,81	0,10	-2,46	-2,21	-9,10	-0,90	-6,13
MAI-P106	48/	-1,45	11,10	10,72	4,28	3,10	-3,44	-0,34	-0,01	0,71	-1,84	0,14	-2,15	-1,91	-9,22	-0,95	-6,64
MAT-P323	524	-1,50	10.05	10.61	4,5/	3,22	-3,37	-0,26	0,01	0,00	-1,29	0,61	-1,/1	-1,42	-9,61	-0,72	-6,03
MAT-P095	720	-1,24	10,95	10,61	4,50	2.79	-3,4/	-0,45	-0,02	0,79	-1,60	0,04	-1,50	-1,31	-9,55	-0,87	-/,19
MAT D214	400	-1,05	11 16	11.05	4,15	2,70	-5,50	-0,05	-0,02	1.03	1 32	-0,52	-1,70	1 30	0.37	-1,04	-0,20
MAT P108	507	-1,45	11,10	11,05	4,70	3.13	-3,37	-0,55	-0.01	1,05	-1,52	-0,01	-1,50	-1,50	-9,37	-0,05	-5,79
MAT P328	498	-1,30	11.15	10.48	4.43	2.86	-3.47	-0,51	-0.01	0.48	-1,30	-0.11	-2,22	-1,56	-9,10	-0,55	-7.63
MAT-P105	491	-1,45	11,15	10,40	4 26	2,68	-3.44	-0.77	-0.01	0,40	-1.83	-0.23	-1,02	-1.95	-9.32	-1.07	-7.08
MAT-P326	561	-1 33	11.04	10.63	4 32	2,00	-3.43	-0.73	-0.01	0.74	-1 77	-0.22	-1 79	-1 54	-9.40	-0.93	-6.97
MAT-P116	478	-1.51	11.23	11.03	4.56	3.03	-3.41	-0.42	-0.02	0.95	-1.48	0.16	-1.80	-1.54	-9.26	-0.72	-5.78
MAT-P101	477	-1,43	11,16	10,76	4,42	2,58	-3,42	-0.86	0,00	0,78	-1,64	-0.30	-1,85	-1,59	-9,32	-0,91	-6.63
MAT-P113	549	-1.33	11.02	10.75	4.52	2.96	-3.42	-0.47	-0.02	0.88	-1.58	-0.01	-1.66	-1.43	-9.27	-0.77	-6.36
MAT-P532	524	-1,35	11,06	10,66	4,39	2,97	-3,46	-0,47	-0,02	0,74	-1,77	-0,02	-1,82	-1,57	-9,37	-0,92	-6,92
MAT-P321	538	-1,37	11,08	10,71	4,34	2,95	-3,43	-0,49	-0,01	0,78	-1,75	0,02	-1,89	-1,64	-9,36	-0,88	-6,71
MAT-P322	573	-1,33	11,06	10,92	4,40	2,71	-3,36	-0,73	-0,00	1,03	-1,54	-0,07	-1,76	-1,51	-9,39	-0,64	-5,95
MAT-P132	461	-1,49	11,20	10,72	4,19	2,77	-3,43	-0,66	-0,01	0,68	-1,91	-0,18	-1,99	-1,75	-9,19	-0,98	-6,63
MAT-P533	524	-1,39	11,11	10,75	4,41	3,01	-3,43	-0,44	-0,01	0,78	-1,67	0,11	-1,92	-1,66	-9,41	-0,89	-6,74
MAT-P206	392	-1,71	11,44	11,12	4,50	3,74	-3,54	0,27	-0,02	0,82	-1,75	0,71	-1,58	-1,30	-9,29	-0,86	-6,06
MAT-P213	269	-2,03	11,75	11,43	4,22	2,89	-3,45	-0,56	-0,01	0,83	-1,87	-0,01	-1,95	-1,69	-8,81	-0,84	-4,74
MAT-P091	439	-1,55	11,26	10,98	4,17	3,05	-3,42	-0,38	-0,01	0,85	-1,90	0,15	-2,23	-1,98	-9,18	-0,81	-5,95
MAT-P130	449	-1,50	11,23	10,27	4,29	3,03	-3,45	-0,41	0,01	0,22	-1,84	0,06	-1,98	-1,73	-9,22	-1,47	-8,14
MAT-P204	572	-1,39	11,12	11,02	4,69	3,04	-3,39	-0,41	-0,02	1,04	-1,27	0,29	-1,52	-1,25	-9,54	-0,63	-5,93
MAT-P534	308	-1,87	11,57	11,31	4,28	2,89	-3,44	-0,54	-0,01	0,91	-1,85	-0,11	-1,82	-1,59	-8,74	-0,74	-4,72
MAT-P535	472	-1,57	11,30	11,05	4,68	2,88	-3,46	-0,59	-0,02	0,88	-1,39	0,05	-1,50	-1,22	-9,51	-0,80	-6,21
MAT-P117	442	-1,55	11,28	10,56	4,40	2,77	-3,45	-0,69	-0,01	0,42	-1,70	-0,14	-2,06	-1,79	-9,30	-1,26	-7,46
42	415	-1,63	11,36	11,04	4,49	2,62	-3,40	-0,84	-0,01	0,84	-1,50	-0,17	-1,78	-1,52	-9,25	-0,85	-5,88
MAT-P109	604	-1,35	11,07	11,06	4,48	2,77	-3,33	-0,67	-0,00	1,15	-1,40	0,05	-1,93	-1,68	-9,36	-0,52	-5,47

Tab. D - Paramentri termodinamici per le acque Ca-Cl relative ai CISS 32CT010+32CT030 e 32CT050. – Thermodynamic parameters for the Ca-HCO₃ waters relative to the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean Water Bodies).

Sigla	C_tot	logPco2	log	log	log	log	log	SI	SI	Si	SI	SI	SI	SI	SI	SI	SI
	mgHCO ₃ /L	log Atm	[a _{Ca} /(a _H) ²]	[a _{Mg} /(a _H) ²]	[a _{Na} /a _H]	[a _K /a _H]	[aSiO2]	muscovite	calcite	dolomite	albite	K-feldspato	anidrite	gesso	anortite	magnesite	crisotilo
MAT-P103	179	-2,52	12,28	12,04	4,73	3,03	-3,40	-0,43	0,01	0,94	-1,24	0,27	-2,35	-2,07	-8,39	-0,77	-3,02
MAT-P531	539	-1,36	11,06	10,64	4,19	2,91	-3,44	-0,52	-0,02	0,72	-1,94	-0,07	-1,90	-1,66	-9,32	-0,93	-6,88
MAT-P133	567	-1,30	11,00	10,42	4,31	2,34	-3,43	-1,10	-0,01	0,57	-1,79	-0,61	-1,73	-1,48	-9,38	-1,09	-7,51
MAT-P102	454	-1,54	11,26	10,93	4,27	3,12	-3,40	-0,32	-0,01	0,81	-1,76	0,27	-2,35	-2,10	-9,22	-0,86	-6,13
P8bis	618	-1,36	11,08	10,57	4,71	2,67	-3,43	-0,78	-0,01	0,65	-1,36	-0,23	-1,79	-1,53	-9,45	-1,02	-7,22
Cn01	503	-1,47	11,19	10,97	4,33	2,88	-3,42	-0,56	-0,01	0,91	-1,73	-0,01	-2,43	-2,18	-9,27	-0,76	-6,01
Be08	485	-1,42	11,15	10,47	4,4/	2,55	-3,50	-0,90	0,01	0,49	-1,/4	-0,49	-1,/5	-1,50	-9,54	-1,19	-/,66
P272	624	-1.34	11,02	10,37	4 50	2,50	-3.36	-0,92	0.03	1.03	-1.45	0.04	-2.07	-1.82	-9.35	-0.67	-6.03
Be06	473	-1.50	11,05	10,90	4.26	2.69	-3.45	-0.75	0.03	0.79	-1.86	-0.25	-1.95	-1.70	-9.21	-0.93	-6.49
P4	688	-1,19	10,96	10,33	4,20	2,14	-3,46	-1,30	0,04	0,62	-1,93	-0,81	-1,62	-1,36	-9,54	-1,10	-7,99
P324	528	-1,42	11,17	10,83	4,21	2,74	-3,40	-0,67	0,05	0,93	-1,86	-0,20	-2,71	-2,48	-9,04	-0,79	-6,03
222	585	-1,32	11,11	10,33	4,16	2,73	-3,52	-0,73	0,05	0,48	-2,07	-0,30	-1,95	-1,69	-9,50	-1,26	-8,31
Be07	480	-1,50	11,29	10,87	4,45	2,78	-3,46	-0,66	0,07	0,89	-1,70	-0,20	-1,82	-1,57	-9,15	-0,85	-6,30
Be10	487	-1,49	11,29	10,91	4,41	2,74	-3,45	-0,69	0,07	0,94	-1,72	-0,21	-1,86	-1,61	-9,17	-0,81	-6,19
Be03	465	-1,52	11,35	10,70	4,45	2,71	-3,49	-0,73	0,10	0,72	-1,75	-0,31	-1,85	-1,59	-9,15	-1,07	-6,98
165	237	-2,47	12,27	12,42	4,96	4,15	-3,41	0,71	0,08	1,47	-1,09	1,27	-2,72	-2,47	-8,18	-0,29	-1,61
120 D. 0.4	505	-1,46	11,28	10,60	4,48	2,69	-3,48	-0,75	0,10	0,70	-1,70	-0,34	-1,73	-1,48	-9,13	-1,07	-7,08
Be04	421	-1,64	11,47	11,03	4,38	3,08	-3,48	-0,37	0,11	0,92	-1,78	0,09	-2,10	-1,85	-9,02	-0,86	-5,98
182	572	-1,00	11,50	10,85	4,50	2.95	-3,30	-0,14	0,12	1.01	-1,65	-0.04	-2,02	-1,70	-0,00	-1,07	-0,02
Ca03	498	-1.59	11,19	11.43	4.66	3.40	-3.46	-0,49	0.12	1.42	-1.46	0.47	-1.46	-1.20	-9,52	-0.38	-4.68
228	589	-1,34	11,21	10,56	4,34	2,84	-3,50	-0,61	0,13	0,76	-1,85	-0,15	-1,93	-1,66	-9,40	-1,06	-7,59
113	530	-1,42	11,28	10,78	4,37	2,56	-3,47	-0,88	0,14	0,95	-1,80	-0,46	-1,71	-1,46	-9,11	-0,86	-6,52
Be09	494	-1,50	11,36	10,90	4,48	2,62	-3,50	-0,82	0,14	0,98	-1,73	-0,41	-1,68	-1,42	-9,13	-0,84	-6,37
54	512	-1,49	11,35	10,87	4,37	2,78	-3,44	-0,66	0,14	0,98	-1,74	-0,16	-1,82	-1,57	-9,08	-0,84	-6,25
Be05	426	-1,64	11,52	11,02	4,62	2,84	-3,48	-0,59	0,16	0,99	-1,56	-0,17	-1,81	-1,56	-8,93	-0,85	-5,92
219	391	-1,72	11,61	11,24	4,57	3,18	-3,43	-0,26	0,16	1,13	-1,52	0,25	-1,98	-1,73	-8,85	-0,71	-5,17
202	524	-1,55	11,46	11,19	4,76	3,13	-3,41	-0,32	0,17	1,23	-1,25	0,32	-1,69	-1,43	-9,15	-0,62	-5,47
173	484	-1,53	11,44	10,89	4,40	2,91	-3,50	-0,55	0,17	0,93	-1,78	-0,07	-1,94	-1,67	-9,19	-0,93	-6,62
P253	608	-1,47	11,38	11,18	4,55	3,41	-3,38	-0,04	0,17	1,32	-1,41	0,63	-1,75	-1,49	-9,18	-0,54	-5,37
225	407	-1,/2	11,59	11,24	4,71	3.10	-3,41	-0,42	0,14	0.99	-1,55	0,14	-2,02	-1,//	-8,80	-0,72	-5,15
218	461	-1.68	11,50	11,00	4.69	3.27	-3.43	-0.19	0.18	1.19	-1.36	0.42	-2.14	-1.88	-9.01	-0.68	-5.30
62	463	-1,60	11,52	11,00	4,52	2,86	-3,46	-0,58	0,19	1,03	-1,61	-0,10	-1,68	-1,43	-8,97	-0,83	-5,95
108	455	-1,67	11,60	11,12	4,61	2,74	-3,44	-0,72	0,19	1,05	-1,45	-0,12	-2,11	-1,84	-9,02	-0,83	-5,79
SP_S7	799	-1,20	11,11	10,58	4,52	3,12	-3,42	-0,32	0,19	1,00	-1,55	0,22	-1,81	-1,56	-9,35	-0,86	-7,14
P28	515	-1,49	11,41	10,72	4,69	2,47	-3,42	-0,94	0,21	0,92	-1,43	-0,52	-1,79	-1,57	-8,80	-0,95	-6,37
58	491	-1,55	11,49	10,77	4,60	2,68	-3,49	-0,77	0,21	0,86	-1,59	-0,32	-1,65	-1,39	-9,06	-1,03	-6,80
P64	526	-1,53	11,47	11,17	4,49	2,68	-3,39	-0,76	0,21	1,29	-1,50	-0,15	-1,78	-1,53	-8,98	-0,59	-5,28
126	592	-1,45	11,35	11,07	4,82	2,52	-3,38	-0,92	0,18	1,25	-1,16	-0,29	-1,61	-1,36	-9,10	-0,60	-5,53
244	664	-1,41	11,36	11,19	4,79	2,85	-3,39	-0,60	0,21	1,42	-1,18	0,09	-1,58	-1,31	-9,29	-0,48	-5,46
BV5_S5	546	-1,50	11,44	10,85	4,53	2,80	-5,43	-0,63	0,23	1,04	-1,56	-0,14	-1,81	-1,57	-8,94	-0,86	-6,21
Cp22	472	-1,05	11,56	11,10	4,70	3.03	-3,44	-0,37	0,23	1,25	-1,35	-0,09	-1,01	-1,50	-0,04	-0,07	-5,50
198	561	-1.50	11,00	11,40	4.71	2.73	-3.36	-0.71	0.24	1,40	-1.24	-0.05	-1.62	-1.37	-9.02	-0.49	-5.01
259	496	-1,59	11,53	11,13	4,81	2,97	-3,42	-0,47	0,22	1,20	-1,26	0,07	-1,93	-1,68	-8,92	-0,69	-5,48
46	522	-1,49	11,47	10,96	4,43	2,69	-3,52	-0,75	0,25	1,17	-1,83	-0,40	-1,57	-1,32	-8,97	-0,76	-6,12
Cn06	534	-1,54	11,53	10,89	4,67	2,81	-3,50	-0,64	0,26	1,05	-1,53	-0,22	-1,81	-1,56	-8,96	-0,90	-6,41
230	615	-1,33	11,31	10,65	4,57	2,91	-3,53	-0,52	0,26	1,03	-1,73	-0,22	-1,61	-1,36	-9,10	-0,90	-7,06
204	408	-1,88	11,89	11,63	4,62	3,35	-3,42	-0,12	0,27	1,41	-1,40	0,54	-2,48	-2,20	-8,79	-0,55	-4,33
52	423	-1,77	11,77	11,24	4,52	2,86	-3,47	-0,59	0,27	1,17	-1,62	-0,10	-1,88	-1,62	-8,77	-0,78	-5,33
81	459	-1,67	11,67	11,12	4,49	2,87	-3,47	-0,57	0,27	1,17	-1,68	-0,13	-1,92	-1,67	-8,78	-0,78	-5,59
74	467	-1,60	11,60	10,86	4,52	2,82	-3,49	-0,61	0,28	0,00	-1,71	-0,26	-1,65	-1,41	-8,77	-0,95	-6,30
Mi06	551	-1,62	11,63	11,64	4,74	2,00	-3,39	-0,44	0,27	1,75	-1,26	0,17	-1,62	-1,37	-8,87	-0,21	-3,89
371	493	-1,/1	11,08	11,54	4,58	2.05	-3,50	-0,55	0,25	1,50	-1,5/	0.05	-2,48	-2,23	-0,//	-0,42	-4,18
<i>J/1</i>	402	-1,70	11,0/	11,40	+,+/	4,70	-9,42	-0,49	0,40	1,40	-1,39	0,00	-2,00	-2,11	-0,/0	-0,70	-5,15

Sigla	C_tot	logPco ₂	log	log	log	log	log	SI	SI	Si	SI	SI	SI	SI	SI	SI	SI
	mgHCO ₂ /L	log Atm	$[a_{C_2}/(a_H)^2]$	$[a_{M\alpha}/(a_H)^2]$	[aNa/aH]	$[a_{\rm K}/a_{\rm H}]$	[asico2]	muscovite	calcite	dolomite	albite	K-feldspato	anidrite	gesso	anortite	magnesite	crisotilo
P49bis	883	-1,15	11,11	10,76	4,62	3,63	-3,50	0,19	0,24	1,31	-1,60	0,57	-1,49	-1,24	-9,34	-0,61	-6,68
119	472	-1,64	11,63	11,31	4,66	3,02	-3,43	-0,41	0,28	1,43	-1,46	0,04	-1,66	-1,43	-8,67	-0,52	-4,71
P188	716	-1,44	11,41	11,43	5,04	2,96	-3,28	-0,48	0,25	1,69	-0,75	0,34	-1,78	-1,53	-9,04	-0,23	-4,25
62	424	-1,79	11,80	11,42	4,80	2,92	-3,41	-0,51	0,29	1,37	-1,27	-0,00	-1,93	-1,69	-8,56	-0,59	-4,46
P226	449	-1,71	11,69	11,35	4,80	3,06	-3,42	-0,38	0,26	1,34	-1,26	0,16	-1,86	-1,61	-8,76	-0,59	-4,80
148	480	-1,67	11,69	11,13	4,64	2,81	-3,46	-0,65	0,29	1,18	-1,48	-0,12	-1,93	-1,66	-8,89	-0,80	-5,73
P365	403	-1,88	11,86	11,54	4,47	2,80	-3,40	-0,64	0,25	1,35	-1,55	-0,06	-2,17	-1,92	-8,60	-0,58	-4,21
458	319	-2,02	12,02	11,66	4,93	3,37	-3,41	-0,07	0,28	1,36	-1,12	0,49	-2,19	-1,94	-8,43	-0,60	-3,88
467	449	-1,75	11,75	11,30	4,87	3,11	-3,45	-0,33	0,28	1,26	-1,25	0,15	-7,86	-7,61	-8,71	-0,70	-5,07
88	493	-1,60	11,62	11,03	4,58	2,87	-3,47	-0,57	0,29	1,17	-1,58	-0,12	-1,69	-1,44	-8,85	-0,81	-5,88
PO	485	-1,55	11,55	11,01	4,53	2,85	-3,42	-0,59	0,28	1,18	-1,54	-0,05	-1,72	-1,47	-8,90	-0,78	-5,85
P464	394	-1,91	11,91	11,63	4,88	3,29	-3,40	-0,15	0,27	1,44	-1,15	0,43	-1,92	-1,67	-8,54	-0,51	-3,91
Cn02	520	-1,72	11,75	11,70	4,61	3,19	-3,35	-0,25	0,30	1,70	-1,31	0,44	-2,21	-1,96	-8,72	-0,27	-3,68
P244	346	-1,85	11,84	11,50	4,87	3,33	-3,47	-0,06	0,31	1,48	-1,39	0,14	-1,67	-1,48	-8,11	-0,47	-3,71
5	437	-1,68	11,68	11,10	4,87	3,08	-3,49	-0,35	0,27	1,17	-1,34	0,05	-1,38	-1,13	-8,78	-0,78	-5,60
137	441	-1,90	11,93	11,96	4,99	3,58	-3,36	0,14	0,30	1,82	-0,98	0,77	-2,10	-1,85	-8,47	-0,16	-2,77
292	438	-1,85	11,85	10.05	4,/1	3,23	-3,36	-0,21	0,27	1,63	-1,23	0,46	-2,2/	-2,02	-8,60	-0,32	-3,45
/8	485	-1,63	11,68	10,95	4,54	2,86	-3,51	-0,59	0,31	1,05	-1,6/	-0,16	-1,/5	-1,49	-8,92	-0,95	-6,41
DV5_83	4/5 E0E	-1,00	11,/0	10.62	4,0/	2,18	-5,44	-0,25	0,52	1,25	-1,4/	0,19	-1,/9	-1,55	-8,03	-0,/6	-3,39
P40 450	430	-1,5/	11,02	10,03	4,50	2,59	-3,49	-0,65	0,55	1 21	-1,05	-0,45	-1,52	-1,2/	-0,04	-1,10	-7,09
459 DA	430 860	-1,/2	11,75	10.77	4,74	2,90	-3,42	-0,54	0,51	1,51	-1,55	0,01	-1,62	-1,5/	-0,/1	-0,67	-5,05
Cn10	463	-1,12	11,10	11 10	4,39	2.06	-5,50	-0,55	0,34	1,44	1.52	0,50	-1,00	-1,55	9,21	-0,37	5 70
Cn05	403	-1,09	11,74	11,10	4,75	3.36	-3,32	-0,40	0.32	1,17	-1,32	-0,12	-1,90	-1,05	-0,75	-0,85	-3,79
P248	531	-1.63	11.67	11,40	4.66	2 75	-3.38	-0.69	0.32	1,51	-1.32	-0.07	-1.34	-1.09	-8.75	-0.23	-3.83
275	329	-2.09	12.12	12.01	4.63	3.40	-3.38	-0.04	0.30	1.65	-1.36	0.58	-2.23	-1.98	-8.33	-0.33	-2.79
PB	492	-1.73	11.81	11.48	4.77	2.68	-3.38	-0.77	0.34	1.53	-1.19	-0.09	-1.77	-1.51	-8.76	-0.50	-4.49
P264	388	-1.85	11,81	11,10	4.74	3.01	-3.45	-0.40	0.33	1,55	-1.44	-0.06	-1.61	-1.39	-8.29	-0.48	-3.91
323	492	-1.75	11.79	11.53	4.57	3.21	-3.40	-0.23	0.31	1.52	-1.45	0.36	-2.60	-2.35	-8.66	-0.47	-4.26
P222	498	-1,65	11,71	11,09	4,53	2,96	-3,44	-0,46	0,35	1,25	-1,61	-0,04	-2,31	-2,08	-8,58	-0,77	-5,44
356	367	-2,04	12,09	11,90	4,57	3,05	-3,40	-0,39	0,32	1,64	-1,46	0,19	-1,92	-1,67	-8,36	-0,36	-3,09
P58bis	471	-1,87	11,96	11,92	4,65	3,14	-3,34	-0,28	0,37	1,87	-1,28	0,36	-2,30	-2,06	-8,39	-0,17	-2,82
P239	488	-1,66	11,74	11,27	4,70	3,11	-3,44	-0,31	0,37	1,46	-1,43	0,11	-1,76	-1,53	-8,55	-0,58	-4,85
394	342	-2,04	12,13	11,83	4,48	2,86	-3,40	-0,58	0,36	1,59	-1,53	0,01	-2,03	-1,78	-8,32	-0,45	-3,34
Cn23	452	-1,79	11,90	10,99	4,78	2,91	-3,49	-0,54	0,39	1,02	-1,41	-0,11	-2,03	-1,77	-8,61	-1,04	-6,12
184	467	-1,83	11,94	11,69	4,99	3,33	-3,40	-0,12	0,38	1,68	-1,00	0,52	-1,82	-1,56	-8,60	-0,38	-3,84
374	386	-1,91	11,98	11,77	4,60	2,95	-3,43	-0,49	0,34	1,66	-1,49	0,03	-1,63	-1,38	-8,47	-0,36	-3,52
256_Bi	396	-1,93	12,05	11,74	4,66	3,09	-3,42	-0,35	0,39	1,64	-1,39	0,21	-2,07	-1,82	-8,41	-0,43	-3,65
455	478	-1,68	11,77	11,35	4,70	2,98	-3,41	-0,46	0,37	1,48	-1,34	0,11	-1,89	-1,64	-8,68	-0,57	-4,79
33	464	-1,72	11,81	11,32	4,55	3,10	-3,46	-0,34	0,36	1,41	-1,60	0,11	-1,85	-1,60	-8,64	-0,63	-4,98
Cn21	485	-1,75	11,89	11,25	4,74	3,01	-3,45	-0,42	0,42	1,37	-1,39	0,05	-1,88	-1,63	-8,53	-0,72	-5,11
261	482	-1,77	11,87	11,50	4,90	3,05	-3,41	-0,39	0,38	1,55	-1,14	0,18	-2,11	-1,86	-8,58	-0,51	-4,35
68	564	-1,66	11,77	11,19	4,54	4,13	-3,56	0,69	0,38	1,34	-1,80	0,95	-2,36	-2,11	-8,68	-0,72	-5,61
188	726	-1,60	11,71	11,84	5,23	2,73	-3,28	-0,71	0,39	2,08	-0,56	0,11	-1,86	-1,61	-8,74	0,01	-3,04
P59	448	-1,80	11,97	11,24	4,74	2,95	-3,47	-0,50	0,43	1,31	-1,39	-0,00	-1,73	-1,47	-8,58	-0,81	-5,34
253	200	-1,69	12.20	11,57	4,64	3,01	-5,42	-0,42	0,40	1,/4	-1,41	0,13	-1,59	-1,54	-8,63	-0,54	-4,09
10/ 30 AT	205	-2,11	12,28	12,31	4,98	2.25	-5,54	0,14	0.44	2,08	-0,92	0.29	-2,21	-1,96	-8,10	-0,04	-1,/4
207	470	-1,93	11.04	11,/0	4,91	3,23	-3,44	-0,18	0.44	1,/0	-1,21	0,20	-1,/9	-1,55	-0,27	-0,38	-3,47
257 Bi	300	-1,00	12.21	11.00	4.67	3.25	-3,47	_0.10	0.46	1,01	-1.24	0.30	-1,00	-1.05	-0,51	-0,20	-3.14
P280	406	-1.98	12.18	11.96	5 16	3.45	-3.41	_0.01	0.46	1.87	-0.85	0.65	-1 42	-1 15	-8.46	-0.27	_3 15
249	607	-1.63	11.83	11.45	4.82	3.26	-3.43	-0.19	0.46	1.71	-1.24	0.39	-1.64	-1.38	-8.76	-0.44	-4.69
P94bis	512	-2.00	12.19	12.20	5.32	3.77	-3.34	0.34	0.47	2.13	-0.60	0.00	-2.30	-2.06	-8.17	-0.02	-1.99
460	308	-2.30	12.47	12.06	4.85	3.46	-3.42	0.02	0.44	1.64	-1.21	0.57	-2.56	-2.31	-7.98	-0.48	-2.70
P13	451	-1,92	12,11	11,98	4,88	3,28	-3,38	-0,14	0,48	2,02	-1,14	0,40	-1,90	-1,67	-8,16	-0,13	-2,55
P145bis	946	-1,33	11,55	11,50	4,87	2,95	-3,25	-0,52	0,47	2,04	-0,81	0,47	-2,07	-1,80	-9,14	-0,13	-4,39
262	439	-1,88	12,06	11,80	4,99	3,72	-3,45	0,28	0,45	1,83	-1,12	0,77	-1,65	-1,40	-8,39	-0,30	-3,46
138	402	-2,32	12,51	12,75	5,32	3,89	-3,33	0,45	0,47	2,34	-0,57	1,17	-2,37	-2,12	-7,94	0,19	-0,44
Rm139	470	-1,78	11,97	11,55	4,72	3,28	-3,47	-0,16	0,47	1,70	-1,44	0,29	-1,57	-1,32	-8,48	-0,45	-4,25
318	279	-2,33	12,56	12,43	5,09	3,24	-3,33	-0,20	0,51	2,06	-0,78	0,53	-1,89	-1,64	-7,89	-0,13	-1,37

Sigla	C_tot	logPco ₂	log	log	log	log	log	SI	SI	Si	SI	SI	SI	SI	SI	SI	SI
	mgHCO2/L	log Atm	$\left[a_{Ca}/(a_{II})^2\right]$	$\left[a_{M\alpha}/(a_{LI})^2\right]$	[anto/att]	[ar/ar]	[as:co]	muscovite	calcite	dolomite	albite	K-feldspato	anidrite	gesso	anortite	magnesite	crisotilo
254_Bi	415	-2,01	12,25	11,92	4,93	3,25	-3,43	-0,19	0,52	1,87	-1,14	0,34	-1,91	-1,66	-8,21	-0,33	-3,13
253_Bi	461	-1,89	12,15	11,83	5,14	3,37	-3,44	-0,08	0,53	1,93	-0,95	0,45	-1,58	-1,32	-8,35	-0,29	-3,43
276	430	-1,96	12,19	11,92	4,88	3,31	-3,40	-0,13	0,51	1,91	-1,15	0,46	-1,94	-1,69	-8,26	-0,28	-3,08
79_Ca	290	-2,44	12,73	12,44	5,01	3,59	-3,43	0,14	0,56	1,98	-1,04	0,71	-2,56	-2,30	-7,78	-0,26	-1,69
282	362	-2,32	12,60	12,56	5,37	3,41	-3,34	-0,03	0,55	2,25	-0,53	0,68	-1,98	-1,73	-7,86	0,02	-0,97
P210bis	508	-1,89	12,18	11,98	5,10	3,75	-3,39	0,30	0,56	2,09	-0,88	0,95	-1,77	-1,51	-8,35	-0,15	-2,95
461	433	-1,93	12,23	11,89	5,06	3,35	-3,31	-0,09	0,58	1,98	-0,78	0,68	-1,84	-1,59	-8,22	-0,28	-2,98
317	512	-1,78	12,04	11,63	4,80	3,46	-3,45	0,02	0,54	1,82	-1,31	0,52	-2,08	-1,83	-8,41	-0,40	-4,05
11	693	-1,59	11,84	11,54	5,04	3,61	-3,42	0,17	0,53	1,93	-1,01	0,72	-1,59	-1,34	-8,61	-0,27	-4,19
27	321	-2,27	12,54	12,23	5,27	3,71	-3,47	0,27	0,55	1,98	-0,89	0,72	-1,58	-1,33	-7,91	-0,25	-2,19
210	446	-2,00	12,28	12,14	5,10	4,10	-3,45	0,67	0,55	2,14	-1,02	1,14	-1,78	-1,53	-8,17	-0,09	-2,47
77TG	397	-2,12	12,46	12,15	4,90	3,46	-3,43	0,01	0,61	2,06	-1,17	0,56	-2,30	-2,05	-8,05	-0,23	-2,55
17	496	-1,87	12,16	11,68	4,77	-1,63	-3,42	-5,07	0,57	1,83	-1,29	-4,53	-1,86	-1,61	-8,29	-0,41	-3,81
172	661	-1,67	11,97	11,93	5,04	3,57	-3,33	0,13	0,57	2,27	-0,85	0,84	-1,80	-1,55	-8,48	0,02	-2,90
136	457	-2,12	12,45	12,46	5,18	3,63	-3,35	0,20	0,62	2,42	-0,76	0,83	-2,08	-1,84	-7,89	0,13	-1,18
128	406	-2,05	12,39	11,95	4,99	3,25	-3,45	-0,18	0,63	2,00	-1,17	0,23	-1,81	-1,57	-7,93	-0,30	-2,88
Rm141	592	-1,78	12,10	12,07	5,10	3,26	-3,33	-0,18	0,60	2,35	-0,79	0,54	-1,54	-1,29	-8,35	0,08	-2,40
163	507	-1,85	12,17	11,97	4,97	3,30	-3,47	-0,14	0,59	2,16	-1,19	0,31	-1,71	-1,46	-8,28	-0,11	-3,02
Rm85	453	-1,99	12,34	12,24	5,18	3,41	-3,34	-0,03	0,63	2,33	-0,72	0,68	-1,64	-1,39	-8,11	0,03	-1,96
P34	520	-2,07	12,44	12,32	5,13	4,00	-3,38	0,56	0,64	2,32	-0,83	1,22	-2,20	-1,95	-8,07	0,00	-1,91
236	677	-1,61	11,99	11,36	4,97	3,44	-3,49	-0,01	0,64	1,82	-1,21	0,45	-1,63	-1,36	-8,59	-0,51	-5,10
63	390	-2,42	13,10	12,25	5,26	2,98	-3,45	-0,46	0,96	2,23	-0,88	-0,01	-2,19	-1,94	-7,27	-0,40	-2,08
63	342	-2,81	13,69	12,80	5,49	3,38	-3,44	-0,07	1,15	2,56	-0,56	0,52	-2,20	-1,93	-6,89	-0,28	-0,69
64	410	-2,16	12,58	12,29	5,09	3,20	-3,40	-0,24	0,70	2,30	-0,94	0,33	-1,70	-1,46	-7,83	-0,08	-1,85
64	332	-2,46	12,98	12,79	5,17	3,87	-3,40	0,43	0,80	2,57	-0,85	1,01	-1,73	-1,48	-7,47	0,10	-0,42
85	382	-2,61	13,35	13,14	5,40	3,/3	-3,39	0,28	1,00	2,97	-0,5/	0,95	-1,89	-1,63	-/,21	0,28	0,52
94	425	-2,85	12.01	12,80	5,92	4,01	-3,34	0,58	1,21	2.07	0,05	1,51	-1,80	-1,61	-6,67	0,81	2,97
94	449	-2,80	12.27	12,89	5,87	4,18	-3,34	0,76	1,50	2.07	-0,02	1,45	-1,80	-1,65	-6,50	0,91	0.00
100	439	-2,40	12,57	12,91	5,49	3,07	-3,4/	0,24	1,17	2.94	-0,00	1.20	-1,08	-1,44	-7,05	0,22	-0,09
121	450	2.04	12.47	11.82	5.01	3 15	3.47	0,00	0.71	1.03	1 1 5	0.16	1.80	-1,95	7.08	0,02	3.51
121	344	-2,04	12,47	12.58	5.32	3.56	-3.44	0.13	0,71	2.43	-1,15	0.59	-1,89	-1,04	-7,90	-0,40	-1.01
124	460	-2,42	12,55	11.91	5.12	3.22	-3.46	-0.22	0,00	2.03	-1.01	0.26	-1.85	-1.59	-7.92	-0,03	-3.26
129	367	-2.76	13.78	13 35	5 71	3.97	-3.48	0.53	1 30	3 35	-0.47	0.95	-1.76	-1.52	-6.61	0.37	1 17
130	461	-2.57	13,60	13,33	5.69	3.92	-3.45	0.49	1.31	3.42	-0.44	0.94	-1.71	-1.47	-6.74	0.44	0.92
134	417	-2.53	13.29	13.08	5.58	3.64	-3.40	0.18	1.02	3.00	-0.38	0.88	-1.71	-1.44	-7.36	0.29	0.19
136	491	-2,30	12,89	12,89	5,37	3,67	-3,33	0,23	0,86	2,90	-0,51	0,96	-1,98	-1,73	-7,56	0,36	0,00
138	394	-2,49	13,08	13,02	5,66	3,68	-3,39	0,23	0,85	2,84	-0,30	0,91	-1,65	-1,38	-7,49	0,30	0,20
138	409	-2,41	13,02	12,92	5,50	3,71	-3,40	0,28	0,90	2,88	-0,53	0,84	-1,65	-1,41	-7,34	0,31	0,12
149	406	-2,39	12,86	12,87	5,28	3,66	-3,36	0,21	0,74	2,63	-0,64	0,94	-2,40	-2,13	-7,72	0,21	-0,35
170	440	-2,02	12,46	12,06	4,00	3,41	-3,50	-0,03	0,71	2,21	-1,22	0,37	-1,56	-1,31	-8,03	-0,19	-2,85
191	424	-2,07	12,54	11,86	5,31	3,41	-3,50	-0,03	0,74	1,99	-0,91	0,36	-1,50	-1,25	-7,92	-0,43	-3,39
192	382	-2,75	13,75	13,31	5,68	4,22	-3,46	0,78	1,28	3,28	-0,44	1,27	-2,08	-1,83	-6,70	0,32	0,99
290	321	-2,73	13,45	13,25	5,67	4,53	-3,46	1,09	0,99	2,96	-0,45	1,58	-1,99	-1,74	-7,00	0,28	0,83
424	540	-2,33	13,21	12,83	5,33	3,90	-3,44	0,46	1,15	3,10	-0,76	0,97	-1,94	-1,69	-7,24	0,26	-0,41
59TG	382	-2,62	13,43	13,02	5,37	3,87	-3,45	0,42	1,08	2,90	-0,73	0,94	-2,23	-1,98	-7,07	0,14	0,05
67_Ca	548	-2,27	12,95	12,00	5,46	3,71	-3,33	0,27	0,96	3,13	-0,42	0,98	-2,12	-1,88	-7,46	0,50	0,37
68_Ca	427	-2,28	12,87	12,45	5,18	3,67	-3,45	0,23	0,86	2,46	-0,94	0,73	-2,16	-1,91	-7,63	-0,08	-1,65
69_Ca	399	-2,41	13,06	12,65	5,28	3,79	-3,46	0,35	0,92	2,59	-0,84	0,85	-2,13	-1,88	-7,45	-0,01	-1,07
70_Ca	449	-2,35	13,04	12,65	5,22	3,67	-3,42	0,23	0,96	2,70	-0,83	0,78	-2,11	-1,86	-7,41	0,05	-0,92
71_Ca	417	-2,69	13,62	13,30	5,42	3,85	-3,41	0,41	1,20	3,23	-0,58	1,03	-2,12	-1,85	-6,93	0,35	0,92
72_Ca	452	-2,46	13,30	12,94	5,19	3,60	-3,46	0,16	1,11	3,05	-0,94	0,65	-1,60	-1,35	-7,19	0,25	-0,12
74_Ca	370	-2,63	13,41	12,98	5,29	3,78	-3,44	0,34	1,05	2,83	-0,80	0,86	-2,49	-2,23	-7,06	0,09	-0,03
75_Ca	409	-2,49	13,21	12,84	5,28	3,77	-3,43	0,33	1,00	2,78	-0,80	0,86	-2,46	-2,21	-7,23	0,10	-0,38

Sigla	C_tot	logPco ₂	log	log	log	log	log	SI	SI	Si	SI	SI	SI	SI	SI	SI	SI
	mgHCO ₂ /L	log Atm	$[a_{C_2}/(a_H)^2]$	$[a_{M\alpha}/(a_H)^2]$	[a _{No} /a _H]	$[a_{\rm K}/a_{\rm H}]$	[as;02]	muscovite	calcite	dolomite	albite	K-feldspato	anidrite	gesso	anortite	magnesite	crisotilo
76 Ca	405	-2.69	13.61	13.22	5.43	3.90	-3.43	0.46	1.20	3.17	-0.64	0.99	-2.49	-2.24	-6.81	0.29	0.80
77 Ca	388	-2.61	13.41	13.02	5.36	3.84	-3.44	0.40	1.08	2.93	-0.73	0.91	-2.51	-2.26	-7.03	0.17	0.15
78 Ca	381	-2.44	13.04	12.68	5.18	3.73	-3.43	0.28	0.87	2.53	-0.86	0.89	-2.39	-2.12	-7.55	-0.03	-1.05
Cn10	484	-2.22	12.72	12,75	5.28	3.89	-3.35	0.46	0.78	2.75	-0.65	1.10	-3.28	-3.04	-7.66	0.30	-0.41
118	436	-3 30	14 77	14 64	6.42	4 90	-3.43	1 45	1 74	4 51	0.44	2.11	-2.29	-2.03	-5.76	1.08	4 97
141	328	-3.65	15.00	15.18	6.74	5.25	-3.43	1,13	1.63	4 59	0.81	2.50	-2.40	-2.15	-5.45	1,00	6.80
142	397	-3.29	14 58	14.61	6 34	4 77	-3.40	1 34	1,00	4 33	0.40	1.00	-2 51	-2.26	-5.87	1.08	5.05
151	429	3.18	14.51	14.48	6.21	4.66	3 30	1,01	1,57	4 33	0.30	1.00	1.08	1.71	-6.08	1,00	4 54
168	433	3.05	14.34	13.81	6.15	4 28	3.45	0.83	1.55	3.73	0.11	1 44	2 32	-2.06	6.28	0.49	2 30
BC 10	888	-1.30	11.68	11 58	4 79	2.00	-3.31	0,05	0.55	216	-1.04	0.35	-2,52	-2,00	-8.86	-0.08	4.06
BC 10	921	-1,57	11.00	11,50	4.57	2,00	-3.32	-0,48	0.33	1 71	-1.28	0.28	-1,77	-1,75	-0,00	-0,00	-5.30
BC_10	494	-1.40	11,24	10.37	4.28	2,00	-3.46	-0,40	-0.04	0.37	-1,20	-0.51	-2,12	-1.82	-9.36	-0,27	-7.84
BC 11	488	1,10	11.41	10,57	4.45	2,10	-3.46	0,56	0.13	0.71	1,00	0.08	1.92	1,02	-9.07	-1.10	-6.89
BC 12	469	-1,50	11,41	10.95	4 54	2,00	-3.45	-0,50	0.23	0,71	-1,00	-0,00	-1,72	-1.03	-8.83	-1,10	-6.03
BC 12	403	-1,05	11,57	10,95	4.41	2,50	-3,43	-0,75	0.17	0,99	-1,57	-0,77	-2,17	-1.80	-0,05	-0,91	-6.38
BC 13	567	1.43	11.39	11 15	4.48	2,00	3.44	0.64	0.23	1.41	1.65	0.10	1.50	1.26	8 00	0.49	5 20
BC 13	620	1 30	11,50	11,15	4,40	2,00	3.44	-0,04	0.23	1,41	1.66	-0,19	1 36	1 11	0.11	-0,49	5 34
BC 14	441	2.00	12.44	11,10	4.06	2,90	2 4 2	-0,40	0,25	1,47	1.04	0.42	-1,50	1.04	× 20	-0,44	2 45
BC 14	512	-2,09	11.22	10.97	4,90	2,01	-3,42	-0,20	0,00	1,04	-1,04	0,42	-2,22	-1,94	-0,29	-0,45	-5,45
BC 16	512	-1,49	11,55	10,07	4,45	2,91	2 47	-0,51	0,14	1,00	-1,05	-0,07	-2,19	-1,90	-0,00	-0,01	-3,92
BC_16	404	-1,49	11,47	11.02	4,00	2.05	-3,47	-0,40	0,24	1,14	1.50	0,09	-1,70	-1,44	-9,00	-0,70	-0,17
BC 17	626	-1,50	11,52	11,02	4,30	2.70	-3,40	-0,17	0,25	1,15	-1,39	0,20	-1,90	-1,05	-0,90	-0,79	-0,01
BC_17	402	-1,40	12.02	11,15	4,47	2,70	-3,37	-0,75	0,17	1,50	1.20	-0,00	-1,39	-1,55	-9,24	-0,50	-3,42
BC 19	493	-1,00	11.40	11,01	4,70	2,00	-3,40	-0,12	0,50	1,99	-1,29	0,40	-1,05	-1,42	-0,30	-0,19	-5,17
BC_18	524	-1,0/	11,40	10.05	4,09	3,08	-3,38	-0,35	0,08	1,20	-1,50	0,20	-1,65	-1,00	-8,94	-0,50	-4,51
BC 10	524	-1,45	12.42	11.95	5.00	2.16	-3,43	-0,42	0,07	2.14	-1,/9	0,04	-1,70	-1,40	-9,12	-0,00	-5,65
BC 10	621	-1,92	11,45	10.02	4.70	2.00	2 47	-0,29	0,70	1.22	-1,02	0,20	-1,73	-1,4/	-0,17	-0,32	-3,34
BC_19	461	-1,40	11,51	11,95	4,70	2,99	-3,47	-0,40	0,52	1,22	-1,44	0,05	-1,01	-1,34	-9,07	-0,79	-0,35
BC_20	401	-1,/0	11,79	11,57	4,09	2,00	-3,39	-0,/8	0,28	1,49	-1,51	-0,17	-2,18	-1,95	-8,70	-0,47	-4,18
BC_22	482	-1,/3	14.21	12,59	4,85	3,40	-5,49	-0,04	1.20	1,73	-1,33	1.02	-1,42	-1,10	-8,62	-0,38	-4,25
DC_24	208	-3,18	14,21	13,72	5,50	4,05	-3,52	0,58	1,29	3,29	-0,09	1,05	-1,08	-1,41	-0,30	0,50	2,05
BC_3	461	-1,81	11,/3	11,/8	5,14	3,09	-3,30	-0,38	0,15	1,55	-0,72	0,46	-1,55	-1,20	-9,07	-0,51	-5,/6
BC_3	61/	-1,59	11,61	11,63	5,05	3,20	-3,34	-0,24	0,29	1,80	-0,85	0,46	-1,62	-1,3/	-8,82	-0,17	-3,69
BC_4	4/6	-1,08	11,80	11,22	4,99	3,18	-3,52	-0,27	0,39	1,58	-1,2/	0,09	-1,52	-1,2/	-8,69	-0,69	-5,41
BC_4	496	-1,63	11,69	11,15	4,00	3,26	-3,50	-0,18	0,33	1,30	-1,22	0,22	-1,58	-1,33	-8,79	-0,/1	-5,59
BC_5	452	-1,50	11,15	11,15	4,50	3,08	-3,3/	-0,37	-0,09	0,98	-1,43	0,55	-1,85	-1,59	-9,38	-0,62	-5,40
BC_5	439	-1,92	12,03	12,07	5,05	3,78	-3,30	0,54	0,58	1,96	-0,90	1,05	-2,05	-1,/9	-8,47	-0,10	-2,61
BC_0	/81	-1,28	12.00	11,15	4,89	2,59	-3,2/	-0,89	0,03	1,31	-0,/8	0,15	-1,61	-1,31	-9,78	-0,43	-5,62
DC_0	612	-1,/2	12,00	11,78	5,10	3,85	-3,44	0,39	0,55	1,00	-0,94	1,02	-1,65	-1,30	-8,70	-0,25	-5,88
DC_0	202	-1,97	12,55	12,52	5,22	4,16	-3,43	0,75	0,84	2,65	-0,88	1,20	-1,/5	-1,51	-/,/9	0,14	-1,/2
BC_9	382	-1,/0	11,64	11,16	4,65	3,06	-3,47	-0,38	0,16	0,00	-1,50	0,08	-2,04	-1,/8	-8,80	-0,85	-5,58
BC_9	446	-1,59	11,39	10,82	4,65	3,12	-3,4/	-0,32	0,07	0,75	-1,49	0,16	-1,95	-1,69	-9,15	-1,02	-6,62
BC20	249	-2,/6	13,30	12,95	5,84	4,46	-3,55	1,02	0,80	2,45	-0,44	1,3/	-1,52	-1,26	-/,24	-0,04	-0,29
BC 22	29/ E40	-2,20	12,41	12,10	5,39	2,98	-3,51	0,55	0,41	1,/1	-0,83	0,95	-1,51	-1,25	-0,15	-0,38	-2,/8
BC_23	201	-1,/9	12,10	11,40	4,40	2,94	-3,45	-0,50	0.58	2.16	-1,/1	0.64	-1,98	1 20	-0,41	-0,5/	-4,02
BC20	201	-2,3/	12,90	12,02	4,98	3,55	-3,4/	0,10	0,05	2,10	-1,13	0,04	-1,00	-1,39	-/,0/	-0,19	-1,24
BC20	500	-2,14	12,//	12,35	4,97	3,01	-3,50	0,10	0,90	2,5/	-1,23	0.57	-1,42	-1,10	-/,/8	-0,02	-2,03
PC22	411	-2,5/	12,98	12,89	5,02	2,58	-3,41	0,18	1.22	2,9/	-1,08	0,5/	-1,59	-1,58	-/,09	0,40	1.01
DC32	365	-2,//	13,/8	13,37	5,45	4,04	-3,50	0,64	1,52	2,45	-0,84	0,86	-1,52	-1,51	-0,26	0,48	1,81
BC33	48/	-2,/4	13,82	13,35	5,54	5,67	-5,46	2,22	1,56	3,43	-0,56	2,/4	-1,64	-1,38	-6,67	0,39	1,14
DC34_	562	-2,51	13,69	15,52	5,45	4,20	-5,48	0,80	1,50	5,84	-0,80	1,02	-1,44	-1,24	-6,29	0,70	1,/5
BC35mix	52/	-2,26	12,42	12,17	4,66	3,18	-5,44	-0,30	0,40	1,71	-1,33	0,43	-1,81	-1,52	-8,46	-0,40	-2,92
BC35	312	-2,92	13,/2	13,47	5,52	2,86	-3,45	0,3/	1,04	2,98	-0,67	1,12	-1,/9	-1,49	-/,20	0,24	0,92
BC36	268	-2,87	13,57	13,28	5,21	5,/6	-5,45	0,36	1,02	2,95	-0,97	0,66	-1,89	-1,68	-6,44	0,28	1,61
BC38	679	-1,74	12,25	12,02	4,90	3,61	-3,45	0,19	0,80	2,56	-1,25	0,60	-1,40	-1,17	-8,04	0,10	-2,56
BC39	672	-2,36	13,56	13,06	5,79	4,43	-3,61	0,00	1,48	3,66	-0,63	1,18	-1,17	-0,92	-6,90	0,51	0,08
BC56	215	-5,10	13,68	12,85	4,65	5,46	-5,47	-0,07	0,79	1,84	-1,28	0,86	-2,55	-2,21	-/,65	-0,68	-1,66
BC28	329	-2,70	13,27	12,81	5,02	3,66	-3,45	0,12	0,76	2,16	-0,84	1,16	-2,12	-1,76	-8,21	-0,34	-1,88
BC29	435	-2,59	13,37	12,97	5,29	5,87	-5,46	0,34	0,97	2,65	-0,59	1,34	-1,80	-1,44	-8,08	-0,06	-1,37
BC60	360	-2,69	13,34	13,11	5,28	3,88	-3,44	0,36	0,86	2,61	-0,59	1,33	-1,81	-1,47	-7,96	0,02	-0,69
BC331	263	-3,07	13,85	13,22	4,94	3,76	-3,47	0,24	0,99	2,47	-1,02	1,12	-2,12	-1,79	-7,42	-0,26	-0,42
BC332	286	-3,13	14,06	13,52	5,25	4,34	-3,49	0,83	1,15	2,88	-0,75	1,64	-1,98	-1,65	-7,11	0,01	0,60

Tab. E – Parametri termodinamici per le acque Ca-SO4 relative ai CISS 32CT010+32CT030 e 32CT050. – Thermodynamic parameters for the Ca-SO4 waters relative to the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean Water Bodies).

Sigla	C_tot	logPco ₂	log	log	log	log	log	SI	SI	Si	SI	SI	SI	SI	SI	SI	SI	SI	SI	SI
	mgHCO ₃ /L	log Atm	$[a_{Ca}/(a_H)^2]$	[a _{Mo} /(a _H) ²]	[a _{Na} /a _H]	[a _K /a _H]	[aSiO2]	muscovite	calcite	dolomite	albite	K-feldspato	anidrite	gesso	anortite	magnesite	crisotilo	forsterite	diopside	clorite
Mi01	411	-1,29	10,68	10,29	4,12	2,35	-3,44	-1,09	-0,35	0,18	-1,99	-0,58	-0,82	-0,57	-9,81	-1,15	-7,79	-11,46	-7,37	-14,00
Mi02	590	-1,27	10,86	10,82	4,29	2,66	-3,44	-0,78	-0,14	0,90	-1,80	-0,25	-1,35	-1,10	-9,63	-0,64	-6,33	-10,48	-6,69	-11,58
Mi00	433	-1,49	11,30	10,92	4,32	2,99	-3,44	-0,45	0,08	1,04	-1,78	0,06	-0,81	-0,55	-9,17	-0,72	-5,88	-10,18	-6,11	-10,81
451	430	-1,57	11,46	10,94	4,47	2,87	-3,58	-0,57	0,17	1,01	-1,91	-0,34	-1,25	-0,00	-8,99	-0,83	-6,26	-10,38	-6,24	-11,11
250	370	-1,88	11,83	11,73	4,91	3,29	-3,47	-0,15	0,22	1,56	-1,24	0,30	-1,34	-1,09	-8,62	-0,34	-3,60	-8,64	-4,83	-6,93
Mi04	448	-2,08	12,36	12,33	5,16	3,43	-3,37	-0,01	0,55	2,30	-0,79	0,65	-1,42	-1,17	-8,11	0,06	-1,63	-7,37	-3,52	-3,90
Mi05	402	-2,12	12,44	12,35	5,14	3,59	-3,46	0,16	0,60	2,36	-1,01	0,59	-1,20	-0,96	-7,92	0,09	-1,51	-7,21	-3,48	-3,42
BC25	302	-2,36	12,57	12,23	5,32	4,50	-3,61	1,04	0,47	1,78	-1,09	1,30	-1,54	-1,27	-8,09	-0,37	-2,73	-8,10	-4,08	-5,30
BC25b	306	-2,96	13,82	13,46	5,74	4,49	-3,55	0,97	1,06	2,90	-0,35	1,72	-1,48	-1,14	-7,48	0,11	0,18	-6,44	-1,98	-1,08
BC29	438	-2,55	13,50	13,04	5,88	4,52	-3,67	1,06	1,21	3,18	-0,64	1,19	-1,17	-0,91	-7,08	0,28	-0,25	-6,39	-2,36	-0,98
BC57	426	-1,88	12,04	11,63	5,09	3,31	-3,54	-0,13	0,43	1,67	-1,19	0,21	-1,21	-0,95	-8,49	-0,45	-4,16	-9,02	-4,94	-7,76
BC61	390	-2,63	13,46	13,20	5,67	3,83	-3,58	0,31	1,02	2,97	-0,49	0,00	-1,10	-0,76	-7,86	0,21	-0,56	-6,93	-2,64	-2,25
BC62	373	-2,93	14,00	13,70	6,11	4,46	-3,70	0,93	1,27	3,43	-0,28	1,41	-1,02	-0,67	-7,34	0,42	0,70	-6,06	-1,83	0,10

Tab. F – Parametri termodinamici per le acque Na-Cl relative ai CISS 32CT010+32CT030 e 32CT050. – Thermodynamic parameters for the Na-Cl waters relative to the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean Water Bodies).

Sigla	C_tot	logPco ₂	log	log	log	log	log	SI	SI	Si	SI	SI	SI	SI	SI	SI	SI	SI	SI	SI	SI
	mgHCO ₃ /L	logAtm	$[a_{Ca}/(a_{H})^2]$	$[a_{Mo}/(a_H)^2]$	[a _{Na} /a _H]	[a _K /a _H]	[aSiO2]	muscovite	calcite	dolomite	albite	K-feldspato	anidrite	gesso	paragonite	anortite	magnesite	crisotilo	forsterite	diopside	clorite
133	1500	-0,32	9,06	8 7,64	4,99	2,89	-3,41	-0,52	-0,00	-2,26	-1,10	-0,08	-0,21	0,00	-2,45	-11,15	-2,92	-15,71	-16,62	-11,49	-27,07
P245	95	-4,62	14,92	15,62	6,94	5,55	-3,57	2,12	0,59	3,04	0,92	2,68	-4,96	-4,72	-0,55	-5,45	0,77	8,10	-0,83	2,28	12,45
P167	539	-1,68	11,92	11,93	5,68	3,97	-3,33	0,53	0,51	2,17	-0,20	1,26	-1,30	-1,05	-1,84	-8,54	-0,01	-2,96	-8,26	-4,35	-6,20
P147	717	-1,67	12,08	12,01	5,65	4,38	-3,80	0,91	0,66	2,39	-1,11	0,84	-0,98	-0,70	-1,96	-8,66	0,03	-4,04	-8,93	-5,29	-7,09
178	463	-2,07	12,45	12,82	6,24	4,64	-3,44	1,21	0,64	2,78	0,13	1,70	-1,35	-1,10	-1,28	-7,00	0,47	-0,54	-6,60	-3,17	-1,88
38	863	-1,67	12,25	12,34	5,96	4,17	-3,32	0,73	0,84	2,92	0,10	1,47	-1,19	-0,95	-1,56	-8,20	0,40	-1,71	-7,42	-3,60	-4,13
135	379	-2,61	13,38	13,85	7,16	5,42	-3,47	1,99	0,97	3,55	0,00	2,43	-1,09	-0,85	-0,35	-7,07	0,91	2,49	-4,56	-1,27	3,24
BC_21	329	-3,42	14,93	15,38	7,75	6,04	-3,56	2,60	1,63	4,85	1,41	2,88	-1,05	-0,81	0,21	-5,57	1,54	6,83	-1,67	1,59	10,64
BC_6	757	-1,58	11,71	11,94	5,42	3,66	-3,25	0,21	0,39	2,16	-0,28	1,14	-1,73	-1,47	-2,13	-8,84	0,08	-2,89	-8,27	-4,47	-6,33
BC_21	364	-1,62	11,36	11,80	5,94	4,17	-3,45	0,73	-0,04	1,50	-0,17	1,23	-1,05	-0,80	-1,59	-9,13	-0,14	-3,67	-8,70	-5,33	-7,12
BC31	247	-2,61	13,26	12,59	6,44	6,07	-3,36	2,70	0,98	2,48	0,36	3,02	-0,96	-0,79	-0,85	-6,48	-0,13	-0,03	-6,00	-1,81	-0,75
BC37	1190	-1,45	12,40	11,70	5,96	4,72	-3,43	1,29	1,24	2,93	-0,14	1,77	-0,30	-0,06	-1,53	-7,95	0,02	-3,72	-8,69	-4,23	-7,15
BC40	431	-2,45	13,37	12,76	6,53	6,06	-3,39	2,67	1,23	3,02	0,42	3,04	-1,01	-0,82	-0,84	-6,59	0,15	0,10	-5,99	-1,78	-0,61
BC55	495	-1,76	11,95	11,76	5,68	3,59	-3,43	0,07	0,39	1,69	-0,20	1,02	-1,19	-0,85	-2,09	-9,30	-0,43	-4,78	-9,76	-5,34	-9,58
BC100	243	-2,93	13,53	14,21	7,53	5,88	-3,47	2,48	0,79	3,42	1,31	2,77	-0,85	-0,65	0,12	-6,63	0,98	3,96	-3,46	-0,53	5,89
133	402	-1,52	11,44	10,02	6,18	4,08	-3,44	0,65	0,15	0,03	0,07	1,14	-0,23	0,01	-1,33	-9,00	-1,80	-8,94	-12,19	-6,98	-15,88
SeaWater	130	-3,21	13,77	14,52	7,68	6,00	-3,45	2,64	0,65	3,23	1,42	2,78	-0,98	-0,82	0,38	-5,99	0,96	5,48	-2,30	0,40	8,65

Tab. G – Parametri termodinamici per le acque Na-HCO₃ relative ai CISS 32CT010+32CT030 e 32CT050. – Thermodynamic parameters for the Na-HCO₃ waters relative to the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean Water Bodies).

Sigla	C_tot	logPco ₂	log	log	log	log	log	SI	SI	Si	SI	SI	SI	SI	SI	SI	SI	SI	SI	SI
	mgHCO3/L	logAtm	[a _{Ca} /(a _H) ²]	[a _{Mo} /(a _H) ²]	[a _{Na} /a _H]	[a _K /a _H]	[aSiO2]	muscovite	calcite	dolomite	albite	K-feldspato	anidrite	gesso	anortite	magnesite	crisotilo	forsterite	diopside	clorite
93	91	-2,58	11,54	11,14	4,83	2,67	-3,42	-0,77	-0,77	-0,77	-1,24	-0,23	-2,63	-2,38	-8,91	-1,68	-5,44	-9,88	-5,68	-10,11
93	99	-2,56	11,61	10,28	4,79	3,74	-3,46	0,30	-0,68	-1,50	-1,35	0,76	-2,52	-2,27	-8,85	-2,50	-8,08	-11,63	-6,55	-14,42
MAT-P205	465	-1,62	11,35	11,08	5,15	3,86	-3,56	0,40	-0,02	0,89	-1,15	0,77	-1,52	-1,25	-9,34	-0,79	-6,12	-10,38	-6,38	-11,08
73	511	-1,61	11,46	10,89	5,06	3,47	-3,45	0,04	0,13	0,86	-1,06	0,53	-2,14	-1,89	-8,99	-0,95	-6,24	-10,41	-6,06	-11,39
P27	555	-1,54	11,49	10,88	5,06	2,80	-3,52	-0,65	0,22	1,03	-1,18	-0,26	-1,44	-1,18	-9,06	-0,88	-6,43	-10,55	-6,23	-11,61
BC25	308	-2,29	12,34	12,02	5,46	4,92	-3,48	1,45	0,30	1,47	-0,65	2,04	-1,57	-1,29	-8,43	-0,53	-3,25	-8,53	-4,35	-6,54

Tab. H – Composizione isotopica dell'ossigeno e unità trizio per le acque dei ai CISS 32CT010+32CT030 e 32CT050. Le coordinate sono espresse in UTM/Gauss-Boaga. n.d.: non determinato.

 Isotopic composition of oxygen and Tritium Unit for the waters relative to the 32CT010+32CT030 and 32CT050SSWB (Significant Subterranean Water Bodies). East and North coordinates are expressed in UTM/Gauss-Boaga. n.d: not determined.

Sigla	Est G_B_	Nord G_B_	$\delta^{18}{\rm O(H_2O)}$	Tritium	Dati bibliografici
	(UTM)	(UTM)	% (V-SMOW)	T.U.	
118	1626125	4799150	-6,8	n.d.	Pranzini (2004a)
204	1626510	4795410	-6,16	n.d.	Pranzini (2004a)
222	1626612	4794397	-6,15	0,39	Pranzini (2004a)
168	1625665	4797480	-6,15	8,3	Pranzini (2004a)
219	1624820	4794660	-6,13	4,4	Pranzini (2004a)
145	1625900	4798210	-6,1	n.d.	Pranzini (2004a)
192	1625950	4796085	-6,1	n.d.	Pranzini (2004a)
108	1622740	4799758	-6	6,8	Pranzini (2004a)
63	1622990	4801600	-5,99	8,3	Pranzini (2004a)
93	1623975	4800330	-5,99	9,6	Pranzini (2004a)
228	1626044	4793989	-5,98	5,2	Pranzini (2004a)
93	1623975	4800330	-5,98	12,3	Pranzini (2004a)
173	1624435	4797290	-5,95	7,1	Pranzini (2004a)
186	1623910	4796355	-5,93	7,1	Pranzini (2004a)
247	1625080	4792260	-5,88	n.d.	Pranzini (2004a)
196	1624445	4795990	-5,87	1,9	Pranzini (2004a)
94	1627100	4800250	-5,84	n.d.	Pranzini (2004a)
86	1622470	4800630	-5,83	n.d.	Pranzini (2004a)
236	1627085	4793290	-5,82	n.d.	Pranzini (2004a)
94	1627100	4800250	-5,8	n.d.	Pranzini (2004a)
64	1621450	4801590	-5,8	11,1	Pranzini (2004a)
85	1621780	4800635	-5,77	n.d.	Pranzini (2004a)
113	1620615	4799500	-5,74	n.d.	Pranzini (2004a)
130	1621362	4798875	-5,74	n.d.	Pranzini (2004a)
205	1622570	4795305	-5,74	4,8	Pranzini (2004a)
230	1624092	4793880	-5,73	6,2	Pranzini (2004a)
98	1620880	4800085	-5,72	n.d.	Pranzini (2004a)
100	1619010	4800030	-5,72	7,6	Pranzini (2004a)
191	1622745	4796095	-5,72	8,1	Pranzini (2004a)
138	1624125	4798475	-5,72	8,8	Pranzini (2004a)
64	1621450	4801590	-5,72	11,2	Pranzini (2004a)
140	1620195	4798360	-5,7	10,4	Pranzini (2004a)
74	1620340	4801050	-5,64	n.d.	Pranzini (2004a)
58	1620700	4801750	-5,56	6,8	Pranzini (2004a)
120	1621575	4799055	-5,5	12	Pranzini (2004a)
134	1622985	4798760	-5,46	9,1	Pranzini (2004a)
134	1622985	4798760	-5,4	11,2	Pranzini (2004a)
163	1621530	4797625	-5,38	9,7	Pranzini (2004a)
191	1622745	4796095	-5,03	7,6	Pranzini (2004a)
138	1624125	4798475	-4,96	n.d.	Pranzini (2004a)
186	1623910	4796355	-4,92	5,4	Pranzini (2004a)
137	1626170	4798550	n.d.	6,4	Pranzini (2004a)
182	1623700	4796530	n.d.	6,4	Pranzini (2004a)
239	1626657	4792817	n.d.	8,8	Pranzini (2004a)
244	1624562	4792587	n.d.	10,4	Pranzini (2004a)
129	1621850	4798900	n.d.	12,2	Pranzini (2004a)

INTRODUZIONE/INTRODUCTION Paj	g.
-------------------------------	----

3

CERRINA FERONI A., DA PRATO S., DOVERI M., ELLERO A., LELLI M., MARINI L., MASETTI G.,		
NISI B. & RACO B. – Caratterizzazione geologica, idrogeologica e idrogeochimica dei corpi idrici sotter-		
ranei significativi della regione toscana (CISS): 32CT010 "Acquifero costiero tra Fiume Cecina e San		
Vincenzo", 32CT030 "Acquifero costiero tra Fiume Fine e Fiume Cecina", 32CT050 "Acquifero del		
Cecina"	»	5
1 CONSIDERAZIONI GEOLOGICHE ED IDROGEOLOGICHE	»	7
1.1 INQUADRAMENTO GEOLOGICO DELL'AREA	»	7
1.2 CARATTERISTICHE GEOLOGICHE-IDROGEOLOGICHE DEI SISTEMI ACQUIFERI	»	10
2 PIEZOMETRIE E VOLUMI IDRICI IMMAGAZZINATI	»	16
2.1 Acquiferi costieri tra Fiume Fine e Fiume Cecina (32CT030) e tra Fiume Cecina e		
S. VINCENZO (32CT010)	»	16
2.2 Acquifero del Ceciná (32CT050)	»	25
3 LA CARATTERIZZAZIONE IDROGEOCHIMICA	»	34
3.1 Fonti Bibliografiche	»	34
3.2 CLASSIFICAZIONE CHIMICA DELLE ACQUE	»	34
3.3 LO SCAMBIO IONICO.	»	38
3.4 CALCOLI DI SPECIAZIONE-SATURAZIONE.	»	40
3.5 MAPPATURA IDROGEOCHIMICA	»	60
3.6 Geochimica isotopica	»	70
4 CONSIDERAZIONI CONCLUSIVE E MODELLO CONCETTUALE DEI CISS	»	71
Ringraziamenti	»	77
BIBLIOGRAFIA	»	77
APPENIDICE		01
	<i>))</i>	01

3

Mediante la DGRT n. 225/2003, la Regione Toscana ha formalmente istituito 45 Corpi Idrici Sotterranei Significativi (CISS), di cui 29 in mezzi porosi e 16 in mezzi fratturati, al fine di tutelare le risorse idriche in essi ospitate e mettere in atto le azioni di risanamento eventualmente necessarie.

Un primo studio geologico-stratigrafico, basato sulla perimetrazione e ricostruzione delle superfici di tetto e di letto dei CISS, attraverso l'interpretazione dei dati stratigrafici disponibili, è stato effettuato dall'Istituto di Geoscienze e Georisorse del CNR, supporto tecnico del Consorzio LaMMa per le problematiche di interesse geologico, per conto della Regione Toscana, con il contributo di altri enti regionali (ARPAT, CGT dell'Università di Siena, Autorità di Bacino del Fiume Arno). Le conclusioni di questo primo studio sono state presentate nel volume "Corpi Idrici Sotterranei Significativi della Regione Toscana – DGRT 225/2003 – Inquadramento regionale, perimetrazione e ricostruzione, prospettive e sviluppi", edito nel 2008 a cura del Centro Stampa Giunta Regione Toscana.

A seguito di questa indagine, l'Istituto di Geoscienze e Georisorse del CNR è stato incaricato di caratterizzare gli altri CISS dai punti di vista geologico, idrogeologico ed idrogeochimico, in base alla raccolta, elaborazione ed interpretazione dei dati pertinenti disponibili. I risultati ottenuti per i CISS, 32CT010 "Acquifero costiero tra Fiume Cecina e San Vincenzo", il 32CT030 "Acquifero costiero tra Fiume Fine e Fiume Cecina" ed il 32CT050 "Acquifero del Cecina", vengono presentati in questa monografia.

In particolare questi CISS sono stati interessati in passato da numerosi studi a carattere geologico, idrogeologico e geochimico, sia per il loro interesse scientifico, sia per l'importante bacino di utenza che insiste sulle risorse naturali in essi presenti, con particolare riferimento alle risorse idriche.

Nel presente lavoro vengono riuniti, trattati ed in parte rielaborati i dati, editi ed inediti, prodotti fino ad oggi per i suddetti CISS relativamente alle tematiche geologica, idrogeologica ed idrogeochimica, ed inoltre si presenta un modello idrogeologico concettuale attraverso la comparazione delle indicazioni derivanti dalle varie tematiche. Per il tipo di strutturazione del lavoro, i vari studi pregressi dai quali sono stati reperiti i dati vengono citati nel corso della trattazione.

INTRODUCTION

The Tuscany Region formally constituted 45 Significant Subterranean Water Bodies (SSWB's) through the Deliberation of the Regional Committee no. 225 on 10 March 2003 (DGRT 225/2003) to protect the water resources hosted in these aquifers and to undertake remediation/reclamation actions if needed.

A first geological-stratigraphic study was carried out by the Institute of Geosciences and Earth Resources of CNR, technical support of the LaMMa Consortium for geology and related disciplines, for the Tuscany Region, with the contribution of other regional Istitutions (ARPAT, CGT of Siena University, Arno River Basin Authority). Boundary, top surface and bottom surface of each SSWB were reconstructed through the interpretation of available stratigraphic data. The conclusions of this study were presented in the volume "Significant Subterranean Water Bodies of the Tuscany Region -DGRT 225/2003 – Regional framework, reconstruction of the boundaries, top surfaces and bottom surfaces, and future developments" printed in 2008 by the Regional Committee of Tuscany.

Upon this first investigation, the Institute of Geosciences and Earth Resources of CNR was entrusted to characterize the SSWB's from the geological, hydrogeological, and hydrogeochemical point of view, through the collection, elaboration and interpretation of available data. This monography presents the results for the first three considered SSWB's, namely the 32CT010 SSWB - "Coastal acquifer between the Cecina River and San Vincenzo", the 32CT030 SSWB - "Coastal acquifer between the Fine River and Cecina River" and 32CT050 SSWB - "Aquifer of the Cecina valley"

Several geological, hydrogeological, and geochemical studies were devoted to these three SSWB's, to understand different aspects of high scientific relevance and for practical implications as well, as the resources coming from these aquifers are used as drinkable water by a very large number of people.

In addition, the collect all data have permitted to construct a conceptual hydrogeological model of SSWB. Owing to the structure of this work, previous studies are presented and discussed separately in each section.

Caratterizzazione geologica, idrogeologica e idrogeochimica dei corpi idrici sotterranei significativi della regione toscana (CISS):

32CT010 "Acquifero costiero tra Fiume Cecina e San Vincenzo", 32CT030 "Acquifero costiero tra Fiume Fine e Fiume Cecina", 32CT050 "Acquifero del Cecina"

Geological, hydrogeological and hydrogeochemical characterization of significant subterranean water bodies of the Tuscany Region (SSWB): 32CT010 "Coastal aquifer between the Cecina River and San Vincenzo", 32CT030 "Coastal aquifer between the Fine River and Cecina River", 32CT050 "Aquifer of the Cecina valley"

> CERRINA FERONI A. (*), DA PRATO S. (*), DOVERI M. (*), ELLERO A. (*), LELLI M.(*), MARINI L. (*)(**), MASETTI G. (*), NISI B.(*), RACO B. (*)

RIASSUNTO - L'argomento di questo studio è la interpretazione dei dati pregressi relativi alla geologia, idrogeologia e geochimica disponibili per i tre Corpi Idrici Sotterranei Significativi (CISS) 32CT050, 32CT010 e 32CT030, formalmente istituiti dalla Regione Toscana con la Delibera di Giunta Regionale n. 225 del 10 marzo 2003. Il primo è costituito dall'acquifero di fondovalle del Fiume Cecina, mentre gli altri due sono rappresentati dagli acquiferi costieri compresi fra il Fiume Fine e San Vincenzo.

Il CISS di fondovalle del Fiume Cecina è ospitato nei livelli permeabili, prevalentemente ghiaiosi e ghiaioso-sab-biosi, della sequenza alluvionale. Il substrato di questa sequenza è costituito da: (i) argille mio-plioceniche impermeabili, nella maggior parte del bacino idrologico, e (ii) terreni prevalentemente sabbiosi, con i quali possono verificarsi importanti scambi idrici, nella sua parte terminale. Il volume complessivo dei depositi permeabili è di circa 280×10⁶ m³. La superficie piezometrica di questo corpo idrico, che è controllata dal corso d'acqua principale e dalla pendenza del subalveo, presenta un'escursione di circa 0.6 m fra condizioni di magra e morbida. I volumi idrici immagazzinati variano fra 28.9×10⁶ e 31.3×10⁶ m³. A causa della presenza di rocce scarsamente permeabili nella maggior parte del bacino idrico, la alimentazione del CISS vallivo è assicurata principalmente dalle acque di scorrimento di superficie, che si infiltrano nella sequenza alluvionale di fondo valle. Tuttavia, nella parte terminale, acquistano importanza gli apporti laterali, dai litotipi permeabili affioranti sui fianchi della valle.

I CISS costieri sono costituiti da una sequenza di livelli ghiaiosi e sabbiosi permeabili separati da depositi limoso-argillosi impermeabili. Il substrato di questa sequenza è rappresentato dalle sabbie ed argille ad Arctica islandica (LINNAEUS, 1767) nel settore settentrionale, da Unità Liguri a bassa permeabilità nel settore meridionale, e da depositi argillosi di incerta attribuzione nel settore compreso fra il Fiume Cecina e Bolgheri. Il volume totale dei depositi permeabili è approssimativamente di 4630×106 m3. La superficie piezometrica di questi due corpi idrici costieri suggerisce che questo sistema multistrato ha un comportamento monofalda, sia per la discontinuità dei depositi impermeabili, sia per la presenza di pozzi che connettono i differenti livelli permeabili. I volumi idrici immagazzinati sono compresi tra 394×106 e 398 ×10⁶ m³. La alimentazione dei CISS costieri è riconducibile sia alle precipitazioni locali, soprattutto nelle zone di pianura, sia alle acque meteoriche che si infiltrano sulle colline circostanti, specialmente dove affiorano litotipi permeabili, come le sabbie pleistoceniche. Ciò è suggerito sia dall'andamento della superficie piezometrica, sia dai valori di δ^{18} O disponibili.

Non esistendo limiti idrogeologici evidenti né fra i due CISS costieri, né fra questi ultimi e l'acquifero vallivo, i tre corpi idrici sono da considerarsi in comunicazione idraulica.

I dati geochimici disponibili per i tre corpi idrici di interesse sono stati processati congiuntamente. A causa della loro frequente incompletezza, è stato necessario stimare alcuni parametri, come il pH (assumendo la saturazione rispetto alla calcite) e la concentrazione di silice (mediante

^(*)CNR-IGG Consiglio Nazionale delle Ricerche, Istituto di Geoscienze e Georisorse di Pisa, Via G. Moruzzi 1, 56124 Pisa (Italia) (**)DIPTE.RIS. Università degli Studi di Genova, Corso Europa 26, 16132 Genova (Italia)

l'analisi di regressione multipla dei dati esistenti).

La maggior parte delle acque campionate nei CISS in esame ha composizione variabile da Ca-HCO₃ a Ca(Mg)-HCO₃ ed ha origine per dissoluzione di calcite e dolomite, fasi solide caratterizzate da velocità di dissoluzione molto maggiori di quelle dei silicati e Al-silicati. Una caratteristica pressoché ubiquitaria è la saturazione rispetto a queste fasi minerali carbonatiche, per fugacità di CO₂ comprese fra 10^{-3} e 10^{-1} bar, condizione che agisce come una efficace barriera geochimica, impedendo il raggiungimento dell'equilibrio nei confronti dei minerali primari contenenti Ca (es. plagioclasi), Mg (es. serpentino e cloriti) e sia Ca che Mg (es. pirosseni), come indicato dai diagrammi di attività per i sistemi CaO-SiO₂-Al₂O₃-CO₂-H₂O e MgO-SiO₂-Al₂O₃-CO₂-H₂O.

Localmente sono presenti acque di composizione Ca-SO₄, prodotte per dissoluzione di gesso e/o anidrite, contenuti nei litotipi evaporitici affioranti nelle zone collinari circostanti o come costituenti clastici dei depositi alluvionali.

L'interpretazione dei dati geochimici ha inoltre evidenziato differenti criticità. Fra di esse, vanno ricordate quelle legate agli elevati contenuti di: (i) nitrato disciolto, fino a circa 300 mg/L, imputabile principalmente all'intensa attività floro-vivaistica e secondariamente agli scarichi di natura domestica e civile; (ii) boro, proveniente principalmente dal bacino del Torrente Possera; (iii) cromo esavalente, la cui origine è tuttora oggetto di approfonditi studi.

La principale criticità è rappresentata dall'ingressione marina, che localmente origina acque appartenenti alla facies Na-Cl, caratterizzate da elevate concentrazioni di cloruro, fino ad un valore massimo di 13500 mg/L. I fenomeni di scambio ionico conseguenti all'ingressione di acque marine e/o salmastre determina la evoluzione verso composizioni variabili da Ca-Cl a Ca(Mg)-Cl. Il deflusso di acque di falda (freshening) in zone precedentemente influenzate da ingressione marina e scambio ionico produce invece acque Na-HCO3, pure presenti nell'area di studio. I fenomeni di ingressione marina, sia per avanzamento del cuneo salino dalla linea di costa verso l'interno, sia per richiamo delle acque salmastre che risalgono lungo i corsi d'acqua, sono controllati dalle ampie depressioni piezometriche, che sono presenti in corrispondenza dell'abitato di Cecina e lungo la costa, tra Marina di Bibbona e Castagneto Carducci e verso San Vincenzo. Tali depressioni piezometriche sono causate dal sovra-sfruttamento dei corpi idrici, situazione che va opportunamente sanata per evitare l'ulteriore degrado della qualità delle risorse idriche sotterranee.

PAROLE CHIAVE: Geologia, Idrogeologia, Geochimica, Risorsa Idrica, Cecina, Corpi Idrici Sotterranei Significativi

ABSTRACT - This study is aimed at interpreting previous geological, hydrogeological, and geochemical data, which are available for the three Significant Subterranean Water Bodies (SSWB) 32CT050, 32CT010, and 32CT030, formally constituted by the Tuscany Region through the Deliberation of the Regional Committee no. 225 on 10 March 2003. The first one is the aquifer of the Cecina valley, whereas the other two are the coastal aquifers situated between the Fine River and San Vincenzo.

The SSWB of the Cecina valley is hosted into the permeable layers of the alluvial sequence, which are prevailingly made up of gravels and pebbly sands. The underlying bedrock is represented by impermeable Mio-Pliocene clays, in most of the drainage basin, except in its terminal part, where they are substituted by chiefly sandy lithotypes. Consequently, in the terminal part of the valley, important water exchanges can occur between the aquifer and its permeable bedrock. The total volume of permeable deposits is of 280 $\times 10^6$ m³ approximately. The potentiometric surface of this water body is controlled by the main waterway and its slope and experiences a change of ca. 0.6 m between the end of the dry season and the end of the rainy season. The stored water volume varies between 28.9×10⁶ and 31.3×10⁶ m³. Owing to the presence of poorly permeable rocks in most of the drainage basin, the recharge of the Cecina valley SSWB is mainly provided by runoff water, which infiltrates in the alluvial sequence situated at the bottom of the valley. However, lateral contributions, from the permeable lithotypes cropping out on the flanks of the valley, become important in its terminal part.

The coastal SSWB's are constituted by a sequence of permeable, gravel and sand layers separated by impermeable silty-clayey deposits. The bedrock of this sequence is represented by the sands and clays with Arctica islandica (LIN-NAEUS, 1767) in the northern sector, by the low-permeability Ligurian Units in the southern sector, and by clayey deposits of uncertain stratigraphic position in the sector between the Cecina River and Bolgheri. The total volume of permeable deposits is of 4630×10⁶ m³ approximately. This multi-layer system behaves similar to a single-layer aquifer, as suggested by the potentiometric surface of these two coastal water bodies, owing to both the discontinuous nature of the impermeable deposits and the presence of several boreholes connecting the permeable layers situated at different depths. The stored water volume varies between 394×106 and 398× 10⁶ m³. The coastal SSWB's are recharged by both local precipitations, mainly in the plains, and meteoric waters infiltrating in the nearby hills, especially where permeable rocks (e.g., Pleistocene sands) crop out. This is in line with both the shape of the potentiometric surface and available δ^{18} O values.

All the three SSWB's have to be considered hydraulically connected, as no clear hydrogeological boundary can be recognized among them.

Available geochemical data for the three water bodies of interest were processed together. Since data are frequently incomplete, it was necessary to estimate some parameters, such as pH (assuming saturation with respect to calcite) and silica concentration (through multiple regression analysis of existing data).

Most groundwater samples collected in the considered SSWB have chemical composition from Ca-HCO₃ to Ca(Mg)-HCO₃ and originate through interaction with calcite and dolomite, whose dissolution rates are much higher than those of silicates and Al-silicates. Virtually all the groundwaters are saturated with respect to these carbonate minerals, for CO₂ fugacities between 10⁻³ and 10⁻¹ bar. This condition acts as an effective geochemical barrier, preventing the attainment of equilibrium with the primary minerals bearing Ca (e.g., plagioclases), Mg (e.g., serpentine and chlorites) and both Ca and Mg (e.g., pyroxenes), as suggested by the activity diagrams for the systems CaO-SiO₂-Al₂O₃-CO₂-H₂O and MgO-SiO₂-Al₂O₃-CO₂-H₂O.

Calcium-sulfate waters are locally present. They are produced through dissolution of gypsum and/or anhydrite, contained either in evaporite rocks cropping out in the nearby hills or as clastic constituents into alluvial deposits.

The interpretation of geochemical data highlighted some problems, such as those linked to the elevated concentrations of: (i) dissolved nitrate, up to ca. 300 mg/L, which is due mainly to the intense breeding ground activity and secondarily to domestic and civil wastewaters; (ii) boron, chiefly coming from the drainage basin of the Possera Creek; (iii) hexavalent chromium, whose origin is still the subject of detailed studies.

The main problem is represented by seawater intrusion in coastal aquifers, which locally generates Na-Cl waters, with high concentrations of dissolved chloride, up to a maximum value of 13500 mg/L. As a consequence of this process, Na-Ca and Na-Mg ion exchanges take place and water chemistry changes from Na-Cl to either Ca-Cl or Ca(Mg)-Cl. The reverse process (freshening) occurs when low-salinity Ca-HCO₃ groundwater flushes saltwater from the aquifer. Adsorption of Ca^{2+} ion and concurrent release of Na^{+} ion lead to generation of Na-HCO3-type water, which are also present in the study area. Intrusion of seawater, due to either direct inland displacement of the saline wedge or inflow of saltwater along the stream channels and subsequent entrance in the nearby shallow aquifers, is largely controlled by the depressions in the potentiometric surface, which are present near Cecina and along the coast, between Marina di Bibbona and Castagneto Carducci as well as near San Vincenzo. There is no doubt that these wide cones of depression are caused by excessive groundwater pumping. Consequently, there is an urgent need to change the management of the coastal aquifers situated between the Fine River and San Vincenzo to avoid further deterioration of groundwater quality.

KEY WORD: Geology, Hydrogeology, Geochemistry, Water Resources, Cecina, Significant Subterranean Water Bodies

1. - CONSIDERAZIONI GEOLOGICHE ED IDROGEOLOGICHE

1.1. - Inquadramento geologico dell'area

L'area in cui ricadono i CISS in studio, (32CT030 Acquifero costiero tra Fiume Fine e Fiume Cecina; 32CT010 Acquifero costiero tra Fiume Cecina e S. Vincenzo; 32CT050 Acquifero del Cecina) si estende, in Val di Cecina, dal meridiano ad est dell'asse Volterra-Pomarance, in provincia di Pisa, al tratto di costa compreso tra Rosignano Solvay e S. Vincenzo, in provincia di Livorno (fig. 1).

Tale area, così come tutta la Toscana sud-occidentale, è caratterizzata da un substrato preneogenico (Unità Liguri, Unità subliguri, Unità Toscane) sormontato in discordanza da una copertura clastico-terrigena organizzata in più cicli

Fig. 1 – I Corpi Idrici Significativi Sotterranei (CISS) in mezzi porosi della Val di Cecina: Acquifero costiero tra F. Fine e F. Cecina (32CT030), Acquifero costiero tra F. Cecina e S. Vincenzo (32CT010) e Acquifero del Cecina (32CT050).
 – Significant Subterranean Water Bodies (SSWB) in the Cecina Valley alluvial deposits: Coastal aquifer between Fine and Cecina rivers (32CT030), Coastal aquifer between Cecina river and S. Vincenzo (32CT010) and Cecina river aquifer (32CT050).

sedimentari (Tortoniano sup.- Pleistocene). Le alluvioni recenti del Fiume Cecina e del Fiume Fine e le sabbie di spiaggia e di duna della fascia costiera completano la successione sedimentaria nell'Olocene (fig. 2).

Il substrato pre-neogenico corrisponde allo stacking strutturale polifasico, comune a tutta la Toscana, derivante dal sovrascorrimento regionale dell'insieme Liguridi-Unità Subliguri sulle Unità toscane, non metamorfiche o anchimetamorfiche (Falda toscana auctt.), modificato dalle fasi deformative, *post nappe* del Miocene medio-superiore e del Plio-Pleistocene. La successione della Falda Toscana si sviluppa per circa 200 MY tra il Trias superiore (Calcari a *Rhaetavicula contorta*) e l'Oligocene superiore (Macigno) ed è caratterizzata, al di sopra dei calcari di piattaforma del Lias inferiore (Calcare massiccio), da una successione bacinale non molto spessa, prima carbonatica (Rosso Ammonitico, Calcare selcifero) e successivamente, tra il Dogger e l'Eocene, marnoso-argillosa (Marne a *Posidonia*, Scaglia) e silicea (Diaspri), che affiora con buone esposizioni nei Monti di Campiglia e Sassetta (GIANNINI, 1955; BERTINI *et alii*, 1991), lungo la costa, in provincia di Livorno e nell'alta Val di Cecina (Cornate

Fig. 2 – Schema geologico semplificato dell'area oggetto di studio (da: Carta Geologica della Toscana, 1:250.000, con modifiche). – Geological sketch map of the study area (from: Geological map of Tuscany, 1:250,000, modified).

di Gerfalco, Castelnuovo Val di Cecina, Sasso Pisano) (LAZZAROTTO & MAZZANTI, 1978). La successione stratigrafica della Falda Toscana si chiude con la Formazione del Macigno (Chattiano-Aquitaniano inf.) costituita da torbiditi silico-clastiche di provenienza alpina che, in tutto il settore occidentale ligure-tirrenico, rappresentano il deposito di riempimento della avanfossa al fronte della catena in migrazione spazio-temporale verso l'avampaese (RICCI LUCCHI, 1986).

In base ai recenti rilevamenti eseguiti per la realizzazione della Carta Geologica in scala 1:10.000 della Regione Toscana (S.G.R.T., 2004; 2006; 2007), utilizzati sistematicamente per la definizione della geometria dei CISS in roccia, parte delle arenarie in precedenza attribuite al Macigno sono state dagli autori attribuite al Dominio Subligure (Arenarie di Suvereto) per le relazioni geometriche con le unità argilloso-calcaree pre-oligoceniche (Fm. delle Argille e calcari) tipiche del Dominio Subligure stesso.

Le Unità Liguri alla sommità dell'edificio strutturale a falde di ricoprimento sono costituite dalla copertura sedimentaria a dominante argillosa (Giurassico sup.-Paleocene sup.) delle ofioliti di crosta oceanica e del mantello (basalti, gabbri, serpentiniti). La formazione più diffusa è rappresentata dalle Argille a palombini del Cretaceo inferiore. La media Val di Cecina è inoltre l'area tipo della Fm. di Lanciaia, un'unità torbiditica con livelli di brecce ofiolitiche, di età paleocenica, che incrosta in discordanza le serpentiniti e i termini dell'antica copertura sedimentaria (Diaspri, Calcari a Calpionelle e Argille a palombini) (SIGNORINI et alii, 1963; LAZZAROTTO & MAZZANTI, 1978; CERRINA FE-RONI et alii, 1973). Il detritismo ofiolitico caratterizza anche il Flysch ad Elmintoidi di Sassa (Flysch di Montaione) del Cretaceo superiore, nettamente separato geometricamente nell'ambito dell'edificio strutturale mesoalpino dal Flysch ad Elmintoidi 'inferiore' (Flysch di Monteverdi-Larderello), anch'esso del Cretaceo superiore ma del tutto privo di detritismo ofiolitico.

Una complessa deformazione polifasica, con sviluppo di estesi fianchi inversi a basso angolo nella Fase ligure dell'Eocene medio, caratterizza l'insieme delle Liguridi con evidente raccorciamento differenziale rispetto alla successione della Falda Toscana non coinvolta nelle fasi contrazionali pre-mioceniche.

Le unità litostratigrafiche della copertura sedimentaria che sormonta il substrato preneogenico appartengono alla successione continentale e marino-lagunare di età compresa tra il Tortoniano (Fm. di Ponsano) e il Pleistocene (Neoautoctono *auctt.*).

Si tratta di un sistema di più cicli sedimentari

sovrapposti, limitati alla base da superfici di trasgressione (sui margini dei Bacini) o caratterizzati da segnali sedimentologici indicativi di inversione batimetrica (nelle zone depocentrali). Discordanze angolari documentano eventi deformativi in corrispondenza delle lacune sedimentarie tra cui si segnala, per importanza e diffusione in Toscana, la lacuna generalizzata in corrispondenza del Pliocene superiore (BOSSIO et alii, 1993) cui fa seguito la trasgressione del Pleistocene inferiore (Fm. delle Sabbie ad *Arctica islandica*) confinata alla bassa Val di Cecina. Particolare complessità caratterizza il sistema deposizionale del Pleistocene medio e superiore, espresso da un insieme molto articolato di terrazzi degradanti verso la costa e derivanti dal ripetuto processo di interazione terra-mare in una fascia di qualche km di ampiezza (MAZZANTI, 1984).

In relazione al carattere di questa monografia, nello schema geologico di figura 2 non sono stati distinti i diversi cicli sedimentari ma soltanto le unità cronologiche maggiori (Miocene superiore, Pliocene, Pleistocene, Olocene). In tutti gli intervalli cronologici sono presenti sia unità geologiche permeabili (conglomerati della Fm. Fluvio-lacustre del Tortoniano sup.; sabbie del Pliocene medio e del Pleistocene; ghiaie e sabbie oloceniche) sia unità argillose impermeabili (marne della Fm. di Ponsano del Tortoniano, marne e argilliti con gessi del Messiniano, Fm. delle Argille azzurre del Pliocene inf. e medio, argille del Pleistocene inf. della Fm delle Sabbie ad Arctica islandica). In linea di massima, nell'ambito della copertura sedimentaria post nappe (Neoutoctono aucti) la permeabilità è crescente nel tempo dal Tortoniano al Pleistocene-Olocene e raggiunge i suoi minimi nel Pliocene inferiore per la diffusione e continuità della Fm. delle Argille azzurre. La permeabilità massima corrisponde naturalmente ai depositi di spiaggia e duna (sabbie) e alle ghiaie del nastro alluvionale, mobile, dei principali corsi d'acqua.

La tettonica appenninica dell'area della Val di Cecina può essere schematizzata in tre fasi maggiori, attive tra il Miocene inferiore e il Pleistocene.

Fase aquitaniana

In tutto il settore occidentale (settore ligure-tirrenico) dell'Appennino settentrionale, e quindi anche nella Toscana meridionale, nell'Aquitaniano, con la messa in posto delle Liguridi (già saldate tra loro dalla Fase ligure dell'Eocene inf.-medio) sulle unità del Dominio Toscano (Falda Toscana e unità metamorfiche dell'Autoctono apuano) si struttura l'edificio a falde di ricoprimento (stacking appenninico occidentale).

Fase estensionale del Miocene medio

Tra il Burdigaliano e il Serravalliano-Tortoniano

inf. (pre 'ciclo' continentale fluvio-lacustre del Tortoniano sup.) l'edificio a falde è interessato in tutta la Toscana sud occidentale da una fase di destrutturazione che, attraverso un processo estensionale con sviluppo di superfici tettoniche sottrattive a basso angolo, genera la struttura regionale nota come 'Serie ridotta' in cui, per sottrazione, si registra la diretta sovrapposizione delle Liguridi sul basamento metamorfico preevaporitico o sulle evaporiti, e più spesso sul Calcare cavernoso, del Trias sup. del Dominio Toscano interno (Falda Toscana). Nuclei a serie toscana completa a struttura lenticolare (Campiglia-Sassetta, Castelnuovo V.C., Sasso Pisano) interrompono la continuità della 'Serie ridotta' a sud del F. Cecina nella parte meridionale dell'area di figura 2. In tutti i casi le Liguridi costituiscono il substrato su cui si impostano i bacini continentali prima (Fm. Fluvio-lacustre del Tortoniano sup.) e marino-lagunari poi (Calcare di Rosignano e Fm. evaporitica del Messiniano inf.), successivi alla fase estensionale a basso angolo del Miocene medio e alla 'Serie ridotta'.

Fase post 'Serie ridotta' (Messiniano e Plio -Pleistocene)

È caratterizzata in Toscana, e più in generale in tutto il settore ligure-tirrenico dell'Appennino settentrionale, da sistemi di faglie ad alto angolo di direzione prevalentemente appenninica (N120 -N160) che scompongono in blocchi lo stacking aquitaniano più o meno profondamente destrutturato dalla fase estensionale a basso angolo mediomiocenica. Si tratta della fase tettonica più controversa e discussa in quanto due diverse concezioni strutturali e geodinamiche si contrappongono da tempo sul significato dei sistemi di faglie ad alto angolo che scompongono la Toscana in blocchi. Secondo una concezione classica (TREVISAN, 1951; GIGLIA, 1974) le faglie ad alto angolo sono faglie normali che delimitano horst e graben di direzione prevalentemente 'appenninica' e controllano l'evoluzione dei bacini sedimentari fin dal Miocene superiore. Alla fase estensionale a basso angolo farebbe così seguito una seconda fase estensionale (faglie normali ad alto angolo) nel Messiniano e nel Plio-Pleistocene (CARMIGNANI et alii, 1994; BERTINI et alii, 1991). Negli ultimi venti anni si sono però moltiplicate le segnalazioni di strutture compressive a diverse scale (pieghe, faglie inverse e faglie trascorrenti) a carico della successione tortoniano-messiniana e plio - pleistocenica (PERTUSATI et alii, 1978; PLESI & CERRINA FERONI, 1979; BONINI et alii, 1994).

L'analisi strutturale ha poi documentato il carattere spesso trascorrente della deformazione fragile alla mesoscala e l'esistenza, a livello dell'intera Toscana sud-occidentale, di tre distinti eventi compressivi di cui quello più antico (Messiniano) è espresso da una direzione di compressione massima intorno a N-S. (BOCCALETTI M. *et alii*, 1992). Sono stati così proposti modelli evolutivi e strutturali che non ammettono distensione pura a partire dal Tortoniano (BOCCALETTI *et alii*, 1994; 1995).

Il significato delle faglie ad alto angolo *post* 'Serie ridotta' della Toscana sud-occidentale non è diverso da quello dei sistemi di faglie della Toscana a nord del F. Arno (Garfagnana, Lunigiana), anche questi storicamente risolti come sistemi di faglie dirette ('Graben del Serchio', 'Graben del Magra'), per i quali è stata avanzata molto di recente l'interpretazione di sistemi trascorrenti posizionati sulla proiezione in superficie di una discontinuità crostale longitudinale nel quadro di un modello di strutturazione in transpressione del sistema Alpi occidentali-Appennino settentrionale (CERRINA FERONI *et alii*, 2009).

Lo schema geologico di figura 2, ispirato al modello, introduce soluzioni innovative riguardo allo sviluppo e alla continuità delle faglie longitudinali della Val di Cecina attraverso il raccordo di singole faglie, spesso desunte dalla nuova Carta Geologica della Regione Toscana alla scala 1:10.000, non raccordabili se risolte come faglie dirette. Tra le faglie 'appenniniche' maggiormente relazionate agli acquiferi della bassa Val di Cecina, sono da segnalare le due faglie (faglia di Riparbella e faglia di 'Le Steccaie') che in destra della Val di Cecina (S.G.R.T., 2005) mettono in contatto le serpentiniti del substrato (Liguridi) con le sabbie del Pleistocene inferiore. E possibile che alla faglia di 'Le Steccaie' sia da ricondurre il contrasto tra la litofacies sabbiosa, con frequenti livelli di conglomerati, del Pleistocene inferiore ad est della faglia e la litofacies argillosa, attraversata in sondaggio per alcune centinaia di metri nella piana di Rosignano Solvay, ad ovest della faglia stessa.

1.2. - Caratteristiche geologiche-idrogeologiche dei sistemi acquiferi

1.2.1. - Metodologia di ricostruzione geometrica del multistrato

Ricostruzione litostratigrafica

La ricostruzione geometrica del multistrato degli acquiferi in mezzi porosi è stata realizzata mediante l'interpretazione e l'elaborazione delle informazioni di sottosuolo disponibili nella Banca Dati Sottosuolo Risorsa Idrica (BDSRI), integrata ed aggiornata con i dati forniti dalle Autorità di Bacino, dalle Province, dalle AATO e dai gestori della risorsa idrica.

La fase di interpretazione dei dati stratigrafici è

consistita preliminarmente nella razionalizzazione di tipo formale delle informazioni contenute in banca dati, mediante la riorganizzazione ed indicizzazione delle descrizioni litologiche presenti, che sono state ricondotte ad un numero limitato di categorie andando a popolare un apposito campo "*soil*" (materiale).

Tutti i dati stratigrafici a disposizione sono stati poi analizzati allo scopo di eliminare quelli ritenuti poco significativi sia per la profondità d'indagine che per la qualità ed attendibilità del dato e pervenire così alla costituzione di una banca dati filtrata e selezionata, organizzata secondo il dizionario dei dati allegato. La ricostruzione dei multistrato dei CISS "Acquifero costiero tra Fiume Fine e Fiume Cecina (32CT030)" e "Acquifero costiero tra Fiume Cecina e S. Vincenzo (32CT010)" è stata effettuata sulla base di 150 stratigrafie, mentre per il CISS "Acquifero del Cecina (32CT050)" ne sono state utilizzate 43.

Successivamente si è proceduto alla correlazione dei dati litostratigrafici attraverso la costruzione e l'analisi di numerosi profili stratigrafici con l'obiettivo di ricostruire i principali livelli acquiferi dei CISS multistrato. A tale scopo, consideratene le caratteristiche granulometriche e gli spessori relativi, ciascuno strato è stato assegnato ad una unità idrogeologica, con riferimento alle quattro diverse tipologie previste:

- substrato: corrisponde all'effettivo substrato del sistema acquifero, individuato sulla base dell'originaria descrizione del dato stratigrafico oppure ipotizzato dall'interpretazione della geologia di superficie come riportata sulla Carta Geologica della Regione Toscana in scala 1:10.000;

- acquifero: corrisponde ai livelli permeabili;

- *interstrato*: corrisponde ai livelli a permeabilità bassa o nulla che si interpongono tra livelli acquiferi;

- "copertura": corrisponde ai terreni vegetali, di riporto, ai suoli e alle strutture antropiche. Di fatto questo termine, pur presentando verosimilmente permeabilità in genere piuttosto basse, non va considerato come una copertura in s.s. del tutto impermeabile.

Infine le unità idrogeologiche individuate sono state strutturate in orizzonti idrostratigrafici assegnando loro un numero d'ordine progressivo e univoco alla scala dell'intero acquifero (crescente secondo lo stesso ordine nel quale le diverse unità si sono deposte) e definendo così la geometria complessa del CISS.

I numeri identificativi dei diversi orizzonti idrostratigrafici sono riportati in banca dati ed assegnati al solo strato al tetto dell'orizzonte, in modo da consentire una rapida selezione di tutti i punti di tetto di un certo orizzonte (individuati in corrispondenza delle stratigrafie nelle quali è rappresentato) ed effettuarne l'interpolazione geometrica per definirne la superficie limite; coerentemente con i codici di calcolo utilizzati dai diversi *software* di modellazione idrogeologica, ciascun orizzonte corrisponde infatti al volume compreso tra la sua superficie di tetto e quella dell'orizzonte (o degli orizzonti, nel caso di discontinuità di varia natura) immediatamente sottostante.

Stima della composizione granulometrica degli orizzonti.

La composizione granulometrica degli orizzonti individuati è stata stimata assumendo che, limitatamente alle stratigrafie nelle quali un certo orizzonte è rappresentato, il contributo percentuale dello spessore delle diverse classi granulometriche rispetto allo spessore totale di quell'orizzonte sia rappresentativo della loro frazione volumetrica; in altre parole, è stato assunto che, in presenza di una sufficiente densità di informazioni puntuali di sottosuolo distribuite in maniera uniforme all'interno dei limiti dell'orizzonte considerato, i rapporti lineari tra le diverse granulometrie calcolati lungo i log stratigrafici relativamente a ciascun orizzonte fossero rappresentativi di quelli volumetrici complessivi.

La composizione così stimata riportata in tabella 1, è stata riferita alle classi di "materiali" presenti in banca dati, derivanti dalla semplificazione delle descrizioni litologiche prima descritta.

Calcolo dei volumi.

Una volta ricostruita la geometria del multistrato è stato utilizzato un *software* di modellazione idrogeologica per calcolare il volume dei singoli orizzonti individuati, necessario alla stima dei volumi idrici immagazzinati previa definizione delle condizioni piezometriche nonché delle caratteristiche granulometriche e di porosità efficace di ciascun orizzonte.

Secondo le modalità generali rappresentate in figura 3, nel software utilizzato sono stati inseriti i *log* delle stratigrafie considerate significative, comprensivi degli orizzonti idrogeologici di appartenenza di ciascuno strato e dunque dei parametri relativi all'estensione verticale dei diversi orizzonti; successivamente, sono stati implementati nel software tutti i profili stratigrafici precedentemente realizzati allo scopo di definire l'andamento, l'estensione, le geometrie e la consistenza degli orizzonti idrogeologici individuati.

Attraverso la loro costruzione in solido sono stati così calcolati i volumi dei diversi orizzonti, distinguendone anche le porzioni superiori e inferiori ("insature" e "sature") rispetto alle superfici piezometriche ricostruite. Tab. 1 - Volume, spessore e composizione granulometrica degli orizzonti permeabili individuati e ricostruiti, elencati e numerati dal basso verso l'alto in ordine progressivo da 1 a 7, secondo il loro ordine deposizionale
Volume, thickness and granulometric composition of the reconstructed aquifer horizons, numbered from 1 to 7 starting from bottom and according to their depositional order.

Orizzonte acquifero 7		Volume 783,589,	solido: 442 m ³	Orizzonte a	Orizzonte acquifero 3 Volume 104,567,			
Spessore medio (m)	Spessore max (m)	Composizione granulometrica	0⁄0	Spessore medio (m)	Spessore max (m)	Composizione granulometrica	0⁄0	
15,2	32,5	sabbia	32,24	5,0	8,5	ghiaia cementata	32,73	
		sabbia cementata	23,98			ghiaia	28,45	
		ghiaia	23,47			sabbia cementata	25,99	
		ghiaia cementata	15,61			sabbia	7,07	
		argilla	4,70			argilla	5,76	
Orizzonte a	cquifero 6	Volume 1,512,637	solido: ,678 m ³	Orizzonte a	cquifero 2	Volume : 838,165,3	solido: 387 m ³	
Spessore medio (m)	Spessore max (m)	Composizione granulometrica	%	Spessore medio (m)	Spessore max (m)	Composizione granulometrica	%	
14,8	53,0	sabbia cementata	40,18	15,4	72,0	sabbia	39,94	
		sabbia	28,8			sabbia cementata	32,67	
		ghiaia cementata	14,2			ghiaia	10,91	
		ghiaia	11,87			ghiaia cementata	8,18	
		argilla	4,95			argilla	8,3	
Orizzonte Spessore medio (m)	acquifero 5 Spessore max (m)	7,642,	⁰ / ₀	Orizzonte a Spessore medio (m)	cquifero 1 Spessore max (m)	Composizione	^{601d0:} 434 m ³	
3,1	3,0	granniomeirica		14,0	38,0	sabbia cementata	35.77	
		sabbia cementat	a 54,84		,	ghiaia	22,77	
		11:-	45.16			sabbia	15,18	
		sabbia	45,10			argilla	14,55	
						ghiaia cementata	11,74	
Orizzonte ac Spessore medio (m)	quifero 4 Spessore max (m)	Volume 802,052 Composizione granulometrica	solido: 321 m ³	1.2.2 Ac cina (32CTO S. Vincenzo	quifero cost 130) e Acq (32CT01(iero tra Fiume 1 uifero costiero tra 9)	Fine e Fiume 1 Fiume Cecin	
14,4	51,0	sabbia cementata	55 28	I due CI	SS, istitui	ti formalmente	e dalla Regio	
		sabbia	32.07	Toscana in	base alla	D.G.R.T. n.2	25/2003, po	
		ohiaia cementata	5 11	sono essere	e consider	ati dal punto	di vista geo	
		Siliana contentada	5,11	unico. in a	uanto l'an	alisi delle stra	tigrafie mos	
		ginaia	5,02	l'esistenza d	li livelli pe	rmeabili che n	e suggerisco	
		argilla	2,52	la continuit	à fisica		00	

All'interno di questo sistema acquifero sono

Fig. 3 – Ricostruzione in solido del multistrato di un acquifero in mezzi porosi. L'analisi e la correlazione delle stratigrafie a disposizione (a) si traducono nella realizzazione di sezioni stratigrafiche (b) che descrivono le geometrie e i rapporti dei livelli permeabili rispetto alle coperture, agli interstrati impermeabili ed al substrato. Le sezioni stratigrafiche "guidano" così la ricostruzione del solido (c, d) definendo i limiti dei diversi orizzonti individuati. *– Solid reconstruction of a multilayer aquifer bosted in alluvial deposits. The analysis and the correlation of the available stratigraphic data allow (a) the realization of stratigraphic cross-sections and (b) the identification of the main aquifer levels, aquitards and aquicludes. These stratigraphic cross-sections lead to the 3D reconstruction of the whole groundwater body (c, c)*

d), defining the boundaries of the different levels identified.

stati incorporati, oltre ai depositi olocenici, le formazioni del Pleistocene medio-superiore, costituite da sabbie, ghiaie e conglomerati, alternate a livelli argilloso-limosi. I depositi pleistocenici in affioramento si estendono lungo il limite orientale della pianura olocenica, costituendo le aree terrazzate a debole inclinazione che si appoggiano alle zone collinari interne costituite da depositi neogenici e substrato pre-neogenico.

Per la natura dei dati a disposizione, la superficie di base dell'acquifero non rappresenta necessariamente l'effettivo substrato dell'acquifero, ma più realisticamente la superficie che delimita inferiormente l'acquifero «esplorato» (fig. 4).

A questo riguardo, indicazioni attendibili sulla natura dell'effettivo substrato si hanno unicamente nel settore meridionale, nell'area compresa tra Marina di Castagneto e Donoratico, dove alcune stratigrafie segnalano a fondo pozzo un bedrock costituito da termini appartenenti alle Unità Liguri, da ritenersi, nell'insieme, a permeabilità limitata nei confronti della successione litologica soprastante. Nel settore settentrionale, a nord del Fiume Cecina, il substrato coincide con argille di difficile interpretazione geologica, ma che potrebbero corrispondere a quelle della Formazione delle Sabbie e Argille ad Arctica islandica del Pleistocene inferiore, in accordo con quanto segnalato in alcuni pozzi realizzati nei dintorni di Rosignano Solvay. Infine, nel settore compreso tra il Fiume Cecina e Bolgheri, il substrato dell'acquifero "esplorato" è costituito da argille che potrebbero essere costituite da termini pleistocenico inferiori della formazione delle Sabbie e Argille ad Arctica islandica, oppure da argille plioceniche delle formazioni di Guardistallo o delle Argille azzurre, affioranti immediatamente ad est del limite interno dell'acquifero.

Nel complesso, il sistema acquifero è da ritenersi un multistrato, in ragione di un'alternanza di livelli permeabili, costituiti essenzialmente da ghiaie e sabbie dei depositi olocenici e dai depositi clastici grossolani della successione pleistocenica, e livelli impermeabili o di bassa permeabilità rappresentati dai depositi limoso-argillosi olocenici e dalle argille del Pleistocene Superiore, presenti in maniera discontinua.

La densità e la qualità delle informazioni puntuali disponibili non consentono una ricostruzione fedele delle reali geometrie del multistrato caratterizzato, molto probabilmente, dalla continua alternanza di livelli di sabbie e ghiaia, e da livelli o lenti a composizione limo-argillosa, le cui chiusure sono di difficile se non arbitraria localizzazione. Si è quindi preferito adottare l'approssimazione di esasperare per quanto possibile la continuità dei vari orizzonti permeabili e impermeabili, con l'obiettivo di ottenere in ogni caso, alla scala del CISS, una stima attendibile delle volumetrie complessive.

Dalla ricostruzione realizzata risultano sette orizzonti acquiferi di diversa estensione costituiti in prevalenza da sabbie e ghiaie (in diversi casi cementate). In tabella 1 per i vari orizzonti permeabili, numerati da 1 a 7 rispettando l'ordine di sovrapposizione geometrica, si riportano i volumi, gli spessori e la composizione granulometrica.

Il settore meridionale del sistema acquifero, a sud del Fiume Cecina, è quello geometricamente più complesso, presentando tutti i 7 livelli acquiferi individuati (fig. 5). Dei vari orizzonti permeabili quello che mostra le maggiori estensioni e continuità risulta essere l'acquifero 6 (a prevalente composizione sabbiosa), il quale si sviluppa pressoché su tutto il CISS, dalle zone a sud del Fiume Cecina fino a quelle a nord. Anche l'orizzonte acquifero più superficiale (acquifero 7), costituito da sabbie e ghiaie, si ritrova con continuità sia nelle zone in sinistra del Fiume Cecina sia in quelle in destra, sebbene la sua estensione risulti inferiore rispetto all'acquifero 6. Gli altri livelli acquiferi, viceversa, si sviluppano prevalentemente nel settore meridionale del CISS in esame ed in particolare gli orizzonti 3 e 5 mostrano estensione più modesta.

Fig. 4 – Superficie di base dell'acquifero desunta dall'interpolazione delle quote di fondo-pozzo delle stratigrafie selezionate per la ricostruzione del CISS. I log di quest'ultime sono rappresentati in figura utilizzando colori e simboli corrispondenti alle classi di materiali derivanti dalla riorganizzazione ed indicizzazione delle descrizioni litologiche originali.

- Bottom surface of the exploited aquifer, as derived by the interpolation of the boreholes depths. Logs are represented with different colours and symbols according to the different material classes; these are referred to simplified categories as determined by the rationalization of the original lithological descriptions.

Da un punto di vista degli spessori (tab. 1), con i 15 metri circa di spessore medio, gli orizzonti acquiferi 7, 6, 4, 2 e 1, risultano essere i più potenti. Sulla base dei dati riportati in studi pregressi risulta difficile attribuire un coefficiente di permeabilità ai singoli livelli acquiferi, dal momento che le prove di emungimento effettuate dai vari autori hanno interessato pozzi fenestrati su più orizzonti produttivi. E quindi possibile effettuare considerazioni solo da un punto di vista della conducibilità idraulica (K) media. In particolare, GRASSI et alii (2000), riportano risultati di prove d'emungimento effettuate a monte dell'abitato di Cecina nella zona di pertinenza delle alluvioni attuali e recenti dell'omonimo fiume; le permeabilità scaturite da tali prove sono dell'ordine di 10⁻² - 10⁻³ m/s. Nella zona tra Cecina e Vada nello studio ARPAT (2003) sono riportati valori di K dell'ordine di 10⁻⁴ m/s. Infine, le prove effettuate da DI LUCA & MONTA-GNANI (2003) evidenziano che nel settore meridionale del CISS (zona Donoratico-Castagneto) i valori medi di K sono dell'ordine di $10^{-4} - 10^{-5}$ m/s.

1.2.3. - Acquifero del Cecina (32CT050)

All'interno dell'acquifero del Cecina sono stati accorpati unicamente i depositi del materasso alluvionale, in quanto rappresentano quelli principalmente interessati dalle opere di captazione. La natura del substrato varia risalendo il corso del Fiume Cecina. Nel settore occidentale compreso tra il limite a valle del CISS e la confluenza del Torrente Rialdo col Fiume Cecina, i depositi alluvionali poggiano sui termini permeabili sabbioso ghiaiosi del Pleistocene. In questo settore i depositi alluvionali possono dunque esser interessati da scambi idrici con il loro substrato; in particolare, è plausibile aspettarsi che tali depositi ricevano una alimentazione per travaso sotterraneo dai termini pleistocenici visto che quest'ultimi, sviluppandosi anche sui rilievi collinari, sono verosimilmente caratterizzati da carichi piezometrici maggiori. A monte della confluenza del Torrente Rialdo col Fiume Cecina, il substrato delle alluvioni è invece costituito dai depositi pliocenici da considerarsi nell'insieme impermeabili, anche se nel tratto compreso tra il Torrente Rialdo e il Torrente Lopia, il tetto della successione pliocenica è costituito dalla Formazione di Guardistallo del Pliocene medio, caratterizzata da alternanze di limi, argille e sabbie potenzialmente permeabili. Continuando a risalire il corso del Fiume Cecina, all'altezza del Torrente Sterza, si oltrepassa il contatto tra le Argille azzurre plioceniche e la formazione miocenica delle Argille e Gessi del Fiume Era Morta, con il substrato dell'apparato alluvionale che quindi, da qui fino al limite a monte, risulta costituito dai termini, anch'essi impermeabili, della successione miocenica.

L'acquifero del sistema alluvionale del Fiume Cecina può essere suddiviso in due settori, uno a valle e uno a monte del restringimento dell'alveo fluviale che si verifica a valle della confluenza tra il Torrente Lopia e il Fiume Cecina. I due settori si distinguono per un diverso substrato: a valle, sono i depositi permeabili pleistocenici, interconnessi idraulicamente all'apparato alluvionale a dominare, mentre a monte il substrato è rappresentato dai depositi prevalentemente impermeabili plio-miocenici. I due settori si differenziano inoltre per i diversi spessori del materasso alluvionale, che verso valle raggiunge i valori massimi (35-40 m).

La ricostruzione geometrica ha evidenziato nel settore a valle la presenza di una lente di argilla che solo localmente separa la successione ghiaioso-sabbiosa in due orizzonti. I due livelli di ghiaia si perdono in corrispondenza delle alluvioni prospicienti alla località San Martino, a causa dell'interferenza con apparati di conoide complessi del Torrente Le Botra. Nel settore a monte lo spessore totale delle alluvioni si riduce notevolmente, superando raramente i 15 m. In questo tratto l'acquifero alluvionale è costituito da un unico livello di ghiaie prevalenti e sabbie, con rari orizzonti di argille di spessore generalmente inferiore al metro.

Nell'insieme il CISS del Cecina è in definitiva da ritenersi un acquifero freatico monostrato, dal momento che i livelli argillosi, per le loro caratteristiche geometriche, non ricoprono un ruolo idrogeologico significativo.

In tabella 2 si riportano il volume, gli spessori medio e massimo e la composizione granulome-

Fig. 5 – Ricostruzione in solido del multistrato dell'acquifero effettuata per il calcolo dei volumi dei diversi orizzonti. Nella porzione rappresentata in figura, corrispondente al settore meridionale dell'acquifero, risultano rappresentati tutti i principali orizzonti acquiferi individuati, qui indicati con una sigla il cui numero d'ordine è coerente con quelli riportati nel testo ed in tabella 1. Le stratigrafie sono qui rappresentate utilizzando colori corrispondenti a quelli della parte solida ricostruita, ovvero al tipo di unità idrogeologica a cui risultano assegnati i diversi materiali (celeste = acquifero; grigio = interstrato; giallo = copertura). – Block diagram of the multilayer aquifer. In the solid portion, corresponding to the southern soctor, all the main aquifer layers are reported and marked by numbers according to those in text and in table 1. In the northern sector, the colours along boreholes are the same as in the southern solid portion to represent the hydrogeological unit to which the different lithologies belong (cyan = aquifer; grey = aquiclude; yellow = coverage).

Tab. 2 - Volume, spessore e composizione granulometrica dell'acquifero del Cecina.

—	Volume, thickness and granulometric composi
	tion of the Cecina river aquifer.

Orizzonte3	0(acquifero)	Volume solido: 279,140	,409 m ³
Spessore	Spessore	Composizione granulometrica	%
1110110 (111)	1111 (III)	argilla	1,74
123	40.0	argilla ghiaiosa	0,77
12,5	то,о	argilla limosa	0,45
		argilla sabbiosa	1,38
		limo	0,12
		limo sabbioso	4,94
		limo argilloso	0,65
		limo ghiaioso	1,15
		sabbia	1,48
		sabbia argillosa	1,78
		sabbia ghiaiosa	1,84
		sabbia limosa	0,32
		ghiaia	51,91
		ghiaia argillosa	2,81
		ghiaia sabbiosa	16,04
		ciottoli	5,75
		ciottoli sabbiosi	1,34
		"terreno" (copertura limo-sabbiosa)	5,52

trica dell'acquifero in esame.

Relativamente ai parametri idrodinamici dell'acquifero alluvionale in esame, dati derivanti da prove di emungimento eseguite su pozzi posti tra Saline e Ponteginori mettono in evidenza valori medi di conducibilità idraulica (K) e di trasmissività (T) dell'ordine rispettivamente di 10⁻³ m/s e 10⁻² m²/s, nonché una porosità efficace (n_e) del 16% (PRANZINI, 2004b e riferimenti bibliografici).

2. - PIEZOMETRIE E VOLUMI IDRICI IM-MAGAZZINATI

In questo capitolo vengono presentate e commentate le elaborazioni piezometriche relative ai CISS che insistono nell'alta Val di Cecina (32CT050 Acquifero del Cecina) e nell'area costiera compresa tra Rosignano Solvay e S. Vincenzo (32CT030 Acquifero costiero tra Fiume Fine e Fiume Cecina, 32CT010 Acquifero costiero tra Fiume Cecina e S. Vincenzo), nonché la procedura adottata ed i relativi risultati ottenuti a riguardo del calcolo dei volumi idrici totali in essi immagazzinati.

La disomogeneità spazio-temporale dei dati disponibili ha indotto a trattare il CISS della Valle del Cecina (32CT050) in maniera separata rispetto ai due riconosciuti dalla Regione Toscana sulla fascia litoranea (32CT030 e 32CT010). In particolare, non è stato possibile procedere con l'elaborazione di un'unica piezometrica che riguardasse contemporaneamente i tre CISS (cosa di fatto plausibile vista la continuità idrogeologica tra gli stessi), dal momento che non erano disponibili dati di uno stesso periodo distribuiti sia sul sistema acquifero costiero, sia su quello intravallivo.

2.1. - Acquiferi costieri tra Fiume Fine e Fiume Cecina (32CT030) e tra Fiume Cecina e S. Vincenzo (32CT010)

2.1.1. - Ricostruzioni piezometriche

Come anticipato nel § 1.2. i due CISS istituiti formalmente dalla Regione Toscana in base alla D.G.R.T. n.225/2003, devono esser trattati da un punto di vista idrogeologico come un unico CISS. Le considerazioni che seguono tengono dunque conto di questo aspetto.

Il CISS in esame è stato interessato in passato, anche se non sempre su tutta la sua estensione, da vari studi che hanno effettuato campagne di rilevamento dati piezometrici e relative elaborazioni (AF-STUDIO GEOLOGICO, 1997; GRASSI *et alii*, 2000; ARPAT, 2003; PRANZINI, 2004a; FRULLINI *et alii*, 2007). Negli anni sono state inoltre portate avanti attività di monitoraggio piezometrico da parte degli Enti che, a vario titolo e con varie competenze, operano sul territorio. È tuttora in corso un'attività di monitoraggio piezometrico svolto congiuntamente dall'Ufficio del Genio Civile della Regione Toscana, dalla Provincia di Livorno e dall'ASA, in qualità di Gestore Unico del Servizio Idrico Integrato.

Nell'ottica di voler rappresentare le condizioni piezometriche nelle due situazioni di regime di magra e di morbida per l'intero CISS in esame, sono stati considerati i dati relativi allo studio di PRANZINI (2004a) che si riferiscono a campagne di rilevamento svolte nei periodi maggio e settembre 2002. Questi dati, messi a disposizione in originale dal suddetto autore che qui ringraziamo, risultano di fatto, tra i disponibili al momento della stesura del presente elaborato, quelli che coprono maggiormente e con una densità migliore l'intera area di pertinenza del sistema acquifero costiero compreso tra il Fiume Fine, a nord, e S. Vincenzo a sud.

Nell'ambito del presente lavoro, su tali valori piezometrici è stata effettuata un'analisi critica anche in funzione delle esigenze del lavoro stesso e più in particolare tenendo conto della distribuzione dei dati sperimentali e della loro rappresentatività nei confronti delle caratteristiche idrogeologico-strutturali del CISS in esame (§1.2.); in definitiva, dei 303 e 268 pozzi misurati a maggio e settembre 2002 da PRANZINI (2004a), ne sono stati considerati rispettivamente 288 e 259 (tab. 3).

elaboration in figures 0-7.												
EST	NORD	QPC_m	PROF_m	LIV. PIEZ. MAG02	LIV. PIEZ. SET02		EST	NORD	QPC_m	PROF_m	LIV. PIEZ. MAG02	LIV. PIEZ. SET02
1614160	4806467	12,50	3,0	3,20	2,90	1	1620735	4796185	3,00	15,0	0,65	0,70
1615269	4806492	13,30	10,0	6,30	6,00		1620783	4795633	1,60	6,0	0,41	0,60
1615674	4805713	3,50	9,0	0,25	0,80		1620975	4800680	18,76	15,0	2,71	3,00
1615719	4806388	10,50	15,0	5,80	5,70		1621000	4803091	39,50		33,90	34,40
1615820	4805331	5,80	8,0	1,57	1,80		1621010	4802150	32,46		15,42	15,77
1615905	4804981	7,00	8,0	0,26	-0,20	1	1621142	4796437	3,70		1,47	1,47
1615982	4804432	2,80	3,0	0,30	0,80		1621212	4797330	5,10	20,0	0,88	0,75
1616392	4804928	6,60	10,0	2,50	2,70		1621289	4795563	3,00	4,0	0,10	0,40
1616450	4805505	14,10	4,0	11,12	11,20		1621354	4795186	2,00	3,0	0,02	0,32
1616534	4804199	4,20	3,0	2,05	2,40		1621362	4798875	8,00	46,0	1,26	-0,21
1616569	4806386	30,00	14,0	21,30	21,50		1621390	4800910	23,71		11,98	12,17
1616667	4806087	23,70	6,0	20,28	20,30	1	1621400	4802310	37,47		25,18	25,42
1616878	4805380	17,60	6,0	13,83	13,50]	1621415	4796075	4,30		1,72	1,72
1616994	4802099	1,40	5,0	0,55	1,40		1621429	4794896	3,00	8,0	0,20	0,40
1617196	4802938	2,10	3,0	-0,25	-0,20		1621439	4795523		3,0	0,56	0,52
1617385	4805548	25,30	18,0	18,40	18,10		1621450	4801590	29,75	23,7	12,44	12,56
1617460	4803187	4,20	15,0	1,30	1,55		1621530	4797625	7,40		0,58	0,36
1617516	4805990	36,80	12,0	28,52	28,20		1621530	4799030	11,00	61,0	0,27	0,53
1617538	4804511	12,20	15,0	7,84	6,90		1621540	4795092	2,50	6,0	-0,20	0,00
1617693	4803504	3,00	30,0	1,50	1,25		1621670	4800950	27,06		9,91	10,26
1617699	4802409	3,10	3,0	2,14	2,25	1	1621780	4800635	26,00	3,0	9,59	9,90
1617872	4802121	1,70	3,0	1,05	1,22	1	1621831	4794710	2,50	7,0	0,20	0,35
1617925	4801103	2,50	2,5	1,50	1,70		1621850	4798900	8,20	48,0	0,18	
1618010	4803046	6,20	3,0	3,50	3,45		1621935	4799883	22,40	60,0	9,80	10,10
1618050	4805938	43,40	25,0	35,50	35,20		1622018	4797651	7,70	25,0	1,80	2,00
1618080	4798840	1,20	15,0	-0,59	-0,62]	1622170	4802550	54,99	18,1	39,44	39,37
1618085	4801180	2,70	15,0	0,85	1,40	1	1622305	4795645	3,70	3,0	-0,66	-0,25
1618226	4798676	1,60	20,0	0,50			1622375	4802031	51,20	15,0	41,20	40,70
1618394	4801742	4,90	15,0	2,75	2,75		1622405	4798845	12,50	15,0	2,56	2,72
1618397	4804993	24,10	3,0	21,70	22,40		1622420	4793785	3,30	11,5	1,40	1,51
1618429	4801535	3,80	8,0	1,65	1,70	1	1622470	4800630	36,50	53,0	20,40	19,80
1618460	4800635	2,62		0,91	0,90	1	1622570	4795305	3,50	54,0	0,16	-0,05
1618517	4797640	0,70	20,0	0,00	0,13		1622625	4795130	3,20	52,0	1,18	
1618541	4802832	11,10	12,0	8,90	8,85]	1622635	4795070	3,20	52,0	-1,06	-0,56
1618597	4803311	6,90	15,0	1,60	1,10		1622660	4798910	12,10	41,7	-0,22	
1618631	4798161	1,90	7,0	0,50			1622665	4793201	2,60	12,0	0,25	0,35
1618679	4805526	34,30	20,0	29,23	28,20]	1622740	4799758	34,50	11,8	11,54	12,29
1618780	4800430	3,48		2,21	2,19	1	1622745	4796095	6,60	60,0	-2,83	-3,03
1618844	4797207	1,30		-0,76	-0,70		1622845	4799065	17,00	51,0	7,56	
1618880	4800475	3,62		2,31	2,28		1622895	4795575	4,40		1,66	1,66

Tab. 3 – Dati piezometrici di maggio e settembre 2002 (per gentile concessione del Prof. G. Pranzini) utilizzati per le elaborazioni delle figure 6-7.

- Groundwater level of may and september 2002 (courtesy of the Prof. G. Pranzini) used for the elaboration in figures 6-7.

segue

1618920	4801310	6,90	4,9	3,27	3,69		1622910	4794151	1,90	3,5	0,50	0,60
1618922	4802176	9,40	15,0	6,80	6,20		1622952	4792466	3,40	26,0	0,94	1,00
1618951	4803806	8,20	30,0	-0,40	-0,80		1622985	4798760	8,70	51,0	-0,25	
1618975	4800395	3,68	3,8	0,29	0,52		1622990	4801600	60,30	15,0	44,08	44,41
1618989	4805614	38,20	13,0	34,15	34,10		1623080	4800740	51,00	55,0	30,24	30,65
1619010	4800030	3,22	25,0	0,86	0,80		1623144	4791626	1,20	14,5	-0,30	0,10
1619034	4801810		18,0	5,10	5,15		1623344	4791231	1,00	20,0	0,46	-0,75
1619040	4797520	1,00		0,51	0,47		1623454	4790966	2,70	20,0	2,40	2,29
1619137	4802985	13,70	6,0	9,80	9,50		1623475	4800830	59,50		31,89	32,44
1619152	4797320	1,90	60,0	0,00	-0,02		1623539	4793986	4,00	40,0	1,20	1,60
1619240	4799850	37,30	25,0		1,50		1623635	4799900	50,00		24,37	24,92
1619248	4805864	50,00	22,0	39,40	38,60		1623665	4799210	27,00		3,26	
1619261	4805255	33,90	8,0	27,17	26,90		1623813	4790019	3,60	20,0	0,96	0,90
1619457	4796813	2,00	20,0	0,00	0,25		1623828	4789282	2,60	3,0	-0,15	0,00
1619530	4798960	2,27	4,4	1,21	1,18		1623840	4801960	79,00	3,0	52,82	52,60
1619555	4798925	2,30	41,7	-0,15	0,20		1623910	4796355		65,0		-1,94
1619650	4800625	7,48		0,54	0,63		1623975	4800330	56,70	49,5	42,64	42,43
1619830	4801690				3,53		1623980	4798045			-0,64	
1619830	4797525	1,50	5,0	-0,44	0,60		1624084	4789401	2,90	15,0	-0,90	-0,75
1619864	4801792	16,90	30,0	5,75	6,33		1624092	4793880	9,60	26,0	3,35	3,44
1619865	4799750	7,24		1,04	1,12		1624125	4798475		62,1	0,14	
1619875	4801700	15,20	53,0	6,94			1624150	4801140	70,80		48,15	48,62
1620000	4799500	5,19	22,7	-0,03	-0,20		1624175	4788381	2,90	8,0	-1,30	-1,25
1620160	4801930	18,50	46,0	3,20			1624180	4797980			2,21	
1620195	4798360	3,65		0,23	0,04		1624200	4797930		15,0	2,20	
1620274	4803448	34,00	15,0	26,00	25,90		1624200	4798962	13,00		2,49	
1620342	4802491	27,60	58,0	22,10			1624212	4795755	17,00		1,11	1,41
1620380	4801900	21,45		9,28	9,51		1624250	4794332	11,80	28,0	3,35	3,48
1620400	4801670	23,00	42,0	7,35			1624450	4798325		47,5	-0,21	
1620430	4799790	11,20		0,87	1,02		1624490	4797465		52,0		
1620506	4796180	3,00	20,0	1,85	1,90		1624562	4792587	6,20	15,0	3,61	3,72
1620520	4800690		48,0		1,14		1624575	4798555		51,0	-0,23	
1620540	4796512	2,50		1,31	1,28		1624680	4790217	3,40	15,0	1,27	1,25
1620578	4799161	7,70	21,0	0,50	-0,15		1624790	4798335		42,0	0,10	
1620590	4803916	49,40	15,0	34,25	33,70		1624829	4785628	2,00	15,0	-2,47	-2,47
1620605	4800530	17,20	46,0	1,85]	1624927	4790637	4,60	15,0	2,33	2,15
1620615	4799500	9,46	53,0	0,61]	1625074	4784130	3,50	15,0	-0,78	-0,70
1620620	4797080	3,60	65,0	-0,14	1,05	1	1625080	4792260	8,50	15,0	3,10	3,28
1620700	4801750	26,50	42,0	10,50	7,60]	1625083	4793523	13,00	30,0	6,80	6,80
1620705	4801190	18,67		2,39	2,72		1625188	4782906	2,00	15,0	-2,00	-2,30
				1				1				

segue

1625194	4791770	8,30	15,0	3,20	3,30		1627865	4792091	28,00	3,0	10,97	11,46
1625262	4781646	6,40	10,0	-0,50	-0,60		1627921	4785149	13,60	15,0	8,48	6,80
1625282	4785594	1,00	15,0	-0,40	-0,80		1628020	4779712	31,00	15,0	20,60	19,75
1625300	4792655	9,10	15,0	2,90	5,15		1628023	4783360	13,00	9,0	10,40	10,15
1625321	4791535	9,00	10,0	4,03	3,65		1628029	4788560	28,70	15,0	18,00	17,20
1625337	4789464	5,10	55,0	2,75	2,45		1628113	4784518	10,50	15,0	8,20	8,96
1625403	4780980	6,80	15,0	5,40	5,06		1628261	4782937	15,20	15,0	13,60	
1625435	4778222	3,50	15,0	-1,15	-1,70		1628288	4791106	36,60	25,0	13,60	13,60
1625479	4790953	7,40	15,0	3,50	3,00		1628311	4781019	29,50		19,50	18,50
1625485	4777056	4,50	15,0	1,30	1,00		1628340	4781738	24,30	8,0	17,60	17,30
1625507	4780907	3,40	40,0	1,75	1,76		1628471	4785470	17,00	15,0	9,45	8,20
1625563	4774298	7,60	9,0	2,60	2,73		1628498	4792018	31,50	41,0	15,10	16,10
1625619	4774859	8,00	13,0	0,47	0,72		1628540	4786510	22,00	60,0	10,00	10,80
1625670	4794925	32,30	35,0	8,38	9,40		1628550	4784551	16,00	15,0	7,13	7,00
1625694	4790250	7,80	15,0	4,35	3,35		1628563	4785789	21,00	15,0	10,25	9,80
1625740	4798100		23,5		-1,10		1628580	4779194	39,20	20,0	24,55	23,55
1625747	4776130	6,50	12,0	-3,34	-3,14		1628631	4780879	31,00	35,0	20,15	19,65
1625840	4778434	6,00	15,0	0,90	0,80		1628644	4779533	39,50	15,0	23,10	22,40
1625850	4793350	20,06		5,50	5,77		1628676	4788847	33,40	75,0	12,90	13,50
1625891	4778215	6,50	15,0	2,30	2,20		1628737	4783089	18,50	15,0	15,80	15,85
1625900	4798210	15,00	22,0	2,15			1628805	4790580	32,70	15,0	18,01	
1625968	4788601	5,70	15,0	4,20	2,90		1628880	4789087	38,30	15,0	15,40	14,80
1626044	4793989	28,80	44,0	8,81	8,87		1628892	4785278	19,20	15,0	11,40	11,28
1626055	4782757	2,40	7,0	0,30	-0,05		1628931	4784429	16,00	15,0	13,70	10,10
1626115	4785481	2,40	15,0	1,60	1,30		1629102	4779905	46,50	26,0	27,10	25,20
1626125	4799150		53,0	5,71			1629103	4783258	21,00	5,0	18,30	18,50
1626140	4788421	9,50	100,0	8,05	7,95		1629108	4781673	28,60	8,0	16,50	16,20
1626148	4788297	6,90	15,0	5,80	4,75		1629160	4791479	61,00	80,0	16,60	14,20
1626170	4798550	12,00	53,0	3,24	3,37		1629231	4790609	35,80	58,0	18,60	
1626348	4779074	10,60	10,0	5,26	4,85		1629278	4786404	29,60	50,0	11,90	12,40
1626361	4782078	5,20	5,0	3,80	3,90		1629309	4789202	37,45	40,0	16,05	16,25
1626369	4790294	11,70	10,0	5,90			1629581	4782071	30,70	15,0	19,25	
1626406	4789088	10,10	15,0	6,17	4,60		1629587	4789684	54,20	49,0	14,70	15,70
1626416	4778537	12,30	10,0	5,15	4,40		1629691	4780503	47,30	50,0	24,20	22,85
1626426	4780497	13,80	15,0	5,45	5,10		1629698	4781579	34,20	12,0	24,60	25,50
1626460	4784050	2,50	60,0	2,15	0,70		1629891	4779856	59,60	30,0	38,50	37,55
1626462	4794732	36,20	20,0	20,90	21,20		1630227	4779564	66,20	15,0	64,30	64,30
1626480	4798855	16,40	45,5	5,28			1630251	4780496	53,00	15,0	31,20	30,00
1626490	4794820	40,50		17,95	18,40		1630266	4783043	27,00	20,0	21,70	21,30
1626510	4795410	49,00	3,0	16,12	16,82		1630273	4781075	44,20	20,0	28,23	27,68
1626515	4790835	11,30	30,0	4,60	4,20	1	1630327	4787946	67,80	15,0	22,80	
1626516	4780801	14,60	7,0	11,62	10,97		1630347	4782594	32,80	15,0	22,60	20,90
1626544	4792205	21,00	15,0	13,80	13,30		1630357	4788826	63,70	50,0	20,20	20,70
1626603	4781493	11,00	15,0	5,75	5,25		1630427	4781285	43,20	20,0	25,80	26,20
1626616	4790415	12,80	50,0	6,40	6,20		1630755	4786973	49,00	11,0	46,20	45,90
1626640	4799010	18,00	30,0	9,35	7,89		1630862	4786387	59,50	15,0	46,40	46,25
1626657	4792817	21,50	28,0	9,02	9,05		1630868	4784612	40,00	12,0	22,80	23,40
1626707	4789022	11,40	40,0	6,95	6,30		1630905	4785308	45,00	15,0	37,30	35,40
1626741	4777779	23,60	15,0	5,02	4,10		1630917	4781820	45,20	21,0	25,80	30,20
1626813	4779377	18,60	15,0	9,50	9,78		1630941	4783835	32,70	15,0	20,70	20,40
1626928	4784667	6,00	15,0	4,40	4,20		1630997	4781542	49,50	15,0	29,20	28,15
1626947	4782782	7,00	15,0	6,00	5,80		1631129	4784598	40,00	10,0	36,00	35,70
1627000	4794097	46,00		21,27	21,78		1631155	4782149	47,40	15,0	35,10	35,90

segue

EST	NORD	QPC_m	PROF_m	LIV. PIEZ. MAG02	LIV. PIEZ. SET02
1627032	4790959	17,50	20,0	8,03	7,05
1627066	4786158	11,90		7,90	5,90
1627100	4800250		49,5	8,80	
1627112	4779101	22,00	15,0	10,14	9,20
1627128	4782232	9,20	5,0	6,70	6,20
1627128	4785946	9,40	38,0	6,60	7,90
1627137	4789393	14,50	40,0	5,86	5,50
1627139	4792460	21,70	15,0	10,30	9,50
1627167	4778588	21,30	15,0	9,06	7,90
1627173	4786593	13,30	15,0	8,20	8,65
1627269	4780910	21,80	6,0	16,45	16,45
1627273	4788237	16,40	30,0	11,60	11,60
1627302	4793826	50,00	60,0	15,00	15,00
1627336	4778806	27,80	15,0	11,10	11,30
1627364	4784435	9,60	15,0	6,40	6,00
1627404	4790254	18,20		8,30	
1627407	4788265	17,60	11,0	9,40	9,30
1627478	4788739	18,00	15,0	10,85	10,00
1627533	4783087	9,70	40,0	8,25	8,10
1627539	4781547	19,80	15,0	14,40	
1627613	4789688	19,20	40,0	7,95	7,60
1627670	4791224	24,30	50,0	9,67	8,95
1627684	4780059	27,30	15,0	18,50	17,90
1627725	4779739	27,70	15,0	18,60	18,15
1627742	4782863	11,80	8,0	10,30	10,05
1627766	4781774	19,40	6,0	14,80	14,60
1627779	4780004	29,90	20,0	19,70	19,25

L'elaborazione dei dati, eseguita con il metodo d'interpolazione *Kriging* (utilizzando il programma *Surfer* della *Golden Software*) e succesivamente rivisitata criticamente, ha portato dunque a due superfici piezometriche (figg. 6, 7) che non ricalcano quelle ottenute dal suddetto autore, sebbene ne risultino molto simili.

Le piezometrie ricostruite sono da ritenersi rappresentative del carico idraulico di equilibro relativo all'insieme degli orizzonti acquifero del sistema multistrato. Di fatto, ponendo a confronto i livelli piezometrici rilevati in pozzi relativamente vicini ed aventi profondità marcatamente diverse si osservano limitate differenze che portano a considerare il sistema nell'insieme come un monofalda. Ciò può esser dovuto al fatto che gli orizzonti acquitardi/acquicludi non hanno spessori e/o continuità tali da separare nettamente gli orizzonti acquiferi su tutta l'estensione del CISS; in più, i numerosi pozzi che insistono sul sistema acquifero, e che spesso drenano più di un orizzonte produttivo, costituiscono un fattore favorevole al raggiungimento di un unico carico idraulico di equilibro rappresentativo dei vari orizzonti permeabili che su una stessa verticale si intervallano a termini semipermeabili e/o impermeabili.

Entrambe le figure 6 e 7 mettono in risalto la presenza di ampie depressioni piezometriche, con livelli al disotto di quello marino (minimi valori pari a circa -2,5 m s.l.m.), che insistono in particolar modo nella zona di Cecina e tra questa e l'abitato di Vada; le pronunciate depressioni sono da ricondursi all'intenso sfruttamento dell'acquifero ad opera di campi pozzi utilizzati perlopiù a scopi civili ed industriali.

Importanti depressioni piezometriche, sebbene queste non si spingano molto nell'entroterra e mostrino valori generalmente superiori a -2 m s.l.m., si rilevano anche nella porzione sud del CISS in esame ed in particolare tra Marina di Bibbona e Castagneto Carducci, nonché più a sud verso S. Vincenzo. In questi casi i valori piezometrici negativi sono prevalentemente da imputare agli emungimenti che fanno fronte alle esigenze idriche delle aziende agricole e degli insediamenti a vocazione turistica; ciò è anche in accordo col fatto che le suddette depressioni piezometriche risultano più estese a seguito della stagione estiva. Benché tutte le situazioni sopra discusse giochino a favore di un'ingressione di acqua di mare in acquifero, è sicuramente da porre una maggior attenzione a quella relativa alla zona in cui ricade l'abitato di Cecina; in questo caso, infatti, si registrano livelli piezometrici inferiori a zero fino a 5 km di distanza dalla costa e ciò può particolarmente favorire un avanzamento del cuneo salino nell'entroterra.

Le carte piezometriche elaborate evidenziano infine una chiara alimentazione al sistema acquifero costiero proveniente da tutta la fascia collinare. Sia a nord, sia a sud del Fiume Cecina, le quote piezometriche massime sui rilievi collinari si attestano su valori compresi tra 40 e 50 m s.l.m.. Nel settore settentrionale tali quote si raccordano a quelle della fascia costiera attraverso dei gradienti idraulici maggiori rispetto a quelli della fascia meridionale; ciò è principalmente da attribuire alle depressioni piezometriche che a nord/nord-ovest di Cecina si spingono fino alla base delle colline,

Fig. 6 – Piezometria di maggio 2002. – Piezometric surface contour (m a.s.l) in may 2002.

Fig. 7 – Piezometria di settembre 2002. – Piezometric surface contour (m a.s.l) in may 2002.

anche se non si può escludere l'esistenza di una minore trasmissività degli orizzonti acquiferi del settore collinare a nord rispetto a quella dei rilievi meridionali.

2.1.2. - Variazione piezometrica stagionale

Considerando i soli pozzi sui quali in entrambe le campagne sono stati rilevati i livelli idrici, è stata elaborata la carta delle variazioni piezometriche avvenute tra maggio e settembre 2002 (fig. 8). Contrariamente a quanto avviene normalmente, non si registra un generale abbassamento della falda tra il periodo primaverile e quello autunnale. Questo aspetto è riconducibile al particolare regime pluviometrico che ha caratterizzato l'anno 2002. Il diagramma di figura 9 mostra infatti come nel periodo invernale-primaverile le precipitazioni siano state particolarmente scarse e come il periodo primaverile-estivo sia stato caratterizzato da una piovosità relativamente elevata.

La figura 8 evidenzia comunque che a fronte del particolare regime pluviometrico si ha un differente comportamento piezometrico nelle varie zone. In particolare, da Maggio a Settembre 2002 si osserva un prevalente aumento dei livelli piezometrici nella porzione centro-settentrionale del CISS, mentre in quella meridionale predominano le aree con abbassamento piezometrico; i differenti comportamenti della piezometrica sono verosimilmente riconducibili ai diversi usi della risorsa idrica sul territorio, di cui si è accennato al precedente paragrafo. L'abbassamento e l'innalzamento massimi, tra il periodo primaverile e quello autunnale, sono stati rispettivamente di 2,9 e 2,0 m. Mediando le differenze settembre-maggio sull'intero CISS si ottiene che la superficie piezometrica ha subito un abbassamento di circa 0,1 m. Considerando viceversa l'ampia zona a cavallo del Fiume Cecina che mostra innalzamenti dei livelli e l'altrettanto ampia zona compresa tra Bibbona e S. Vincenzo, interessata da abbassamenti, si ottengono differenze piezometriche medie rispettivamente di + 0.27 e -0.43 m.

2.1.3. - Variazioni piezometriche negli anni

Il confronto con le condizioni piezometriche degli anni passati permette di verificare il comportamento della falda in termini di abbassamenti o innalzamenti avvenuti nel tempo. In generale, bisogna osservare che le variazioni cronologiche del livello di falda dipendono sia dalla diversa ricarica che dal diverso sfruttamento. È inoltre doveroso ricordare che i pozzi misurati nell'ambito dei vari studi che negli anni hanno interessato una determinata area spesso non sono gli stessi e di conseguenza il confronto deve essere fatto nell'insieme e non puntualmente.

Come anticipato nel § 2.1.1., sul CISS in esame sono stati condotti vari studi che, tra le altre cose, hanno prodotto rappresentazioni della superficie piezometrica. Tra le varie ricostruzioni disponibili, nelle figure 10-14 si riportano quelle relative all'area Cecina-Vada elaborate negli anni tra il 1998 ed il 2001; nelle figure 15-19 sono invece illustrate le elaborazioni che hanno interessato l'area a sud di Marina di Bibbona nell'Ottobre 1996 e nei periodi primaverile ed autunnale degli anni 2000 e 2001 (si veda la didascalia delle figure per la relativa fonte bibliografica).

Tutte le ricostruzioni relative alla parte settentrionale del CISS confermano la presenza della principale depressione piezometrica del sistema acquifero, ovvero quella che insiste tra Cecina e Vada; in particolar modo nell'autunno del 1998 questa si mostra addirittura più estesa e con minimi più accentuati rispetto a quanto osservato nelle elaborazioni relative all'anno 2002 (figg. 6, 7). Anche nell'area a sud di Marina di Bibbona, le elaborazioni degli anni precedenti al 2002 confermano l'esistenza di zone piezometriche depresse in prossimità della linea di costa.

Nell'insieme possiamo affermare che nel periodo considerato (anni tra il 1996 ed il 2002) la morfologia della superficie piezometrica non ha subito marcate modifiche.

2.1.4. - Volumi idrici immagazzinati nel sistema acquifero multistrato

La ricostruzione tridimensionale del sistema acquifero multistrato ha permesso, non solo di comprendere meglio le caratteristiche geometriche del sistema stesso, ma anche di calcolare i volumi occupati dai vari orizzonti acquiferi in esso presenti. Inserendo nel modello tridimensionale le superfici piezometriche ricostruite per i periodi primaverile ed autunnale del 2002, sono stati inoltre calcolati i volumi di competenza della parte satura degli orizzonti acquiferi. Infine, applicando ai vari orizzonti acquifero un coefficiente di porosità efficace medio, pesato in funzione delle percentuali di abbondanza delle varie granulometrie, sono stati stimati i volumi idrici totali immagazzinati nel sistema acquifero. Bisogna comunque specificare che di fatto questi volumi si riferiscono alla porzione di sistema acquifero che è stato possibile ricostruire in funzione della quantità, distribuzione e tipologia di stratigrafie; in particolare si ricorda che non su tutta l'estensione della ricostruzione è stato possibile rappresentare il substrato impermeabile, causa l'assenza di stratigrafie che lo intercettassero, e che inoltre nella porzione più

Fig. 8 – Variazione dei livelli piezometrici tra maggio e settembre 2002. – Variation of the groundwater levels between may and september 2002.

settentrionale del CISS (a Nord di Vada) non è stato possibile ricostruire nelle tre dimensioni il sistema acquifero, a causa del numero limitato di stratigrafie.

Il calcolo dei volumi idrici immagazzinati viene riassunto in tabella 4 dalla quale si evince che tali volumi ammontano a circa 398 milioni e circa 394 milioni di m³ rispettivamente a Maggio e Settembre 2002. Questi valori sono del tutto in linea con quelli calcolati (480 milioni di m³) da PRANZINI (2004a), tenendo conto che l'autore ha considerato anche la parte più settentrionale del CISS, a nord di Vada, non computata nel presente studio per i motivi precedentemente addotti.

2.2. - Acquifero del Cecina (32CT050)

2.2.1. - Ricostruzioni piezometriche

La carenza ed il tipo di distribuzione dei punti di misura disponibili, pongono dei limiti alla ricostruzione della superficie piezometrica lungo la valle del Fiume Cecina. Ad accentuare questo aspetto è il fatto che, almeno in buona parte dell'anno, il corso d'acqua regola significativamente la superficie piezometrica e di conseguenza sarebbero opportune misure di dettaglio del livello idrografico.

Nel corso del 2003, PRANZINI (2004b) ha effettuato due campagne di rilevamento piezometrico lungo la valle del Fiume Cecina (tra Molino di Berignone e la foce), basandosi su 105 e 66 punti di misura, rispettivamente nelle campagne di luglio e dicembre. Lo stesso autore nel relativo lavoro mette in evidenza le problematiche legate alla scarsa e non uniforme densità dei pozzi ai fini di una dettagliata ricostruzione della superficie piezometrica.

Al fine di elaborare le superfici piezometriche relative al CISS del Cecina (così come istituito con D.G.R.T. n.225/2003), a partire dai suddetti dati, nel presente lavoro sono stati prima selezionati quelli ricadenti nel CISS stesso e, successivamente, su questi è stata condotta un'analisi critica che ha portato ad escluderne alcuni ritenuti non rappresentativi. In particolare, i dati di due pozzi a profondità limitata (dell'ordine di 5-10 metri) non sono stati considerati, in quanto le relative quote piezometriche sono risultate anomale rispetto a quanto osservato nei pozzi circostanti; questo comportamento è a nostro avviso da imputare ad

 Fig. 10 – Carta delle isopieze (m s.l.m.) di maggio-giugno 1998 (da GRASSI et alii, 2000).
 – Piezometric surface contour (m a.s.l.) in may-june 1998 (by GRASSI et alii, 2000).

Fig. 11 – Carta delle isopieze (m s.l.m.) di ottobre-novembre 1998 (da GRASSI et alii, 2000). – Piezometric surface contour (m a.s.l.) in october-november 1998 (by GRASSI et alii, 2000).

una limitata circolazione idrica molto superficiale e di importanza locale.

In definitiva sono stati utilizzati 76 e 53 pozzi (tab. 5) per le elaborazioni riportate nelle figure 20,

Fig. 12 – Isoipse (m s.l.m.) della superficie piezometrica media annua del periodo 1999-2000 (da ARPAT, 2003).
– Water-level contour (m a.s.l.) of the mean piezometric surface in 1999-2000 (by ARPAT, 2003).

21, rispettivamente relative alle piezometrie di luglio e dicembre 2003. La ricostruzione del luglio 2003 è da ritenersi rappresentativa di condizioni di magra piuttosto spinte, dato che i periodi primaverile ed estivo di quell'anno sono stati particolarmente poveri di piogge. La campagna di dicembre 2003 è stata verosimilmente rappresentativa di condizioni di morbida (anche se non al culmine) dal momento che la stessa è stata preceduta da diversi giorni di pioggia e che l'elevata permeabilità dell'acquifero alluvionale favorisce la ricarica in tempi relativamente brevi.

Come si può osservare nelle figure 20, 21, la morfologia della superficie piezometrica risulta piuttosto simile nei due periodi considerati. Premettendo che in ragione del numero limitato di pozzi misurati non è possibile effettuare considerazioni troppo accurate, in linea generale osserviamo che in diversi tratti il fiume risulta drenare la falda; sono inoltre individuabili apporti idrici laterali al sistema acquifero di fondo valle da parte dei depositi alluvionali degli affluenti del Cecina. Per quanto riguarda i gradienti idraulici, da valori compresi tra 0,5 e 1%, che si ritrovano sulla maggior parte dell'estensione del CISS, si passa a valori di oltre l'1,5 %, laddove i restringimenti della sezione di competenza dei depositi alluvionali (vedi in particolare la zona a valle di loc. Casino di Terra) de-

Fig. 13 – Situazione piezometrica (m s.l.m.) del giugno 2001 nell'area Vada-Cecina (da PRANZINI, 2004a – elaborazione da dati ASA).
– Piezometric surface contour (m a.s.l.) in june 2001 for the Vada-Cecina zone (by PRANZINI, 2004a – original data by ASA).

Fig. 14 – Situazione piezometrica (m s.l.m.) di ottobre 2001 nell'area Vada-Cecina (da PRANZINI, 2004a - elaborazione da dati ASA).
Piezometric surface contour (m a.s.l.) in october 2001 for the Vada-Cecina gone (by PRANZINI, 2004a - original data by ASA).

Fig. 15 – Situazione piezometrica (m s.l.m.) di ottobre 1996 nell'area fra Marina di Bibbona e San Vincenzo (da PRANZINI, 2004a - elaborazione da dati ASA). – Piezometric surface contour (m a.s.l.) in octobre 1996 for the Marina di Bibbona-San Vincenzo zone (hy PRANZINI, 2004a - original data by ASA).

Fig. 16 – Situazione piezometrica (m s.l.m.) di maggio 2000 nell'area fra Marina di Bibbona e San Vincenzo (da PRANZINI, 2004a - elaborazione da dati ASA). – Piezometric surface contour (m a.s.l.) in may 2000 for the Marina di Bibbona-San Vincenzo zone (hy PRANZINI, 2004a - original data by ASA).

Fig. 17 – Situazione piezometrica (m s.l.m.) di ottobre 2000 nell'area fra Marina di Bibbona e San Vincenzo (da PRANZINI, 2004a - elaborazione da dati ASA). – Piezometric surface contour (m a.s.l.) in octobre 2000 for the Marina di Bibbona-San Vincenzo zone (hy PRANZINI, 2004a - original data by ASA).

Fig. 18 – Situazione piezometrica di maggio 2001 nell'area fra Marina di Bibbona e San Vincenzo (da PRANZINI, 2004a - elaborazione da dati ASA). – Piezometric surface contour (m a.s.l.) in may 2001 for the Marina di Bibbona-San Vincenzo zone (hy PRANZINI, 2004a - original data by ASA).

Fig. 19 – Situazione piezometrica di ottobre 2001 nell'area fra Marina di Bibbona e San Vincenzo (da PRANZINI, 2004a - elaborazione da dati ASA). – Piezometric surface contour (m a.s.l.) in october 2001 for the Marina di Bibbona-San Vincenzo zone (by PRANZINI, 2004a - original data by ASA).

Orizzonte 90 a	cquifero 7			· · · · · · · · · · · · · · · · · · ·	Orizzonte	44 acq	uifero 3			
Classe	%	Pe	Periodo	Saturo (m ³)	Classe		0/0	Da	Periodo	Saturo (m3)
sabbia	32,24	0,15	mag 02	509061736	Cuisse		70	10	1 011000	Suuro(m)
sabbia cementata	23,98	0,08	set 02	515569617	ghiaia ceme	entata	32,73	0,05	mag 02	92934828
ghiaia	23,47	0,2		010007017	ghiaia		28,45	0,2	02	02766515
ghiaia cementata	15,61	0,05			ashhia asma	un to to	25.00	0.08	set 02	92700313
argilla	4,/	0			sabbia cerne		23,77	0,00	_	
Orizzonte 70 a	acquifero 6				sabbia		7,07	0,15	_	
Classe	%	Pe	Periodo	Saturo (m ³)	argilla		5,76	0		
sabbia cementata	a 40,18	0,08	mag 02	1116608753						
sabbia	28,8	0,15	set 02	1086487419		20				
ghiaia cementata	14,2	0,05	set 02	1080487419	Orizzonte	30 acq	uitero 2			
ghiaia	11,87	0,2			Classe	ę,	%	Pe	Periodo	Saturo (m³)
argilla	4,95	0			sabbia	ı	39,94	0,15	mag - 02	644849328
Orizzonte 58 (couifero 5				sabbia ceme	entata	32,67	0,08		011019320
				$C \rightarrow (3)$	ghiaia	L	10,91	0,2	set 02	629571369
Classe	70	Pe	Periodo	Saturo (m ²)	ghiaia ceme	entata	8,18	0,05	-	
sabbia cementata	a 54,84	0,08	mag 02	7313062	argilla	ı	83	0	-	
sabbia	45,16	0,15	set 02	7202811		10	·c 1			
0.1	:C				Orizzonte	10 acq	ulfero I	1	¬	
Orizzonte 50 a	acquifero 4				Classe	?	%	Pe	Periodo	Saturo (m ³)
Classe	%	Pe	Periodo	Saturo (m ³)	sabbia ceme	entata	35,77	0,08	mag = 02	549213374
sabbia cementat	a 55,28	0,08	mag 02	745135160	ghiaia		22.77	0,2		547215574
sabbia	32,07	0,15	set 02	741661965	sabbia		15.18	0.15	set 02	548863490
ghiaia cementatz	a 5,11	0,05			aroilla		14 55	0	-	
ghiaia	5,02	0,2			abiaia ceme	entata	11.74	0.05	-	
argilla	2,52	0			gillala culic		11,/4	0,05		
	Orizzonte	acquifero	Pe_pesata	volume i immagazzinato (drico (m³) mag '02it	vo mmagaz	olume idric zinato (m³	o) set '02		
	7		0,12	62.252.651		63.048.493				
	6		0,11	118.565.984		115.367.580				
	5		0,11	816.226		803.920				
-	4		0,10	78.182.561		77.818.112				
F	3		0,10	9.726.745		9.709.129				
	2		0.10	72.194.751		70.484.292				
vol	ume idrico	totale imp	nagazzinato	308 105	856	20	93 652 40'	7		
VOI		ioraic IIIII	uagazziiiai0;	370.195	.050	3	73.034.47	r		

Tab. 4 – *Calcolo dei volumi idrici totali immagazzinati (Pe = porosità efficace).* – Evaluation of the effective groundwater storage (Pe = effective porosity).

terminano appunto un incremento del gradiente.

Visto il numero limitato di pozzi di misura in comune (circa 50 su un estensione longitudinale e trasversale del CISS rispettivamente di circa 30 km e 0,5-0,6 km in media) alle due campagne di luglio e dicembre, non è stata eseguita una spazializzazione delle differenze piezometriche registrate tra i due periodi. Analizzando puntualmente questi valori, si deduce tuttavia che la quasi totalità dei pozzi di misura in comune è interessata da un incremento dei livelli piezometrici tra Luglio e Dicembre; l'incremento massimo è di oltre 2,5 metri, quello medio 0,6 metri.

2.2.2. - Volumi idrici immagazzinati nel sistema acquifero

Sovrapponendo le superfici piezometriche alla ricostruzione tridimensionale del sistema acquifero ed adottando un coefficiente di porosità efficacemedio pesato in funzione delle granulometrie, si è giunti alla stima dei volumi idrici totali immagazzinati nei due periodi luglio e dicembre 2003 (tab. 6). In particolare, in ragione di una porosità media pesata del 16% e di volumi totali di acquifero saturo pari a circa 175 e 190 milioni di m³, si ottengono circa 28,9 e 31,3 milioni di m³ di volumi idrici immagazzinati in ac-

EST	NORD	PROF_m	LIV. PIEZ. LUG03	LIV. PIEZ. DIC03		EST	NORD	PROF_m	LIV. PIEZ. LUG03	LIV. PIEZ. DIC03
1656023	4797172		111,95	112,15	-	1643803	4800962	13	53,75	
1655980	4797392		110,79	111,69	-	1643792	4801408	18	55,00	55,45
1655980	4797334		110,49		1	1642218	4800294	18	50,75	51,00
1655923	4797029		111,20	112,00	-	1642163	4800625	20	53,10	53,10
1655508	4797268		107,20	109,00	1	1642131	4800778		54,00	
1655478	4797412		106,35	107,80	-	1641913	4799881	16	47,86	
1655463	4797240		107,60	109,29	-	1641447	4799415	12	45,70	
1655422	4797227		107,30	108,62		1639644	4798717	6	42,40	
1655404	4797519		105,30		-	1639493	4798460	6	38,00	39,00
1655394	4797320		106,50	108,56	-	1639445	4798540	6	37,70	38,38
1655311	4797230		107,75	109,50	1	1639403	4798625	6	37,50	38,30
1655217	4797445		105,20			1639197	4798400	10	36,25	38,90
1655160	4797431			109,10	-	1638546	4798320	10	34,65	
1655137	4797414			108,30	-	1637829	4798154	10	36,13	34,20
1653148	4798783		92,10	92,70	1	1637524	4798659	12	36,30	36,73
1652849	4798939	13	91,30	92,80	-	1637223	4798775		36,40	
1652497	4799416	13	88,40	88,70	-	1636823	4798691	7	37,80	38,35
1651590	4799236		85,40	85,50		1636643	4798143	10	35,20	33,80
1651529	4799450		84,30	84,40	-	1636387	4798651		34,85	35,40
1651484	4799521		83,00	83,10	-	1635535	4798714	8	32,20	32,70
1650100	4799958	20	79,65	80,20	-	1635405	4798030	7	31,20	31,65
1650052	4799979	20	79,90		-	1635235	4798667	8	34,35	34,77
1648876	4800835		70,55	71,45	1	1635107	4798710	17	34,60	
1647229	4800979	10	63,40	64,00	-	1634820	4798573	10	34,45	34,15
1646732	4801426		62,30	62,88		1634777	4798546	10	34,00	
1646581	4800723		61,40			1634030	4798914		28,90	29,95
1646571	4800871		60,80	61,30		1633827	4798047		35,97	36,25
1646473	4801466	14	60,42	61,44		1633659	4798291		36,70	37,08
1646366	4801490	14	61,45			1633632	4799985		34,37	35,15
1646317	4801043	9	60,70			1633157	4799740	18	24,55	25,00
1646272	4801048	9	60,70	61,30		1632347	4800377		24,33	24,75
1646245	4800818	8	61,50	62,20	-	1631567	4800855	17	34,60	
1645610	4801286	12	59,30	59,20	1	1631378	4800468		21,50	22,10
1645364	4801912	17	57,75		1	1631364	4800100		18,10	
1645047	4801937	11	56,80		1	1628704	4799587	27	14,55	
1644796	4801876	3	55,60		1	1628567	4799834		14,80	14,80
1644460	4801714	13	56,58		1	1627688	4800366		11,00	11,60
1644264	4801426	13	53,48		1	1627389	4800528	12	9,20	9,60
1643964	4801464		54,85	55,40	1	1627104	4800144		9,75	

Tab. 5 – Dati piezometrici di luglio e dicembre 2003 utilizzati per le elaborazioni delle figg. 6, 7. – Groundwater level of july and december 2003 used for the elaboration in figs. 6, 7.

quifero rispettivamente a luglio e dicembre 2003. Questi valori sono piuttosto in linea con quelli calcolati (circa 26 e 29 milioni di m³) da PRANZINI (2004b), considerando ovviamente quella porzione di area studiata da tale autore che approssimativamente corrisponde all'estensione del CISS qui esaminato.

La differenza tra i volumi idrici totali immagazzinati a dicembre 2003 (pressoché in condizioni di morbida) ed a luglio 2003 (pressoché in condizioni di magra), secondo il calcolo sopra effettuato ammonta a circa 2,4 milioni di m³. Essendo quello del Cecina un acquifero di tipo freatico, la somma tra quest'ultimo quantitativo ed i volumi idrici estratti durante il periodo di ricarica (valori non noti) è pressappoco corrispondente alla risorsa idrica sotterranea dell'anno idrologico considerato.

Fig. 20 – Piezometria di luglio 2003 (A e B, rispettivamente parte medio-bassa e medio-alta del bacino del Fiume Cecina). – Piezometric surface contour (m a.s.l) in july 2003 (A and B, respectively middle-low and middle-high part of the Cecina River basin).

3. - LA CARATTERIZZAZIONE IDROGEO-CHIMICA

3.1. - FONTI BIBLIOGRAFICHE

Le fonti bibliografiche da cui sono stati estratti i dati idrogeochimici relativi ai CISS in oggetto sono il *database* del Sistema Informativo Regionale Ambientale della Toscana (S.I.R.A.) e del Gestore Servizio Idrico Integrato ASA, i rapporti inediti dello AF STUDIO GEOLOGICO (1997) e di PRAN-ZINI (2004a) oltre a differenti pubblicazioni scientifiche (GRASSI & SQUARCI, 2004; PENNISI *et alii*, 2006; FRULLINI *et alii*, 2007; GRASSI *et alii*, 2007; NISI *et alii*, 2007; CAPRI *et alii*, 2009).

Va ricordato che nel *database* S.I.R.A. sono immagazzinate serie temporali di dati relative a punti d'acqua appartenenti alla rete di monitoraggio di interesse regionale. Da queste serie temporali sono stati considerati due analisi solamente, rappresentative dei periodi idrologici di magra e morbida. Lo stesso approccio è stato applicato anche alle altre fonti bibliografiche suddette in cui sono presenti dati ripetuti nel tempo.

Sono state prese in considerazione, per le finalità specifiche di questo progetto, solamente le analisi complete in termini di elementi maggiori, per un totale di 367 campioni d'acqua (Tabelle A, B, H in appendice).

3.2. - Classificazione chimica delle acque

Per la classificazione chimica delle acque naturali presenti nei CISS in oggetto sono stati utilizzati sia

Fig. 21 - Piezometria di dicembre 2003 (A e B, rispettivamente parte medio-bassa e medio-alta del bacino del F. Cecina). – Piezometric surface contour (m a.s.l) in december 2003 (A and B, respectively middle-low and middle-bigh part of the Cecina River basin).

i diagrammi triangolari dei principali costituenti anionici e cationici (fig. 22) sia i diagrammi quadrangolari di Langelier-Ludwig con lo ione HCO₃ e lo ione Cl⁻ come anioni singoli (fig. 23), sia i diagrammi di correlazione Cl vs. (HCO₃+SO₄) (fig. 24).

Il diagramma HCO₃-Cl-SO₄ di figura 22(a) mostra che nella maggior parte delle acque dei CISS in oggetto il bicarbonato è l'anione prevalente, anche se sono numerose le acque in cui domina lo ione cloruro, mentre in minima misura sono quelle in cui lo ione solfato è il principale costituente anionico disciolto. Il diagramma (Na+K)-Ca-Mg di figura 22(b) evidenzia che il Ca²⁺ è il catione più abbondante, mentre Na⁺ è il catione dominante (considerando che lo ione K⁺ è generalmente subordinato al sodio) in un numero limitato di campioni. L'esame congiunto dei due diagrammi triangolari di figura 22 indica che:

(i) fra le acque a bicarbonato prevalente sono riconoscibili sia quelle con composizione variabile da Ca-HCO₃ a Ca(Mg)-HCO₃, che comprendeno 257 dei 367 campioni selezionati (70% del totale), e 11 acque (3%) appartenenti alla facies Na-HCO₃;

(ii) tra le acque clorurate sono individuabili quelle tendenzialmente Ca-Cl, rappresentate da 54 acque (14.7%) e a Na-Cl, comprendente 32 campioni (8.7%);

(iii) le 13 acque a solfato dominante (1.6%) appartengono tutte al tipo chimico Ca-SO₄.

Nel diagramma quadrangolare di Langelier-Ludwig con il Cl⁻ come anione singolo (fig. 23a) sono ovviamente ben distinguibili le facies Ca-Cl e Na-Cl e si individuano altrettanto agevolmente le acque a Na-HCO₃, a causa della assenza di cam-

Classe	%	Pe		
argilla	1,74	0,00		
argilla ghiaiosa	0,77	0,00		
argilla limosa	0,45	0,00	periodo	saturo (m³)
argilla sabbiosa	1,38	0,00	lug - 03	175746984
limo	0,12	0,03	dic - 03	190718869
limo sabbioso	4,94	0,05		
limo argilloso	0,65	0,01		
limo ghiaioso	1,15	0,08		
sabbia	1,48	0,15		
sabbia argillosa	1,78	0,07		
sabbia ghiaiosa	1,84	0,17		
sabbia limosa	0,32	0,07		
ghiaia	51,91	0,20		
ghiaia argillosa	2,81	0,05		
ghiaia sabbiosa	16,04	0,18		
ciottoli	5,75	0,25		
ciottoli sabbiosi	1,34	0,20		
"terreno" (copertura limo-sabbiosa)	5,52	0,05		

Tab. 6 – *Calcolo dei volumi idrici totali immagazzinati (Pe = porosità efficace).* – Evaluation of the effective groundwater storage (Pe = effective porosity).

	Pe_pesata	volume idrico immagazzinato (m ³) lug. '03	volume idrico immagazzinato (m³) dic. '03		
	0,12	28.862.889	31.321.718		
volume idrico immagazzinato: [28.862.889	31.321.718		

Fig. 22 – Diagrammi triangolari (a) HCO_3 -Cl-SO₄ e (b) Ca-Mg-(Na+K) per le acque dei CISS 32CT010+32CT030 e 32CT050. – Triangular diagrams of (a) SO₄, Cl and HCO₃ and (b) (Na+K), Mg and Ca for the waters relative to the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean Water Bodies).

Fig. 23 – Diagrammi quandrangolari di Langelier-Ludwig (1942) con (a) lo ione Cl⁻ e (b) lo ione HCO₃⁻ come anioni singoli per le acque dei CISS32CT010+32CT030 e 32CT050.
 – Square diagram of Langelier-Ludwig (1942) with (a) Cl⁻ and (b) HCO₃⁻ single ions for the waters of the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean Water Bodies).

pioni appartenenti al gruppo Na-SO₄. Sono invece sovrapposti i due gruppi di acque a Ca-SO₄ e Ca-HCO₃. Quest'ultimo insieme di punti d'acqua è ben separato dalle altre famiglie chimiche nel diagramma quadrangolare di Langelier-Ludwig con HCO₃ come anione singolo (fig. 23b).

Ι diagrammi di correlazione Cl VS. (HCO_3+SO_4) (fig. 24) mostrano che solamente la maggior parte delle acque Na-Cl e alcune di quelle Ca-Cl sono caratterizzate da elevata salinità ionica totale (SIT), maggiore di 50 meq/L, fino a 1200 -1300 meq/L nel caso dei due campioni rappresentativi dell'acqua di mare media mondiale (SW) e dell'acqua marina locale (BC 100); quest'ultima è stata prelevata di fronte alla spiaggia antistante la Mazzanta nel corso dello studio effettuato dallo AF STUDIO GEOLOGICO (1997). Indipendentemente dalla facies di appartenenza, gli altri campioni hanno invece SIT compresa fra 10 e 50 meq/L.

Le acque con composizione variabile da Ca-HCO₃ a Ca(Mg)-HCO₃ sono interpretabili come acque meteoriche che acquisiscono le loro caratteristiche composizionali a seguito di dissoluzione di minerali carbonatici (calcite e dolomite) presenti entro i sedimenti alluvionali della piana costiera. Ciò è dovuto alla elevata cinetica di dissoluzione delle fasi minerali carbonatiche, ben maggiore di quella dei minerali silicatici e Al-silicatici, ovviamente in condizioni di lontananza dall'equilibrio. Questa interpretazione è in linea anche con l'abbondanza di questa facies idrochimica.

Le acque Ca-SO₄ sono attribuibili a processi di interazione fra acque meteoriche e rocce evaporitiche di età miocenica (Messiniano). Considerando che affioramenti di questi litotipi, anche di notevole estensione, sono presenti nelle zone collinari che limitano la piana costiera, è ragionevole ipotizzare che clasti di gesso e/o anidrite siano contenuti, ancorché in piccole quantità ed in zone circoscritte, all'interno del materasso alluvionale. In effetti le acque di questa famiglia sono presenti in settori limitati, come per esempio nella zona di Rosignano Marittimo (campioni Mi00, Mi01, Mi02, Mi04 e Mi05).

Nella stragrande maggioranza dei casi⁽¹⁾, i due tipi chimici Na-Cl e Ca-Cl sono riferibili ai fenomeni di ingressione marina entro i sedimenti della piana alluvionale e mostrano una netta zonazione, con i primi. L'unica eccezione è rappresentata dai più prossimi alla linea di costa rispetto ai secondi.

⁽¹⁾ L'unica eccezione è rappresentata dai campioni BC31, BC37 e BC40, localizzati nei pressi della confluenza fra il Fiume Cecina ed il Botro Santa Marta, che riceve l'apporto di acque sorgive clorurato-sodiche.

Fig. 24 – Diagrammi di correlazione Cl vs. HCO₃ + SO₄ per differenti intervalli di salinità, <50 meq/L in (a) e <1200 meq/L in (b), per le acque dei CISS 32CT010+32CT030 e 32CT050.
 – Binary diagrams of Cl versus HCO₃ + SO₄ for different salinity (a) <50 meq/L and (b) <1200 meq/L for the waters of the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean Water Bodies).

Inoltre, si osserva una concentrazione di acque Ca-Cl nel centro abitato di Cecina, probabilmente a causa dell'intenso emungimento della falda. L'ingressione marina può avvenire o direttamente (cuneo salino) o a seguito di risalita delle acque marine e salmastre lungo gli alvei fluviali e successiva infiltrazione nell'acquifero freatico, ospitato entro i sedimenti alluvionali. In genere, le acque Na-Cl sono imputabili a semplice miscela fra acque di falda di bassa salinità ed acque marine, mentre le acque Ca-Cl implicano il verificarsi di processi di scambio ionico, che determinano l'acquisizione di ione Ca²⁺ in sostituzione dello ione Na⁺. Tuttavia, i fenomeni di scambio ionico meritano un approfondimento, che è l'oggetto del paragrafo seguente.

3.3. - LO SCAMBIO IONICO

Per comprendere gli effetti dello scambio ionico è necessario ricordare che i sedimenti alluvionali sono assimilabili ad uno scambiatore cationico, i cui siti sono saturati in prevalenza da ioni Ca²⁺ e Mg²⁺, derivanti da processi di interazione acquaroccia. Nel momento in cui l'acqua di mare o l'acqua salmastra interagisce con i sedimenti alluvionali, a seguito di ingressione marina, avvengono le seguenti reazioni di scambio ionico:

$$Na^{+} + \frac{1}{2} Ca - X_{2} \rightarrow Na - X_{2} + \frac{1}{2} Ca^{2+}$$
 (1)

$$Na^{+} + \frac{1}{2}Mg - X_{2} \rightarrow Na - X_{2} + \frac{1}{2}Mg^{2+}$$
 (2)

dove X₂ indica lo scambiatore cationico rappresentato dai sedimenti alluvionali. A seguito delle reazioni (1) e (2), la fase acquosa si arricchisce in ioni Ca²⁺ e Mg²⁺ e si impoverisce in ione Na⁺, che va a saturare lo scambiatore cationico, ossia i sedimenti alluvionali. In tal modo, la fase acquosa acquisisce una composizione Ca-Cl o Ca(Mg)-Cl, del tutto simile a quella osservata nell'area in esame. Nel momento in cui il processo si inverte, ossia quando le acque di falda Ca-HCO₃ o Ca(Mg)-HCO3 tornano a fluire entro i sedimenti alluvionali precedentemente saturati da ioni Na⁺ (a seguito di ingressione marina), le reazioni (1) e (2) procedono in senso inverso, determinando la produzione di acque Na-HCO₃, pure rappresentate nell'area in esame.

I fenomeni di scambio ionico, sia quelli determinati da ingressione marina che quelli dovuti a riflusso di acque di falda (*freshening*), sono stati osservati e modellizzati in differenti acquiferi costieri (vedi APPELO, 1996, APPELO & POSTMA, 1996 e riferimenti citati). Le spiegazioni precedenti sono di tipo puramente qualitativo. In realtà le reazioni di scambio ionico sono regolate dalla legge di azione di massa, ossia ad esse competono costanti di equilibrio che sono state misurate sperimentalmente (e.g., APPELO, 1996). Inoltre, la quantità di cationi scambiabili è limitata dalla capacità di scambio cationico, che varia da materiale a materiale ed è dell'ordine di (LANGMUIR, 1997 e fonti citate): (i) 3-15 meq/100 g per caolinite; (ii) 10-40 meq/100 g per illiti e cloriti; (iii) 80-150 meq/100 g per smectiti; (iv) 100-150 meq/100 g per vermiculite; (v) 100-400 meq/100 g per zeoliti; (vi) 100-500 meq/100 g per sostanze organiche contenute nei suoli; (vii) 100-740 meq/100 g per ossi-idrossidi di Fe(III) e Mn(IV). Infine, il processo di scambio ionico è assimilabile ad una cromatografia multicomponente e può essere oggetto di modellizzazioni accurate (e.g., APPELO, 1996).

Cercando di mantenere la presente trattazione ad un livello semplice, è utile esaminare prima di tutto i diagrammi di correlazione, in scala log-log, Ca-Cl (fig. 25a), Mg-Cl (fig. 25b), Na-Cl (fig. 25c) e K-Cl (fig. 35d) nei quali sono state tracciate le linee di miscela fra l'acqua di mare media mondiale e l'acqua di falda, rappresentata da due campioni opportunamente scelti per le basse concentrazioni dei soluti considerati, BC34 e BC331. Dall'esame di

Fig. 25 – Diagrammi di correlazione log-log fra Cl e Ca (a), Mg (b), Na (c) e K (d), per le acque dei CISS 32CT010+32CT030 e 32CT050; sono altresi indicate le linee di miscela fra l'acqua di mare media mondiale e l'acqua di falda, rappresentata dai campioni BC331 e BC34. Simboli come in legenda di figura 24. – Log-log correlation plots (a) Ca, (b) Mg, (c) Na and (d) K against chloride for the waters relative to Significant Subterranean Water Bodies (SSWB 32CT010+32CT030 and 32CT050); as well as the mixing line between ground waters (BC34 and BC331) and average seawater (s.w.), are also drawn. Symbols as in figure 24.

questi diagrammi sono ben evidenti sia gli eccessi di Ca e Mg, sia i difetti di Na e (in minor misura) K, attribuibili al processo di scambio ionico, nonostante la sovrapposizione di altri processi quali l'acquisizione o la perdita di sostanze disciolte per fenomeni di dissoluzione o precipitazione, rispettivamente, che avvengono nel corso della interazione acqua-roccia. Un discorso a parte meritano:

(i) i campioni BC31, BC37 e BC40, di composizione Na-Cl, situati nei pressi della confluenza fra il Fiume Cecina ed il Botro Santa Marta (in località Ponteginori), caratterizzati da difetti di Mg e eccessi di K, contrariamente a quanto atteso per scambio ionico, oltre a eccessi di Ca; si tratta di acque che interagiscono con livelli evaporitici in cui sono verosimilmente presenti halite (NaCl), silvite (KCl), gesso (CaSO₄ × 2H₂O) e anidrite (CaSO₄), la cui dissoluzione spiega le peculiari caratteristiche di questi campioni;

(ii) il campione 133, anch'esso di composizione NaCl, che si differenzia per l'eccesso di Ca ed il difetto di Mg, oltre al pH anomalmente basso (5.56).

In alternativa, per valutare l'eccesso di Mg e Ca ed il difetto di Na e K, rispetto alle concentrazioni attese per semplice miscela fra acqua di mare ed acqua di falda, sono stati preparati i diagrammi di correlazione semilogaritmici di figura 26. Innanzi tutto è stata calcolata la frazione di acqua di mare, x, presente in una miscela qualunque (pedice M) costituita da acqua di mare (pedice SW) ed acqua di falda (pedice GW). A tal fine, è stato risolto rispetto ad x il bilancio di massa sul cloruro, costituente mobile che non è coinvolto nei processi di scambio ionico (dove C identifica la concentrazione in mg/L):

$$C_{Cl,M} = C_{Cl,SW} \cdot x + C_{Cl,GW} \cdot (1 - x)$$
 (3)

I valori di x sono stati calcolati per tutti i campioni in esame, ponendo, in prima approssimazione: C_{Cl,GW} = 18 mg/L (concentrazione di Cl del campione BC331). Successivamente sono state calcolate le differenze di Ca, Mg, Na e K rispetto alle concentrazioni attese per semplice miscela fra acqua di mare ed acqua di falda, mediante la semplice relazione:

$$\Delta C_{i,M} = C_{i,A} - x \cdot (C_{i,SW} - C_{i,GW}) - C_{i,GW}$$
(4)

per i = Ca, Mg, Na e K, dove il pedice A indica il valore analitico. Nei diagrammi semilogaritmici di figura 26, la linea tratteggiata per $\Delta C_i = 0$ corrisponde alla linea di miscela fra l'acqua di mare media mondiale e l'acqua di falda (rappresentata dal campione BC331); in effetti è semplice verificare che la funzione (4) assume il valore zero sia per x = 0 e $C_{i,A} = C_{i,GW}$, sia per x = 1 e $C_{i,A} =$

 $C_{i,SW}$. Questi diagrammi sono pertanto del tutto analoghi a quelli di figura 25, ma vengono maggiormente evidenziati gli scostamenti dalla linea di miscela acqua marina ed acque sotterranee. Nuovamente, sono ben evidenti gli effetti dello scambio ionico, in termini di acquisizione di Ca e Mg e perdita di Na e subordinatamente di K, per i campioni caratterizzati da contenuti di Cl superiori a 0.005-0.01 eq/L, appartenenti alle facies Ca-Cl e Na-Cl; fra i campioni più modificati risaltano i due prelevati dal punto BC21 in differenti periodi. Gli scostamenti rispetto alla linea di miscela sono invece attribuibili all'interazione acqua-roccia per le acque degli altri tipi idrochimici. Da notare anche la posizione anomala delle tre acque BC31, BC37 e BC40, appartenenti alla facies Na-Cl e situati in prossimità della confluenza fra il Fiume Cecina ed il Botro Santa Marta (in località Ponteginori), soprattutto per ciò che concerne il ΔMg ed il ΔK , come già osservato in figura 25. Nei diagrammi di figura 26 a-c è stato invece escluso il campione 133 caratterizzato da valori di ΔCa , $\Delta Mg \in \Delta Na$ che ricadono al di fuori dell'intervallo considerato.

3.4. - CALCOLI DI SPECIAZIONE-SATURAZIONE

La speciazione in fase acquosa e la saturazione rispetto alle fasi minerali di interesse sono state ricostruite per i 367 campioni d'acqua rappresentativi dei CISS regionali 32CT010 "Acquifero costiero tra Fiume Cecina e San Vincenzo", 32CT030 "Acquifero costiero tra Fiume Fine e Fiume Cecina" e 32CT050 "Acquifero del Cecina", mediante il codice EQ3 (WOLERY & JAREK, 2003), utilizzando il *database* CMP (Tabelle C1-C2, D1-D2, E1-E2, F1-F2, G1-G2 in appendice).

Il pH, ove assente, è stato stimato assumendo la condizione di saturazione (equilibrio) rispetto alla calcite, ipotesi condivisibile in base a quanto discusso nella sezione 3.4.3.2. La temperatura, ove mancante, è stata fissata a 17.5 °C (valore medio per i corpi idrici di interesse).

Per la maggior parte dei campioni non sono noti i contenuti degli elementi minori ed in traccia, ad eccezione delle specie azotate, in particolare nitrato ed ammonio, che sono stati utilizzati per vincolare le condizioni ossido-riduttive di queste soluzioni acquose.

In genere, la concentrazione di silice acquosa è stata stimata in base alla equazione seguente (concentrazioni in mg/L):

ottenuta, in base a dati non pubblicati, attraverso

Fig. 26 – Diagrammi di correlazione semilogaritmici fra cloruro e Δ Ca (a), Δ Mg (b), Δ Na (c) e (d) Δ K, per le acque dei CISS 32CT010+32CT030 e 32CT050; la linea tratteggiata per Δ Ci = 0 corrisponde alla linea di miscela fra l'acqua di mare media mondiale e l'acqua di falda, rappresentata dal campione BC331. Simboli come in legenda di figura 24.

- Semilogarithmic correlation plots (a) ΔCa , (b) ΔMg , (c) ΔNa e (d) ΔK against chloride for the waters relative to Significant Subterranean Water Bodies (SSWB 32CT010+32CT030 and 32CT050); the dashed line $\Delta Ci = 0$ corresponds to the mixing line between ground waters (BC331) and average seawater (s.w.). Symbols as in figure 24.

l'analisi di regressione multipla (effettuata mediante il codice Statistica v. 6.0), in cui la SiO₂ è stata considerata come variabile dipendente e i costituenti principali disciolti sono stati trattati come variabili indipendenti (R = 0.611, N = 82). Nel diagramma di correlazione SiO₂-temperatura (fig. 27) nel quale sono riportate le curve di solubilità di differenti fasi solide della silice, la maggior parte dei pozzi si situa tra la curva della α -cristobalite e quella della β -cristobalite.

Per i pochi campioni a cui non può essere applicata la equazione (5), è stata ipotizzata la condizione di equilibrio rispetto al calcedonio. La concentrazione dell'alluminio disciolto è stata vincolata imponendo la saturazione rispetto alla caolinite; quest'ultima è una condizione ragionevole alla luce di quanto emerge dai diagrammi di attività (vedi sezione 3.4.4).

I principali risultati dei calcoli di speciazionesaturazione sono discussi nei paragrafi seguenti.

3.4.1. - Diagrammi Eh-pH

I diagrammi Eh-pH rappresentano uno strumento grafico estremamente potente, in quanto forniscono una visione immediata dei processi di

Fig. 27 – Diagramma di correlazione fra SiO $_2$ disciolta e temperatura, mostrante sia i valori calcolati per le acque dei CISS 32CT010+32CT030 e 32CT050.

 Correlation plot between temperature and dissolved SiO₂ of the calculate values for the waters relative to the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean Water Bodies).

protonazione/deprotonazione e della speciazione redox, nei limiti della ipotesi di equilibrio. Mentre è lecito assumere che l'equilibrio acido-base sia rispettato in soluzione acquosa, il raggiungimento dell'equilibrio redox rappresenta l'eccezione piuttosto che la regola, in quanto è stato osservato solamente per alcune coppie redox: Fe^{2+}/Fe^{3+} , U^{4+}/U^{6+} e S°/S²⁻ (NORDSTROM, 2002). Un altro limite dei diagrammi Eh-pH è legato al fatto che essi fanno necessariamente riferimento a sistemi semplificati e non possono pertanto essere considerati un'alternativa ai calcoli di speciazione effettuati mediante codici più complessi.

Gli studi più conosciuti sui diagrammi Eh-pH sono quelli di POURBAIX (1966) e BROOKINS (1988). Il primo tratta i fenomeni di corrosione e passivazione dei materiali, mentre il secondo è incentrato sugli aspetti geochimici dello stoccaggio geologico delle scorie radioattive. Più recentemente i diagrammi Eh-pH sono stati utilizzati per confrontare i dati termodinamici immagazzinati in differenti *database* (TAKENO, 2005), facendo riferimento a sistemi del tipo X-H-O, dove X indica il simbolo di un elemento chimico qualunque. I *database* termodinamici considerati da TAKENO (2005) sono:

1. FACT, che è connesso con il *software* commerciale FACTSAGE, versione 5.2 (BALE *et alii*, 2002) prodotto da GTT-Technologies;

2. SUPCRT92 (JOHNSON *et alii*, 1992), si tratta di una collezione di programmi, scritti in Fortran 77, per calcolare le proprietà termodinamiche molali *standard* di specie inorganiche ed organiche e delle reazioni fra di esse, in funzione della temperatura e della pressione. È distribuito dal *Prediction Central, o Laboratory of Theoretical Geochemistry*, creato dal compianto Prof. Harold C. Helgeson alla Università della California, Berkeley (vedi *web* http://www.predcent.org/);

3. thermo.dat sviluppato dal *Lawrence Livermore National Laboratory* e collegato con il *software* commerciale GWB (*Geochemist's Workbench*), scritto da C. M. Bethke della Illinois University;

4. JNC-TDB distribuito dal *website* http://migrationdb.jnc.go.jp/ della *Japan Nuclear Cycle Organization*;

5. HATCHES (ZZ-HATCHES-15) distribuito dalla NEA (*Nuclear Energy Agency*) *Computer Program Services*;

6. OECD/NEA *Chemical Thermodynamics* serie 1-4 (GRENTHE *et alii*, 1992; SILVA *et alii*, 1995; RARD *et alii*, 1999; LEMIRE *et alii*, 2001) e serie 5 (GUIL-LAUMONT *et alii*, 2003).

In questo studio sono stati selezionati i diagrammi Eh-pH più completi, riportati in TAKENO (2005), per i seguenti sistemi As-H-O, Cr-H-O, Cu-H-O, Fe-H-O, Hg-H-O, Mn-H-O, Mo-H-O, N-H-O, Ni-H-O, Pb-H-O, S-H-O, Sb-H-O, Se-H-O, Sn-H-O, U-H-O e V-H-O, a causa della rilevanza ambientale di questi elementi chimici.

Questi diagrammi Eh-pH sono riferiti alla temperatura di 25 °C ed alla pressione di 1.01325 bar. La concentrazione totale di ciascuno degli elementi considerati è fissata a 10^{-10} moli/kg in tutti i diagrammi. Per una concentrazione così bassa, è lecito assumere che i coefficienti di attività delle specie acquose di interesse abbiano valore unitario; inoltre, viene minimizzato l'effetto di precipitazione delle fasi solide. Infine nei seguenti diagrammi sono riportati, mediante due linee diagonali tratteggiate, i limiti del campo di stabilità dell'acqua alle condizioni di T,P_{tot} sopra specificate e si riferiscono a P = P_{tot} (quella superiore) e = P_{tot} (quella inferiore).

Escludendo gli errori derivanti dall'elaborazione dei *software* commerciali e dei *database*, l'errore complessivo è compreso tra ± 0.0025 V per l'Eh e ± 0.02 per il pH.

3.4.1.1. - Diagramma Eh-pH per il sistema As-H-O

L'esame di questo diagramma (fig. 28) mostra che la specie prevalente dello As disciolto è lo ione monoidroarsenato, che può essere presente sia come ione libero sia in forma di complessi acquosi (vedi MARINI & ACCORNERO, 2007), quali:

(i) CaHAsO₄° e MgHAsO₄° nelle acque ricche di Ca e Mg, appartenenti ai tipi idrochimici Ca-

 Fig. 28 – Diagramma Eh-pH relativo al sistema As-H-O per le acque dei CISS 32CT010+32CT030 e 32CT050.
 – Eh-pH diagrams for the As-H-O system of the waters relative to the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean Water Bodies).

HCO₃, Ca(Mg)-HCO₃, Ca-Cl, Ca(Mg)-Cl e CaSO₄.
(ii) NaHAsO₄⁻ nelle acque in cui lo Na⁺ è lo ione dominante, ossia quelle delle facies Na-Cl e Na-HCO₃.

La prevalenza di specie elettricamente neutre, quali i complessi acquosi CaHAsO₄° e lo MgHAsO₄°, nelle maggior parte delle acque di falda fa sì che As(V) abbia un comportamento mobile non essendo soggetto a processi di adsorbimento di superficie, di natura elettrostatica. Ovviamente, queste implicazioni non si evincono dai diagrammi Eh-pH ma richiedono studi più approfonditi.

3.4.1.2. - Diagramma Eh-pH per il sistema Cr-H-O

Nel diagramma di figura 29, le acque di falda in oggetto si distribuiscono in prossimità delle linee che separano i campi di prevalenza delle specie acquose del Cr(VI) da quelli in cui dominano gli idrosso-complessi del Cr(III). Ciò è abbastanza in accordo con le evidenze acquisite per acque sotterranee di circolazione poco profonda, che interagiscono con rocce ultramafiche; in queste acque, il Cr disciolto è presente in toto nella forma esavalente (vedi anche FANTONI *et alii*, 2002). Anche in questo caso, ammettendo che la specie dominante sia lo ione CrO_4^{2-} , è probabile che le sua mobilità

 Fig. 29 – Diagramma Eh-pH relativo al sistema Cr-H-O per le acque dei CISS 32CT010+32CT030 e 32CT050.
 – Eb-pH diagrams for the Cr-H-O system of the waters relative to the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean Water Bodies).

sia in larga misura condizionata dalla formazione di specie acquose complesse, quali il CaCrO₄° e lo MgCrO₄° (vedi ACCORNERO *et alii*, 2005; ACCOR-NERO *et alii*, 2009). Ulteriori indicazioni circa la provenienza del Cr disciolto nelle acque di falda potrebbero essere fornite dai rapporti isotopici del Cr, al momento non disponibili per le acque in esame, nonostante il forte frazionamento isotopico che accompagna la ossidazione del Cr trivalente a Cr esavalente (e.g., OTTONELLO *et alii*, 2004; PE-TRINI *et alii*, 2005).

3.4.1.3. - Diagramma Eh-pH per il sistema Cu-H-O

Il diagramma di figura 30 mostra che Cu(II) prevale di gran lunga sulla forma monovalente; i campioni sono equamente distribuiti nei campi di prevalenza dello ione libero Cu²⁺ e dello idrossocomplesso Cu(OH)₂° (indicato come CuO_(aq) in figura 30). Tuttavia i calcoli di speciazione effettuati con il codice PHREEQC facendo riferimento al *database* termodinamico Wateq4f.dat per uno dei pochi campioni (MAT-P114, pH 6.65) per i quali è disponibile il dato analitico del Cu disciolto, 6 µg/L, mostrano che le specie dominanti sono:

(i) il complesso acquoso CuCO₃° che spiega il 51.2% del Cu disciolto;

Fig. 30 – Diagramma Eh-pH relativo al sistema Cu-H-O per le acque dei CISS 32CT010+32CT030 e 32CT050.
– Eh-pH diagrams for the Cu-H-O system of the waters relative to the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean Water Bodies).

(ii) il complesso acquoso $CuHCO_3^+$ che costituisce il 30.6% del Cu disciolto;

(iii) lo ione libero Cu²⁺ che rappresenta il 13.4% del Cu disciolto.

3.4.1.4. - Diagramma Eh-pH per il sistema Fe-H-O

Nel diagramma Eh-pH per il sistema Fe-H-O (fig. 31) i campioni in esame si localizzano nel campo di stabilità della ematite (Fe₂O₃), con quelli più acidi che si avvicinano al limite Fe^{2+} /ematite e quelli più basici che si allontanano da tale limite.

La presenza del campo di stabilità dell'ematite nel diagramma considerato e la sua notevole estensione sono dovute alla elevata stabilità termodinamica di questa fase, anche se è pressoché impossibile la sua formazione per precipitazione diretta dalla soluzione acquosa. Questo processo, in genere, determina la produzione di fasi solide più solubili e meno stabili, quali l'idrossido ferrico amorfo o la ferridrite (JAMBOR & DUTRIZAC, 1998), come spesso si osserva nelle aree minerarie dismesse (e.g., ACCORNERO *et alii*, 2005). La presenza del campo di stabilità della ematite maschera completamente non solo quello del complesso $Fe(OH)_3^{\circ}$ ma anche, almeno in parte, quelli dei complessi adiacenti, $Fe(OH)_2^+$ e $Fe(OH)_4^-$. A questo proposito si ricorda che la condizione di isoattività $Fe(OH)_2^+/$ $Fe(OH)_3^{\circ}$ corrisponde a pH di 6.89, mentre la condizione di isoattività $Fe(OH)_4^-/$ $Fe(OH)_3^{\circ}$ si registra per pH di 9.04, a 25°C e 1.013 bar.

Indicazioni più dettagliate sono fornite dai calcoli di speciazione effettuati con il codice PHRE-EQC facendo riferimento al *database* termodinamico Wateq4f.dat per i campioni in cui è stato misurato il Fe disciolto. Per esempio, nel caso del campione MAT-P114 (pH 6.65, Fe disciolto 0.13 mg/L) il Fe(III) costituisce il 94% del Fe disciolto totale mentre il Fe(II) rappresenta solo il 6% circa. Il primo è presente per lo più come Fe(OH)₂⁺ (73% del Fe trivalente) e subordinatamente come Fe(OH)₃° (27%), mentre il secondo è rappresentato principalmente dallo ione libero Fe²⁺ (67% del Fe bivalente) ed in minor misura dal complesso FeHCO₃⁺ (29 %).

La stabilità termodinamica della ematite trova riscontro in un elevatissimo valore dell'indice di saturazione (trattato più estesamente nel paragrafo 3.4.3), SI = 16.99, per il campione MAT-P114, che risulta sovrassaturo anche rispetto all'idrossido ferrico amorfo, ma in misura molto minore, SI = 1.85.

Fig. 31 – Diagramma Eh-pH relativo al sistema Fe-H-O per le acque dei CISS 32CT010+32CT030 e 32CT050.
– Eb-pH diagrams for the Fe-H-O system of the waters relative to meaningful groundwater bodies (CISS 32CT010+32CT030 e 32CT050).

Fig. 32 – Diagramma Eh-pH relativo al sistema Hg-H-O per le acque dei CISS 32CT010+32CT030 e 32CT050.
– Eb-pH diagrams for the Hg-H-O system of the waters relative to the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean Water Bodies).

3.4.1.5. - Diagramma Eh-pH per il sistema Hg-H-O

Dal diagramma Eh-pH per il sistema Hg-H-O (fig. 32) si evince che la specie dominante è l'idrosso-complesso Hg(OH)2°. Indicazioni ulteriori derivano dai calcoli di speciazione eseguiti con il codice PHREEQC facendo riferimento al database termodinamico MINTEQ.dat per i pochissimi campioni in cui è stato determinato il mercurio acquoso. Fra di essi, è stato preso in esame il campione BC27 (pH = 7.6, Hg = 2 ppb) per il quale la speciazione del mercurio (a prescindere dalla possibile presenza di complessi metallo-organici) è risultata essere dominata dallo Hg(0), che rappresenta il 98% del mercurio acquoso, seguito dalla forma bivalente (2%), mentre quella monovalente è totalmente trascurabile. In particolare il mercurio bivalente è rappresentato principalmente dai complessi Hg(OH_2° [45% dello Hg(II)], HgClOH (27%) e HgCl₂ (18%).

Da sottolineare che sia il mercurio elementare che quello bivalente sono presenti in forma elettricamente neutra, fatto che comporta una elevata mobilità, in quanto gli effetti di adsorbimento di natura elettrostatica sono pressoché nulli.

 Fig. 33 – Diagramma Eh-pH relativo al sistema Mn-H-O per le acque dei CISS 32CT010+32CT030 e 32CT050.
 – Eb-pH diagrams for the sistems Mn-H-O for the waters relative to the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean Water Bodies).

3.4.1.6. - Diagramma Eh-pH per il sistema Mn-H-O

Nel diagramma Eh-pH per il sistema Mn-H-O (fig. 33) tutte le acque in esame si posizionano all'interno del campo di predominanza dello ione libero Mn²⁺, che risulta essere pertanto la principale specie dello Mn disciolto. Questa deduzione è in accordo soddisfacente con i risultati dei calcoli di speciazione. Per esempio, nel caso del campione BC28 (un'acqua Ca-HCO₃ con pH 7.71), la principale specie acquosa del Mn è lo ione libero (47%), seguito dal carbonato-complesso MnCO₃^o (29%), dal bicarbonato-complesso MnHCO₃⁺ (19%) e dal solfato-complesso MnSO₄^o (5%). Ovviamente si tratta di specie acquose non rappresentate in figura 33, che fa riferimento al sistema Mn-H-O.

3.4.1.7. - Diagramma Eh-pH per il sistema Mo-H-O

Il diagramma Eh-pH per il sistema Mo-H-O (fig. 34) mostra che è attesa la predominanza della specie anionica MoO_4^{2-} nelle condizioni redox (fissate dalla coppia NO_3^{-}/NH_4^{+}) e di acidità delle

Fig. 34 – Diagramma Eh-pH relativo al sistema Mo-H-O per le acque dei CISS 32CT010+32CT030 e 32CT050.
– Eb-pH diagrams for the Mo-H-O system of the waters relative to the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean Water Bodies).

acque campionate, in nessuna delle quali peraltro è stato analizzato il Mo disciolto. Non è escluso che lo ione molibdato possa essere presente, almeno in parte, in forma di complessi acquosi, quali le specie CaMoO₄°, MgMoO₄°, NaMoO₄⁻ e KMoO₄⁻, la cui stabilità è stata investigata da ESSINGTON (1992).

3.4.1.8. - Diagramma Eh-pH per il sistema Ni-H-O

Esaminando il diagramma Eh-pH per il sistema Ni-H-O (fig. 35), si osserva che all'interno del campo di stabilità dell'acqua, il Ni disciolto è presente, praticamente in toto, allo stato bivalente.

Inoltre, la figura 35 mostra che tutti i punti rappresentativi delle acque analizzate giacciono nel campo di predominanza dello ione libero Ni²⁺, mentre l'idrosso-complesso NiOH⁺ diventa la specie prevalente in acque decisamente basiche (pH>9.7 circa a 25°C e 1.013 bar). Differenti sono le indicazioni fornite dai calcoli di speciazione effettuati mediante il programma PHREEQC utilizzando il *database* termodinamico MINTEQ.dat, per i pochi campioni in cui è stato misurato il Ni acquoso. Per esempio, nel caso del campione MAT-P091 (un'acqua Ca-HCO₃ con pH 7.02, assumendo saturazione in calcite), lo ione libero Ni²⁺ rappresenta solamente il 9% del Ni totale disciolto, mentre sono importanti i complessi con gli ioni carbonato e bicarbonato, in particolare lo NiCO₃° (87%) e subordinatamente lo NiHCO₃⁺ (4%). La prevalenza del complesso neutro NiCO₃°, non influenzato da effetti di adsorbimento elettrostatici, determina un comportamento decisamente mobile del Ni acquoso.

3.4.1.9. - Diagramma Eh-pH per il sistema Pb-H-O

In base al diagramma Eh-pH per il sistema Pb-H-O (fig. 36), all'interno del campo di stabilità dell'acqua, il Pb disciolto è presente pressoché totalmente allo stato redox bivalente, ossia in forma di ione libero, per pH< 7.5 circa, e di [PbOH⁺, $Pb(OH)_2^{\circ}$ idrosso-complessi $Pb(OH)_{3}$ a pH superiori. Le acque campionate si dividono quasi equamente tra il campo di predominanza dello ione Pb²⁺ e quello del PbOH⁺. D'altro lato, indicazioni più dettagliate sono ottenibili in base ai calcoli di speciazione eseguiti con il codice PHREEQC (e con il database termodinamico MINTEQ.dat), ipotizzando una concentrazione del Pb disciolto di 5 ppb, nonostante i contenuti di Pb siano risultati inferiori al limite di

Fig. 35 – Diagramma Eh-pH relativo al sistema Ni-H-O per le acque dei CISS 32CT010+32CT030 e 32CT050.
– Eh-pH diagrams for the Ni-H-O system of the waters relative to the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean Water Bodies).

Fig. 36 – Diagramma Eh-pH relativo al sistema Pb-H-O per le acque dei CISS 32CT010+32CT030 e 32CT050.
– Eb-pH diagrams for the Pb-H-O system of the waters relative to the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean Water Bodies).

rilevabilità in tutte le acque analizzate. Ad esempio, per il campione MAT-P091 (già considerato nel precedente paragrafo), lo ione Pb²⁺ costituisce solamente il 3.7% del Pb totale acquoso, mentre prevale il complesso PbCO₃° (86%) e, in minor misura, il PbHCO₃⁺ (8.5%). Poiché il complesso neutro dominante, PbCO₃°, non è influenzato da fenomeni di adsorbimento sulle superficie solide, di natura elettrostatica, è lecito ipotizzare un comportamento mobile del Pb acquoso. Si ricorda che ulteriori informazioni circa l'origine del Pb disciolto nelle acque di falda sono fornite dai rapporti isotopici del Pb (e.g., BROZZO *et alii*, 2008).

3.4.1.10. - Diagramma Eh-pH per il sistema Sb-H-O

Il diagramma Eh-pH per il sistema Sb-H-O (fig. 37) suggerisce che l'antimonio disciolto è presente allo stato pentavalente ed in particolare come ione antimonato, considerando che il pK dell'acido antimonico è prossimo a 2.85 a 25 °C, 1.013 bar (ACCORNERO *et alii*, 2008).

Va detto che i calcoli di speciazione effettuati con il codice PHREEQC (e con il *database* termodinamico MINTEQ.dat) non aggiungono alcun dettaglio a quanto dedotto in base al diagramma Eh-pH di figura 37, in quanto è poco nota la stabilità dei complessi dell'antimonio pentavalente.

3.4.1.11. - Diagramma Eh-pH per il sistema Se-H-O

Esaminando il diagramma Eh-pH per il sistema Se-H-O (fig. 38), si osserva che i campioni in esame si distribuiscono nei campi di prevalenza delle specie acquose del Se tetravalente, in genere in quello dello ione monoidroselenito, HSeO₃⁻, e più raramente in quello dello ione selenito, SeO₃²⁻, non lontano dalle linee di isoattività con lo ione selenato, SeO₄²⁻. Queste deduzioni sono confermate dai calcoli di speciazione eseguiti con il codice PHREEQC (e con il *database* termodinamico MINTEQ.dat), in quanto l'unico complesso acquoso considerato del Se(IV), lo FeHSeO₃²⁺, è totalmente subordinato allo ione HSeO₃⁻.

3.4.1.12. - Diagramma Eh-pH per il sistema Sn-H-O

Il diagramma Eh-pH per il sistema Sn-H-O (fig. 39) mostra che, all'interno del campo di stabilità dell'acqua, la forma stabile dello Sn disciolto è quella tetravalente. Esso è presente come ione li-

Fig. 37 – Diagramma Eh-pH relativo al sistema Sb-H-O per le acque dei CISS 32CT010+32CT030 e 32CT050.
– Eh-pH diagrams for the Sb-H-O system of the waters relative to the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean Water Bodies).

Fig. 38 – Diagramma Eh-pH relativo al sistema Se-H-O per le acque dei CISS 32CT010+32CT030 e 32CT050.
– Eb-pH diagrams for the Se-H-O system of the waters relative the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean Water Bodies).

bero, Sn⁴⁺, solamente in condizioni fortemente acide. Sono invece gli idrosso-complessi Sn(OH)₄° e Sn(OH)₅⁻ a prevalere nel campo di pH tipico delle acque naturali, come si osserva anche nel caso dei CISS 32CT010+32CT030 e 32CT050. I calcoli di speciazione effettuati con il programma PHRE-EQC non aggiungono nessun dettaglio ulteriore, in quanto lo Sn non è presente fra i componenti chimici considerati nei *database* termodinamici MINTEQ.dat, PHREEQC.dat e Wateq4f.dat.

3.4.1.13. - Diagramma Eh-pH per il sistema U-H-O

Come indicato dal diagramma Eh-pH per il sistema U-H-O (fig. 40), la forma redox prevalente di U, nelle acque rappresentative degli acquiferi costieri tra Fiume Cecina e San Vincenzo e tra Fiume Fine e Fiume Cecina e dell'acquifero del Cecina, è quella esavalente, ossia gli idrosso-complessi UO_2OH^+ e $(UO_2)_3OH_7^-$ dello ione uranile, $UO_2^{2^+}$.

Peraltro, i calcoli di speciazione effettuati con il codice PHREEQC (e con il *database* termodinamico MINTEQ.dat) mostrano che i carbonato-complessi prevalgono sugli idrosso-complessi nelle acque di falda Ca-HCO₃. Ad esempio, nel già citato campione MAT-P091, ipotizzando una concentrazione

Fig. 39 – Diagramma Eh-pH relativo al sistema Sn-H-O per le acque dei CISS 32CT010+32CT030 e 32CT050.
– Eh-pH diagrams for the Sn-H-O system of the waters relative the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean Water Bodies).

Fig. 40 – Diagramma Eh-pH relativo al sistema U-H-O per le acque dei CISS 32CT010+32CT030 e 32CT050.
– Eh-pH diagrams for the U-H-O system of the waters relative the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean Water Bodies).

49

di U disciolto di 1 ppb, la specie acquosa prevalente è il carbonato complesso $UO_2(CO_3)_2^{2^-}$ (70% dell'U totale disciolto), seguito dai complessi $UO_2(CO_3)_3^{4^-}$ (27%) e $UO_2CO_3^{\circ}$ (3%).

Decisamente subordinate sono invece le specie acquose in cui U presenta stati formali di ossidazione inferiori (+5, +4 e +3).

3.4.1.14. - Diagramma Eh-pH per il sistema V-H-O

Il diagramma Eh-pH per il sistema V-H-O (fig. 41) mostra che la forma redox dominante del vanadio disciolto è quella pentavalente, con prevalenza dello ione diidrovanadato, $H_2VO_4^-$, per pH < 8.1 e dello ione monoidrovanadato, HVO_4^{-2} , per pH > 8.1. Queste osservazioni sono pienamente confermate dai calcoli di speciazione effettuati con il codice PHREEQC (e con il *database* termodinamico MINTEQ.dat). Per esempio, nel campione MAT-P091 (pH 7.02), già considerato più sopra, ipotizzando una concentrazione di V disciolto di 1 ppb, la specie acquosa dominante è lo ione diidrovanadato (88.5% del V totale disciolto), seguita dallo ione monoidrovanadato (9.9%).

Assolutamente trascurabili sono le concentrazioni delle specie acquose in cui il vanadio presenta stati formali di ossidazione minori (+4, +3 e +2).

Fig. 41 – Diagramma Eh-pH relativo al sistema V-H-O per le acque dei CISS 32CT010+32CT030 e 32CT050.
– Eh-pH diagrams for the V-H-O system of the waters relative to the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean Water Bodies).

3.4.2. - *Diagramma* P_{CO2} - pH

I valori di pH riflettono il bilancio fra l'apporto di sostanze acide alla soluzione acquosa ed il loro consumo, principalmente per interazione acquaroccia. La principale sostanza acida che entra nelle acque naturali è la CO₂ (che si idrata formando acido carbonico, H₂CO₃), seguita dagli acidi organici (es. acidi umici e fulvici). Sia la CO₂ sia gli acidi organici si originano soprattutto nei suoli, attraverso processi di decomposizione di sostanze organiche mediati da batteri. Localmente la CO₂ può avere anche origine profonda, mentre il contributo di CO₂ atmosferica è abitualmente trascurabile. Gli acidi disciolti nelle acque naturali, nel nostro caso essenzialmente H₂CO₃, vengono progressivamente neutralizzati, per interazione con i minerali delle rocce. Quest'ultimi agiscono generalmente da basi (eccettuando i processi di dissoluzione ossidativa dei solfuri metallici). In altri termini, questo processo di neutralizzazione determina, in un primo tempo, la conversione di H₂CO₃ in ione HCO₃ e quella successiva dello ione HCO_3^- in ione CO_3^{2-} , successivamente. Conseguentemente il pH è, almeno in parte, condizionato dal grado di avanzamento delle interazioni acqua-roccia: in particolare valori bassi di pH, dovuti all'incapacità da parte delle rocce di neutralizzare la carica acida acquisita dall'acqua, indicano o una scarsa interazione coi litotipi presenti o la presenza di litotipi poco reattivi.

Nonostante la concentrazione del carbonio inorganico totale disciolto (TDIC) sia un parametro facilmente misurabile sul terreno e di estremo interesse (CIONI *et alii*, 2007), per le acque dell'area in oggetto non sono disponibili dati analitici relativi al TDIC, che è stato pertanto ottenuto mediante calcoli di speciazione effettuati con il codice PHREEQC, essenzialmente in base ai dati di pH ed alcalinità.

Il diagramma P_{CO_2} - pH relativo all'area in esame (fig. 42), mostra che il pH delle acque campionate, indipendentemente dalla facies chimica di appartenenza, è generalmente compreso fra 6.5 e 8.5. Ovviamente, il logaritmo della P_{CO_2} è fortemente correlato con il pH ed in modo inverso, poiché, prescindendo da effetti di complessazione in fase acquosa, le due variabili sono legate dalla seguente equazione:

$$\log P_{CO_2} = -pH + \log m_{HCO_3} + \log \gamma_{HCO_3} + \log \gamma_{HCO_3} + \log (K_{H/K_{H_2CO_3}})$$
(6)

dove K_H indica la costante di Henry della CO_2 in atm/(mol/kg) e $K_{H_2CO_3}$ la costante di dissociazione dell'acido carbonico. In effetti, la notevole correlazione fra pH e log P_{CO_2} è ben evidente in fi-

Fig. 42 – Diagramma di correlazione P_{CO2} - pH per le acque dei CISS 32CT010+32CT030 e 32CT050. Le curve di iso-TDIC sono state calcolate mediante la relazione semplificata (7).
– Correlation plot between P_{CO2}-pH for the waters relative to the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean Water Bodies). Reference iso-TDIC lines are calculated by simplify relations (7).

gura 42, dalla quale si evince che la P_{CO_2} delle acque in esame è generalmente compresa, a parte poche eccezioni, fra 10⁻³ e 10⁻¹ bar. Si tratta di valori tipicamente controllati dai processi di decomposizione delle sostanze organiche presenti nei suoli. Fra le acque anomale, sono degne di nota:

(i) il campione 133, di composizione Na-Cl ed alta concentrazione di Cl (13490 mg/L), caratterizzato da pH anomalmente basso, 5.56, ed alta, 0.48 bar;

(ii) il campione P245, pure di composizione Na-Cl ma con basso contenuto di Cl (113 mg/L solamente), con alto pH, 9.48, e bassa P_{CO_2} , 2.4 × 10^{-5} bar;

(iii) i due campioni Ca01 e Ca02, entrambi di composizione Ca-HCO₃, caratterizzati da bassi pH (6.0-6.2) ed alta P_{CO_2} (0.23-0.39 bar).

In figura 42 sono riportate anche le curve di iso-TDIC calcolate mediante la seguente relazione semplificata: $\mathbf{p} = \frac{\mathbf{m}_{TDIC} \cdot \mathbf{K}_{H}}{\mathbf{K}_{TDIC} \cdot \mathbf{K}_{H}}$

facilmente desumibile dagli equilibri dei carbonati, dove K_{HCO_3} - indica la costante di dissociazione dello ione bicarbonato. Escludendo i quattro campioni anomali sopra citati e pochi altri, la diminuzione di P_{CO_2} ed il concomitante aumento di pH non sono accompagnate da variazioni significative del TDIC, che è generalmente dell'ordine di alcune centinaia di mg HCO_3/L. Ciò suggerisce che la conversione dello H₂CO₃ in ioni HCO₃⁻ e CO₃²⁻ avviene essenzialmente in condizioni di sistema chiuso rispetto alla CO₂.

3.4.3. - L'indice di saturazione

3.4.3.1. - Definizione dell'indice di saturazione, considerazioni termodinamiche, cinetiche ed operative

La dissoluzione di una qualunque fase solida da parte di una certa soluzione acquosa può avvenire solamente se quest'ultima è sottosatura, mentre se la soluzione acquosa si trova in condizioni di sovrassaturazione rispetto alla fase solida considerata, quest'ultima può precipitare. È pertanto importante valutare il grado di equilibrio (ossia lo stato di saturazione) della soluzione acquosa nei confronti delle fasi minerali di interesse.

Questa valutazione può essere effettuata, in termini di energia, mediante l'affinità termodinamica, A_i , che è definita dalla seguente relazione, in riferimento alla reazione di dissoluzione di un generico minerale j, che avviene a pressione e temperatura costanti:

$$A_{j} = 2.303 \cdot RT \log \left(\frac{Q_{j}}{K_{j}}\right) \quad (8)$$

dove R è la costante universale dei gas, T la temperatura assoluta (in K), K; è la costante di equilibrio della reazione, ovvero il prodotto di solubilità, trattandosi della reazione di dissoluzione di una fase solida, mentre Q_i è il corrispondente prodotto di attività. In alternativa, si può utilizzare, al posto dell'affinità termodinamica, l'indice di saturazione $SI_i = \log (Q_i/K_i)$, che è una grandezza adimensionale. Quando SI $_{i} = 0$ oppure $A_{i} = 0$ si ha perfetto equilibrio tra la fase solida in questione e la soluzione acquosa, ossia la soluzione acquosa è satura rispetto alla fase solida. Valori negativi di SI; $(Q_i/K_i < 1)$ e A_i sono indicativi di condizioni di sottosáturazione, mentre valori positivi di SI; $(Q_i/K_i > 1)$ e A_i sono indicativi di condizioni di sovrassaturazione della soluzione acquosa rispetto alla fase solida.

Va anche ricordato che l'affinità termodinamica (o l'indice di saturazione) influisce considerevolmente sulla velocità complessiva, r_i, dei processi di dissoluzione/precipitazione per la generica fase solida considerata, nel caso in cui tali processi siano controllati da meccanismi di superficie (e non di trasporto in soluzione acquosa). Ciò è espresso dalla seguente equazione, che è basata sulla Teoria degli Stati di Transizione (OELKERS, 2001):

$$\mathbf{r}_{j} = \mathbf{r}_{+,j} \cdot \left[1 - \exp\left(\frac{\mathbf{A}_{j}}{\sigma \mathbf{RT}}\right) \right]. \tag{9}$$

In questa relazione, $r_{+,i}$ è la velocità della rea-

zione di dissoluzione (*forward*) per unità di superficie, e σ è il rapporto fra la velocità di decomposizione del complesso attivato (ossia della reazione microscopica) e la velocità del processo macroscopico; σ è anche noto come numero stechiometrico di Temkin. Per $\sigma = 1$ e considerando la relazione (8), l'equazione (9) si riduce a:

$$\mathbf{r}_{j} = \mathbf{r}_{+,j} \cdot \left(1 - \frac{\mathbf{Q}_{j}}{\mathbf{K}_{j}}\right) \,. \tag{10}$$

Accettando la convenzione che la velocità $r_{+,j}$ della reazione di dissoluzione (forward) sia positiva', r risulta positivo in regime di dissoluzione e negativo in regime di precipitazione, mentre diventa zero in condizione di equilibrio (saturazione), come espresso dalle relazioni (9) e (10). La variazione del rapporto $r_j/r_{+,j}$ con l'affinità termodinamica è mostrata in figura 43. Per valori di affinità termodinamica inferiori a circa -8000 J mole⁻¹, il rapporto $r_i/r_{+,i}$ non devia significativamente dal valore unitario,"indicando che la velocità del processo di dissoluzione è virtualmente indipendente dalla affinità termodinamica in questa regione (il cosiddetto plateau di dissoluzione), ossia in condizioni di notevole lontananza dalla condizione di equilibrio. Avvicinandosi a quest'ultima, ossia per valori della affinità termodinamica compresi fra $-8000 \text{ e } 0 \text{ J mole}^{-1}$, il rapporto $r_j/r_{+,j}$ diminuisce sensibilmente e, all'equilibrio, valé la séguente condizione $r_j = r_{+,j} - r_{-,j} = 0$. Nella regione di preci-pitazione, il rapporto $r_j/r_{+,j}$ continua a diminuire notevolmente al crescere della affinità termodina-

Fig. 43 – Variazione del rapporto r/r₊ con la affinità termodinamica (da OELKERS, 2001).
Variations of r/r+ ratio with the thermodynamics affinity (by OELKERS, 2001).

mica, indicando che anche la velocità del processo di precipitazione è fortemente influenzata da questo parametro. Come sottolineato da OELKERS (1996), il diagramma della figura 43 suggerisce anche che le velocità dei processi di dissoluzione e precipitazione misurati in laboratorio, in condizioni di estrema lontananza dall'equilibrio, possono deviare significativamente dalle velocità che si stabiliscono in prossimità dell'equilibrio, che sembrano essere tipici della maggior parte dei sistemi naturali.

Per i 367 campioni rappresentativi dei CISS regionali 32CT010 "Acquifero costiero tra Fiume Cecina e San Vincenzo", 32CT030 "Acquifero costiero tra Fiume Fine e Fiume Cecina" e 32CT050 "Acquifero del Cecina", i valori dell'indice di saturazione rispetto a fasi minerali di interesse (quali calcite, dolomite, albite, K-feldspato, anortite, crisotilo, Mg-clorite ed anidrite) sono stati calcolati mediante il codice EQ3 (WOLERY & JAREK, 2003), utilizzando il *database* CMP.

A tal fine, si è ipotizzato che l'attività dello ione Al^{3+} sia fissata dalla saturazione con la caolinite; questo è un vincolo ragionevole in base alle informazioni desunte dai diagrammi di attività (vedi sezione 3.4.4). In mancanza del dato di concentrazione della SiO₂ disciolta, questo parametro è stato fissato assumendo saturazione rispetto al calcedonio.

I risultati ottenuti sono generalmente visualizzati mediante diagrammi di correlazione fra i valori di indice di saturazione ed il pH. La scelta di questa variabile di riferimento è dettata dalla forte dipendenza dal pH dell'affinità termodinamica (e quindi dell'indice di saturazione), per differenti gruppi di minerali, fra cui i carbonati ed i silicati. In effetti, le reazioni di dissoluzione di queste fasi minerali sono governate, in larga misura, dall'attività dello ione H⁺. Per tenere conto delle incertezze insite nel calcolo, consideriamo sottosature le acque con SI < -0.2, sature quelle con -0.2 < SI < +0.2 e sovrassature quelle con SI > +0.2.

3.4.3.2. - Diagramma pH – indice di saturazione rispetto alla calcite

Nel diagramma di correlazione fra pH ed indice di saturazione rispetto alla calcite (fig. 44) si osserva che la condizione di sovrassaturazione rispetto alla calcite è molto comune negli acquiferi considerati, in quanto le acque sovrassature rappresentano il 63% del totale, quelle sature il 33% e quelle sottosature solo il 4%. L'elevato numero di acque in condizioni di equilibrio o sovrassaturazione rispetto alla calcite è dovuto sia alla diffusione di questo minerale, che è molto comune negli acquiferi in oggetto, ove è presente anche in note-

Fig. 44 – Diagramma di correlazione fra il pH e l'indice di saturazione rispetto alla calcite per le acque dei CISS 32CT010+32CT030 e 32CT050. Le linee tratteggiate limitano il campo delle acque sature, caratterizzate da -0.2 < SI < +0.2. A tratto continuo viene rappresentata la linea di regressione per le 295 acque appartenenti alla facies Ca-HCO₂ e Ca(Mo)HCO₂.

le 295 acque appartenenti alla facies Ca-HCO₃ e Ca(Mg)HCO₃, – Binary diagram between saturation index and pH with respect to calcite for the waters relative to the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean Water Bodies). The dashed lines define the field of the calcite-saturated waters at -0.2 < SI < +0.2. The solid straight line refers to the regression line for the HCO₃-Ca and HCO₃-Ca(Mg) waters.

voli quantità, sia alla elevata cinetica di dissoluzione della calcite. In particolare, numerose sono le acque che hanno valore dell'SI superiore a 0.3, limite al di là del quale la cinetica del processo di precipitazione della calcite diventa molto rapida (APPELO & POSTMA, 1996).

In figura 44, la maggior parte dei campioni disponibili si distribuisce in un unico allineamento, dal quale si allontanano poche acque con caratteristiche chimiche peculiari (133, 93, 258, P245, BC37).

Per spiegare la dipendenza dal pH dell'indice di saturazione rispetto alla calcite per le acque in esame (facendo riferimento alle acque di composizione Ca-HCO₃ e Ca(Mg)-HCO₃, che costituiscono il gruppo più numeroso), possiamo scrivere la reazione di dissoluzione della calcite nelle due forme seguenti:

$$CaCO_3 + H^+ = Ca^{2+} + HCO_3^-$$
 (11)

o
$$CaCO_3 + 2H^+ = Ca^{2+} + H_2CO_3$$
. (12)

Conseguentemente, la dipendenza SI_{calcite}-pH può essere espressa come segue:

$$SI_{calcite} = pH + \log a_{Ca^{2+}} + \log a_{HCO_3^{-}} - \log K_{(5)}$$
(13)

oppure

$$SI_{calcite} = 2 \cdot pH + \log a_{Ca^{2+}} + \log a_{H_2CO_3} - \log K_{(6)}.$$
(14)

La pendenza teorica della relazione $SI_{calcite} - pH$ risulta 1 per la reazione (11) e 2 per la (12). Il valore osservato di 0.85, per le 295 acque di composizione Ca-HCO₃ e Ca(Mg)-HCO₃, è prossimo alla pendenza teorica della prima reazione, che pertanto sembra essere quella più idonea per descrivere il processo di dissoluzione (precipitazione) della calcite.

Da ultimo, va ricordato che per il 14% dei campioni considerati, per i quali non era noto il pH, questo parametro è stato calcolato imponendo la condizione di saturazione in calcite. È stato verificato che includere o meno queste acque, non comporta differenze significative nelle considerazioni precedenti.

3.4.3.3. - Diagramma pH – indice di saturazione rispetto alla dolomite

Il diagramma di correlazione $SI_{dolomite}$ - pH (fig. 45) mostra che sono molto numerose le acque considerate sono prevalentemente sovrassature (97% del totale), mentre quelle sature (1%) e quelle sottosature (2%) risultano essere subordinate.

In figura 45, la maggior parte dei campioni disponibili si distribuisce in un unico allineamento, dal quale si allontanano poche acque con caratteristiche chimiche particolari, già evidenziate nella

Fig. 45 – Diagramma di correlazione fra il pH e l'indice di saturazione rispetto alla dolomite per le acque dei CISS 32CT010+32CT030 e 32CT050. Le linee tratteggiate limitano il campo delle acque sature, caratterizzate da 0.2 < SI < +0.2. A tratto continuo viene rappresentata la linea di regressione per le 295 acque appartenenti alla facies Ca-HCO₃ e Ca(Mg)HCO₃. – Binary diagram between saturation index and pH respect to dolomite for the waters relative to the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean Water Bodies). The dashed lines define the field of the dolomite-saturate waters at -0.2 < SI < +0.2. The solid straight line refers to the regression line for the HCO₃-Ca and HCO₃-Ca(Mg) waters.

precedente sezione (133, 93, 258, P245, BC37). Da notare inoltre che la maggior parte delle acque appartenenti alla facies Na-Cl (escludendo alcuni campioni poveri di Mg, come P245 e 133) mostrano valori di SI_{dolomite} superiori a quelli delle altre acque, a parità di pH, essendo più ricche di Mg. Anche nel caso della dolomite, è utile esaminare la dipendenza dal pH dell'indice di saturazione, per le acque di composizione Ca-HCO₃ e Ca(Mg)-HCO₃; la reazione di dissoluzione della dolomite può essere scritta nei due modi seguenti:

$$CaMg(CO_3)_2 + 2H^+ = Ca^{2+} + Mg^{2+} + 2HCO_3^-$$
 (15)

o
$$CaMg(CO_3)_2 + 4H^+ = Ca^{2+} + Mg^{2+} + 2H_2CO_3$$
. (16)

Conseguentemente, la dipendenza SI_{dolomite}-pH può essere espressa come segue:

$$SI_{dolomite} = 2 \cdot pH + \log a_{Ca^{2+}} + \log a_{Mg^{2+}} + 2 \cdot \log a_{HCO_3} - \log K_{(9)}$$
(17)

oppure

$$SI_{dolomite} = 4 \cdot pH + \log a_{Ca^{2+}} + \log a_{Mg^{2+}} + 2 \cdot \log a_{H_2CO_3} - \log K_{(10)}.$$
(18)

Le equazioni (17) e (18) indicano che la pendenza teorica della relazione $SI_{dolomite} - pH \ e 2$ per la reazione (15) e 4 per la (16). Il valore osservato di 1.78, per le 295 acque appartenenti alla facies Ca-HCO₃ - Ca(Mg)-HCO₃, è più vicino alla pendenza attesa per la reazione (15), che di conseguenza è quella più appropriata per descrivere i fenomeni di dissoluzione e precipitazione della dolomite.

3.4.3.4. - Diagramma pH – indice di saturazione rispetto alla albite

Nel diagramma di correlazione SI_{albite} - pH (fig. 46) si osserva che la maggior parte delle acque prelevate (93%) sono sottosature rispetto al feldspato sodico, solamente il 4% e il 3% sono rispettivamente sature e sovrassature. In particolare, le 295 acque di composizione Ca-HCO₃ e Ca(Mg)-HCO₃ definiscono la retta di regressione seguente

$$(R^2 = 0.754): \ SI_{albite} = 0.9168 \times pH - 8.004, \quad (19)$$

la cui pendenza si approssima a quella del valore teorico (=1) atteso per la reazione di dissoluzione incongruente della albite accompagnata da precipitazione di caolinite:

$$NaAlSi_{3}O_{8} + H^{+} + 0.5 H_{2}O = Na^{+} + 2 SiO_{2(aq)} + 0.5 Al_{2}Si_{2}O_{5}(OH)_{4}.$$
(20)
(caolinite)

Questo valore teorico della pendenza è definito

Ince tratteggiate limitano il campo delle acque sature, caratterizzate da -0.2
 SI < +0.2. A tratto continuo viene rappresentata la linea di regressione per le 295 acque appartenenti alla facies Ca-HCO₃ e Ca(Mg)HCO₃.
 Binary diagram between saturation index and pH respect to albite for the waters relative to the 32CT010+32CT030 and 32CT050 SSWB (Significant Subternanean Water Bodies). The dashed lines define the field of the albite-saturated waters at -0.2 < SI < +0.2. The solid straight line refers to the regression line for the HCO₃-Ca and HCO₃-Ca(Mg) waters.

spetto alla albite per le acque dei CISS 32CT010+32CT030 e 32CT050. Le

dalla equazione seguente:

$$SI_{albite} = pH + \log_{Na^+} + 2 \cdot \log_{SiO_{2(ac)}} - \log K_{(14)}.$$
(21)

Le acque Na-Cl mostrano valori di SI_{albite} nettamente superiori a quelli delle acque di composizione Ca-HCO₃ e Ca(Mg)-HCO₃, a parità di pH, essendo più ricche di Na; in effetti, i contenuti medi di questo elemento sono $83 \pm 40 (1\sigma) \text{ mg/L}$ per le acque Ca-HCO₃ e Ca(Mg)-HCO₃ e 3880 ± 4104 (1 σ) mg/L per le acque Na-Cl. Tuttavia, il limitato numero di acque Na-Cl e l'elevata dispersione delle concentrazioni di Na in questa classe idrochimica non permettono di definire una retta di regressione SI_{albite} - pH significativa. Considerazioni similari valgono per le acque appartenenti alla facies Ca-SO₄.

3.4.3.5. - Diagramma pH – indice di saturazione rispetto al K-feldspato

Il diagramma di correlazione fra il pH e l'indice di saturazione rispetto al feldspato potassico (fig. 47) mostra che nell'insieme, i campioni appaiono traslati verso l'alto (ossia verso la condizione di equilibrio), in confronto a quanto osservato nel caso dell'albite (fig. 46). In effetti, poco più della metà dei campioni (il 53% del totale) si trova in

BC37

BC31 BC40

BC100 SW

O¹³⁵

BC21

Acque Ca-HCO3 e Ca(Mg)-HCO: SI = 1.009 * pH - 7.090

N = 294

 $R^2 = 0.734$

3

2

Fig. 47 – Diagramma di correlazione fra il pH e l'indice di saturazione rispetto al K-feldspato per le acque dei CISS 32CT010+32CT030 e 32CT050. Le linee tratteggiate limitano il campo delle acque sature, caratterizzate da 0.2 < SI < +0.2. A tratto continuo viene rappresentata la linea di regressione per le 295 acque appartenenti alla facies Ca-HCO3 e Ca(Mg)HCO3 per le quali è nota la concentrazione di K.

Binary diagram between saturation index and pH respect to K-feldspar for the waters relative to the 32CT010+32CT030 and 32CT050 SSWB (Significant Subtervanean Water Bodies). The dashed lines define the field of the K-feldspar-saturated waters at -0.2 < SI < +0.2. The solid straight line refers to the regression line for the HCO₃-Ca and HCO₃-Ca(Mg) waters.

condizioni di sovrassaturazione rispetto a questa fase solida, il 32% sono saturi, mentre solamente il 15% sono sottosaturi. Per inciso, questa maggiore prossimità alla condizione di equilibrio (se non addirittura il raggiungimento di condizioni di sovrassaturazione) con il K-feldspato rispetto alla albite è generalmente osservata nelle acque naturali che circolano in prossimità della superficie terrestre e spiega la maggiore durabilità del feldspato potassico rispetto a quello sodico, spesso riscontrata nei suoli (GAMBARDELLA et alii, 2005).

Nello specifico, i 294 campioni appartenenti alle facies Ca-HCO₃ e Ca(Mg)-HCO₃ (per il campione 17 non è disponibile il dato analitico relativo alla concentrazione di K disciolto) individuano la seguente retta di regressione ($\mathbb{R}^2 = 0.734$):

$$SI_{K-feldspato} = 1.009 \times pH - 7.090,$$
 (22)

la cui pendenza è prossima al valore unitario atteso in base alla reazione di dissoluzione incongruente del K-feldspato accompagnata da precipitazione di caolinite:

$$\begin{array}{c} \text{KAlSi}_{3}\text{O}_{8} + \text{H}^{+} + 0.5 \text{ H}_{2}\text{O} = \text{K}^{+} + 2 \text{ SiO}_{2(\text{aq})} + \\ \text{(K-feldspato)} & 0.5 \text{ Al}_{2}\text{Si}_{2}\text{O}_{5}(\text{OH})_{4}. \\ \text{(caolinite)} \end{array}$$
(23)

Il valore unitario teorico della pendenza è definito

dalla relazione seguente:

$$SI_{K-feldspato} = pH + loga_{K^+} + 2 \cdot loga_{SiO_{2(ac)}} - logK_{(17)}$$
. (24)

Anche in figura 47, analogamente a quanto osservato in figura 46, i campioni appartenenti alla facies Na-Cl sono caratterizzati da valori dell'indice di saturazione rispetto al K-feldspato maggiori di quelli dei campioni Ca-HCO₃ e Ca(Mg)-HCO₃, a parità di pH; ciò è dovuto ai maggiori contenuti di K nei primi (204 \pm 244 mg/L) rispetto ai secondi (4.4 \pm 6.6 mg/L).

3.4.3.6. - Diagramma pH – indice di saturazione rispetto all'anortite

Il diagramma di correlazione fra il pH e l'indice di saturazione rispetto all'anortite (fig. 48) mostra che tutti i campioni d'acqua sono fortemente sottosaturi nei confronti di questa fase solida. Questa condizione, peraltro tipica delle acque naturali poco profonde, spiega la minore durabilità del plagioclasio calcico rispetto a quello sodico, spesso riscontrata nei suoli (MARINI, 2007).

In particolare, le 295 acque di composizione Ca-HCO₃ e Ca(Mg)-HCO₃ si distribuiscono attorno alla seguente retta di regressione (R^2 = 0.949):

$$SI_{anortite} = 1.861 \times pH - 22.210,$$
 (25)

Fig. 48 – Diagramma di correlazione fra il pH e l'indice di saturazione ri-spetto all'anortite per le acque dei CISS 32CT010+32CT030 e 32CT050. Le linee tratteggiate limitano il campo delle acque sature, caratterizzate da -0.2 < SI < +0.2. A tratto continuo viene rappresentata la linea di regressione per le 295 acque appartenenti alla facies Ca-HCO₃ e Ca(Mg)HCO₃.

Binary diagram between saturation index and pH respect to anorthite for the waters relative to the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean Water Bodies). The dashed lines define the field of the anorthite-saturated waters at -0.2 < SI < +0.2. The solid straight line refers to the regression line for the HCO₃-Ca and HCO 3-Ca(Mg) waters.

il cui *slope* è vicino al valore 2, atteso per la dissoluzione incongruente del plagioclasio calcico accompagnata da precipitazione di caolinite:

$$\begin{array}{c} CaAl_2Si_2O_8 + 2H^+ + H_2O = Ca^{2+} + Al_2Si_2O_5(OH)_{4,} \\ \text{(anortite)} & \text{(caolinite)} \end{array}$$

Questo valore dello *slope* è definito dalla relazione seguente: $SI_{anortite} = 2 \cdot pH + \log_{Ca^{2+}} - \log_{Ca^{2$

L'alto valore dell' \mathbb{R}^2 , ossia la scarsa dispersione dei campioni di composizione Ca-HCO₃ e Ca(Mg)-HCO₃ attorno alla retta di regressione (eq. 25), è dovuto alla dipendenza dello SI_{anortite} solamente dal pH e dalla attività dello ione Ca²⁺ (vedi eq. 27, in linea con quanto osservato nel paragrafo 3.2), mentre gli indici di saturazione di albite e K-feldspato dipendono anche dalla attività della silice, fatto che induce un maggior *scattering* dei dati.

3.4.3.7. - Diagrammi pH – indice di saturazione rispetto a crisotilo e clinocloro

Nei diagrammi di figura 49 viene mostrata la dipendenza dal pH dell'indice di saturazione di due fillosilicati magnesiaci: crisotilo e Mg-clorite (clinocloro con spaziatura basale di 14Å). Entrambi sono presenti entro le rocce ultramafiche e la seconda fase solida, come abbiamo visto nel paragrafo 3.4.3, sembra essere la principale sorgente del Cr disciolto nelle acque dell'area in esame.

Nell'insieme, prevalgono le acque sottosature sia rispetto al crisotilo (87%) che alla Mg-clorite (92%); le acque sature rappresentano rispettivamente il 3% e l'1%, mentre quelle sovrassature il 10% ed il 7%.

È interessante sottolineare che la maggior parte delle acque sovrassature in crisotilo e Mg-clorite, è caratterizzata da valori di pH > 8.0. Pertanto, la dissoluzione di queste fasi, e conseguentemente il rilascio del Cr dalla Mg-clorite, non sono possibili nelle acque con valori di pH superiori a questo limite. Il *plateau* di dissoluzione peraltro si localizza a valori di SI inferiori a circa -3.2 (a 25 °C), ossia a pH inferiori a 7.5, nel caso del crisotilo, e 7.8 per il clinocloro.

Le 295 acque appartenenti alle facies idrochimiche Ca-HCO₃ e Ca(Mg)-HCO₃ sono collocate attorno alle rette di regressione seguenti:

$$SI_{crisotilo} = 5.933 \times pH - 47.68, (R^2 = 0.9392)$$
 (28)

e
SI_{Mg-clorite}=9.822×pH-80.03, (
$$R^2$$
=0.9398) (29)

le cui pendenze sono prossime rispettivamente ai valori, 6 e 10, attesi per le reazioni di dissoluzione dei due minerali in oggetto:

$$Mg_{3}Si_{2}O_{5}(OH)_{4}+6H^{+} = 3 Mg^{2+} + 2 SiO_{2(aq)}+5 H_{2}O_{(crisotilo)}$$
(30)

Fig. 49 – Diagrammi di correlazione fra il pH e l'indice di saturazione rispetto al crisotilo e alla clorite per le acque dei CISS 32CT010+32CT030 e 32CT050.
 Le linee tratteggiate limitano il campo delle acque sature, caratterizzate da -0.2 < SI < +0.2. A tratto continuo viene rappresentata la linea di regressione per le 295 acque appartenenti alla facies Ca-HCO₃ e Ca(Mg)HCO₃.
 – Binary diagram between saturation index and pH respect to chlorite and chrysotile for the waters relative to the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterra-

- Binary diagram between saturation index and pH respect to chlorite and chrysotile for the waters relative to the 32C1010+32C1030 and 32C1050 SSW B (Significant Subterranean Water Bodies). The dashed lines define the field of the chlorite-and chrysotile-saturated waters at -0.2 < SI < +0.2. The solid straight line refers to the regression line for the HCO₃-Ca and HCO₃-Ca(Mg) waters.

$$\begin{array}{c} Mg_{5}Al_{2}Si_{3}O_{10}(OH)_{8} + 10 \text{ H}^{+} = 5 \text{ Mg}^{2+} + SiO_{2(aq)} \\ Mg\text{-clorite}) + Al_{2}Si_{2}O_{5}(OH)_{4} + 7 \text{ H}_{2}O \\ \text{(caolinite)} \end{array}$$
(31)

Questi valori dello *slope* sono dettati dalle relazioni seguenti:

$$SI_{crisotilo} = 6 \cdot pH + 3 \cdot \log a_{Mg^{2+}} + 2 \cdot \log a_{SiO_2(aq)} - \log K_{(24)}.$$
(32)

$$SI_{Mg-clorite} = 10 \cdot pH + 5 \cdot \log a_{Mg^{2+}} + \log a_{SiO_2(aq)} - \log K_{(25)}.$$
(33)

3.4.3.8. - Diagramma SO_4 – indice di saturazione rispetto a gesso ed anidrite

Poiché l'indice di saturazione rispetto a gesso (CaSO₄ · 2H₂O) ed anidrite (CaSO₄) è fortemente condizionato dalle concentrazioni degli ioni calcio e solfato, è conveniente utilizzare una di esse come variabile di riferimento. D'altro lato, non vi è alcuna correlazione fra l'indice di saturazione rispetto a gesso ed anidrite ed il pH, poiché lo ione H⁺ non è implicato nelle reazioni di dissoluzione di questi minerali.

I diagrammi di correlazione $SI_{gesso} - SO_4$ e $SI_{anidrite} - SO_4$ (fig. 50) mostrano che vi è una differenza pressoché costante fra i due indici di saturazione, di circa 0.25 unità. Ciò dipende dalla somiglianza fra le due variabili, che sono definite dalle relazioni:

$$SI_{gesso} = loga_{Ca^{2+}} + loga_{SO_{4}^{2-}} + 2loga_{H_{2}O} - logK_{(36)}$$
 (34)

$$SI_{anidrite} = \log a_{Ca^{2+}} + \log a_{SO_4^{2-}} - \log K_{(37)}$$
 (35)

in riferimento alle reazioni di dissoluzione:

$$CaSO_4 \cdot 2H_2O = Ca^{2+} + SO_4^{2-} + 2H_2O$$
 (36)
(gesso)

$$CaSO_4 = Ca^{2+} + SO_4^{2-}.$$
 (37)
(anidrite)

Tutte le acque provenienti dall'area in oggetto sono decisamente sottosature rispetto a gesso ed anidrite, ad eccezione dei campioni 133 (entrambi i prelievi) e BC37, che risultano saturi rispetto al gesso e debolmente sottosaturi rispetto alla anidrite. Il primo è ubicato nei pressi della linea di costa, mentre il secondo è situato in vicinanza della confluenza fra il Botro Santa Marta ed il Fiume Cecina. Per i campioni 133 e BC 37, la saturazione rispetto al gesso è da mettere in relazione alle alte concentrazioni di SO₄ (3250 mg/L per il primo, 1920 mg/L per il secondo) e di Ca (1660 mg/L per il primo, 979 mg/L per il secondo). Per il campione 133, il raggiungimento della condizione di equilibrio con il gesso fornisce un'ulteriore indicazione (come i bassi contenuti di Mg) che si possa trattare di un'acqua marina diluita o salmastra che ha subito un fenomeno di riscaldamento. In effetti l'acqua di mare, che è sottosatura rispetto a gesso ed anidrite (come evidenziato anche in figura 50), raggiunge la saturazione rispetto a queste fasi solide per riscaldamento a circa 100-120°C (MARINI et alii, 2002).

Fig. 50 – Diagramma di correlazione fra il pH e l'indice di saturazione rispetto al gesso per le acque dei CISS 32CT010+32CT030 e 32CT050. Le linee tratteggiate limitano il campo delle acque sature, caratterizzate da -0.2 < SI < +0.2.
 – Binary diagram between saturation index and pH respect to gypsum for the waters relative to The 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean Water Bodies). The dashed lines define the field of the gypsum-saturated waters at -0.2 < SI < +0.2.

Per tutte le acque in cui il Mn disciolto è rilevabile, sono stati calcolati gli indici di saturazione rispetto alla pirolusite (MnO₂), in cui il Mn è presente in toto allo stato tetravalente, ed alla hausmannite [Mn(II)Mn(III)₂O₄], in cui il Mn è per 1/3 bivalente e per 2/3 trivalente. Pirolusite ed hausmannite sono due dei numerosi ossidi di Mn potenzialmente presenti nei circuiti idrici relativamente prossimi alla superficie. L'indice di saturazione rispetto alla pirolusite ed alla hausmannite risulta essere correlato positivamente con il pH (figg. 51a,c) e negativamente con l'Eh (figg. 51b,d). Negli intervalli di pH ed Eh considerati, tutte le

Fig. 51 – Diagrammi di correlazione fra l'indice di saturazione rispetto alla pirolusite e (a) pH e (b) Eh e fra l'indice di saturazione rispetto alla hausmannite e (c) pH e (d) Eh per le acque dei CISS 32CT010+32CT030 e 32CT050. Le linee tratteggiate limitano il campo delle acque sature, caratterizzate da -0.2 < SI < +0.2.

- Binary diagram between saturation index respect to pyrolusite for pH (a) and Eb (b) and between saturation index respect to bausmannite for pH (c) and Eb (d) for the waters relative to the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean Water Bodies). The dashed lines define the field of the bausmannite-saturated waters at -0.2 < SI < +0.2.

acque naturali in oggetto sono fortemente sottosature rispetto ai due ossidi di Mn presi in considerazione. Conseguentemente, queste soluzioni acquose sono in grado di disciogliere sia la pirolusite che la hausmannite e di acquisire Mn. Ciò potrebbe avere importanti implicazioni per la ossidazione del Cr(III) a Cr(VI) governata dal Mn allo stato tetravalente e trivalente, processo che è stato oggetto di indagini approfondite (RAPHAEL & BOULIS, 1982; EARY & RAI, 1987; SALEH *et alii*, 1989; JOHNSON & XYLA, 1991; FENDORF & ZASOSKI, 1992; BÖHM & FISCHER, 2004).

3.4.4. - Diagrammi di attività

Per completezza d'informazione si riportano anche i diagrammi di attività per i sistemi CaO-SiO₂-Al₂O₃-H₂O (fig. 52), MgO-SiO₂-Al₂O₃-H₂O (fig. 53), Na₂O-SiO₂-Al₂O₃-H₂O (fig. 54) e K₂O-SiO₂-Al₂O₃-H₂O (fig. 55), che sono stati costruiti ipotizzando conservazione di alluminio nelle fasi solide. Quest'ultima è un'ipotesi ragionevole, in quanto la concentrazione di Al disciolto nelle acque naturali è normalmente molto piccola, escludendo le acque fortemente acide e quelle marcatamente basiche, peraltro non comprese nel gruppo in esame. Mediante i diagrammi di attività delle figure 52 - 55 si può verificare, in maniera indipendente, la condizione di saturazione rispetto alla

Fig. 52 – Diagramma di attività per il sistema CaO-SiO₂-Al₂O₃-H₂O in cui sono rappresentate le acque dei CISS 32CT010+32CT030 e 32CT050. I limiti di stabilità per le fasi solide e le linee di saturazione rispetto a minerali di interesse si riferiscono a 15 °C, 1.013 bar.

– Activity plot for the systems CaO-SiO₂-Al₂O₃-H₂O for the waters relative to the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean Water Bodies). The saturation lines for the considered minerals refer to 15 °C and 1.013 bar.

Fig. 53 – Diagramma di attività per il sistema MgO-SiO₂-Al₂O₂-H₂O, in cui sono rappresentate le acque dei CISS 32CT010+32CT030 e 32CT050. I limiti di stabilità per le fasi solide e le linee di saturazione rispetto a minerali di interesse si riferiscono a 15°C, 1.013 bar.

– Activity plot for the systems MgO-SiO₂-Al₂O₃-H₂O for the waters relative to the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean Water Bodies). The saturation lines for the considered minerals refer to 15 °C and 1.013 bar.

Fig. 54 – Diagramma di attività per il sistema Na₂O-SiO₂-Al₂O₃-H₂O, in cui sono rappresentate le acque dei CISS 32CT010+32CT030 e 32CT050.
 I limiti di stabilità per le fasi solide e le linee di saturazione rispetto a minerali di interesse si riferiscono a 15°C, 1.013 bar.

– Activity plot for the systems Na 20-SiO2-Al2O3-H2O for the waters relative to the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean Water Bodies). The saturation lines for the considered minerals refer to 15 °C and 1.013 bar.

caolinite (come ipotizzato per effettuare i calcoli di saturazione rispetto agli allumino-silicati, vedi sopra) o ad altre fasi solide contenenti Al.

Fig. 55 – Diagramma di attività per il sistema K2O-SiO2-Al2O3-H2O, in cui sono rappresentate le acque dei CISS 32CT010+32CT030 e 32CT050. I limiti di stabilità per le fasi solide e le linee di saturazione rispetto a minerali di Interests solution of the distribution of the systems k20-SiO₂-Al₂O₃-H₂O for the waters relative to the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean Water Bodies). The saturation lines for the considered minerals refer to 15 °C and 1.013 bar.

Nei diagrammi di attività delle figure 52 - 55, sia i limiti di stabilità delle fasi minerali sia le linee di saturazione rispetto a fasi solide di particolare interesse (calcedonio, β -cristobalite, calcite, dolomite, diopside e crisotilo) si riferiscono a 15 °C, valore prossimo alla temperatura media riscontrata nelle acque considerate, $17.1 \pm 2.1 \,^{\circ}\text{C} \,(1\sigma)$. In particolare, le condizioni di saturazione rispetto a calcite, dolomite e diopside sono rappresentate facendo riferimento alle reazioni seguenti:

$$CaCO_{2(g)} + 2H^{+} = Ca^{2+} + CaCO_{2(g)} + H_{2}O$$
 (38)

 $CaMg(CO_3)_2 + 2H^+ = CaCO_3 + Mg^{2+} + CO_{2(g)} + H_2O$ (39) Dolomite

$$\begin{array}{c} CaMgSi_2O_6 + 2H^+ + CO_{2(g)}CaCO_3 + Mg^{2+} + 2SiO_{2(aq)} + H_2O\\ Diopside \end{array}$$
(40)

e sono pertanto dipendenti dalla fugacità di CO_2 . La attività della SiO_{2(aq)} ed i rapporti di attività $a_{Ca^{2+}/(a_{H^+})^2}$, $a_{Mg^{2+}/(a_{H^+})^2}$, $a_{Na^+/a_{H^+}}$ e $a_{K^+/a_{H^+}}$ ossia le variabili necessarie per rappresentare ciascun campione nei diagrammi di attività in oggetto, sono stati calcolati, per ogni campione, alla temperatura di emergenza per mezzo del codice EQ3, versione 8.0 (WOLERY & JAREK, 2003), utilizzando il database CMP.

In tutti i diagrammi, l'attività della $SiO_{2(aq)}$ è ge-

neralmente compresa fra la condizione di saturazione rispetto al calcedonio e la condizione di equilibrio con la β -cristobalite, che rappresenta una sorta di limite evolutivo per la silice disciolta nelle acque naturali dell'area investigata. La prima rappresenta una sorte di limite inferiore che è stato imposto per quei campioni a cui non può essere applicata l'equazione 28.

Inoltre, nei diagrammi di attività per i sistemi CaO-SiO₂-Al₂O₃-H₂O (fig. 52), MgO-SiO₂- $Al_2O_3-H_2O$ (fig. 53) e $Na_2O-SiO_2-Al_2O_3-H_2O$ (fig. 54), la maggior parte dei campioni si localizza nel campo di stabilità della caolinite, anche se alcuni punti cadono nei campi di stabilità della beidellite calcica, in figura 52, in quelli della Mgbeidellite e della Mg-saponite, in figura 53 ed in quello della albite, in figura 54. Al contrario, nel diagramma di attività per il sistema K₂O-SiO₂- Al_2O_3 - H_2O (fig. 55), si osserva un addensamento di campioni nel campo di stabilità del feldspato potassico. Complessivamente, i diagrammi di attività confermano la validità dell'ipotesi di saturazione rispetto alla caolinite, adottata per il calcolo della affinità termodinamica rispetto alle fasi alluminosilicatiche.

Nel diagramma di attività per il sistema CaO-SiO₂-Al₂O₃-H₂O (fig. 52), la maggior parte delle acque si posiziona fra le linee di equilibrio con la calcite per fugacità di CO₂ di 10⁻¹ e 10⁻³ bar, coerentemente con quanto osservato circa la saturazione in calcite (paragrafo 3.4.3.2) e la distribuzione della P_{CO2} nelle acque in oggetto (paragrafo 3.4.2; da notare che, alle condizioni di pressione e temperatura di interesse, le due variabili P_{CO_2} ed f_{CO_2} sono virtualmente coincidenti). La saturazione rispetto a questa fase carbonatica rappresenta pertanto una barriera evolutiva estremamente efficace per le acque naturali, che impedisce il raggiungimento della condizione di saturazione rispetto all'anortite (o più in generale rispetto al plagioclasio) a meno che non si verifichi una drammatica riduzione nella $f_{\rm CO_2}$.

Nel diagramma di attività per il sistema MgO-SiO₂-Al₂O₃-H₂O (fig. 53), la maggior parte dei dati analitici relativi alle acque dei CISS 32CT010+32CT030 e 32CT050 si posiziona fra le linee di equilibrio con dolomite+calcite per fugacità di CO₂ comprese fra 10⁻¹ e 10⁻³ bar, o al di sopra di quest'ultima, in linea con quanto osservato per la condizione di saturazione rispetto a dolomite (nel paragrafo 3.4.3.3) e calcite (nel paragrafo 3.4.3.2): in effetti, gran parte delle acque in esame risulta satura o sovrassatura rispetto a questi due minerali carbonatici. Conseguentemente, l'equilibrio rispetto ad essi costituisce una barriera evolutiva efficace nei sistemi idrici naturali che complica il raggiungimento della condizione di saturazione rispetto alle fasi magnesiache primarie, e.g. crisotilo e soprattutto diopside (e più in generale i pirosseni), a meno che non si verifichi una sensibile riduzione nella f_{CO_2} o che possa essere mantenuta la condizione di sovrassaturazione rispetto alla dolomite per ragioni cinetiche.

I due diagrammi di attività nei quali vengono considerati i metalli alcalini Na e K forniscono indicazioni del tutto similari a quelle derivate nel paragrafi 3.4.3.4 e 3.4.3.5, in termini di stato di saturazione rispetto ad albite e K-feldspato, rispettivamente. In effetti, in figura 54, le acque in oggetto (ad eccezione di quelle appartenenti alla facies Na-Cl) si posizionano nel campo di stabilità della caolinite e risultano pertanto sottosature in albite, mentre in figura 55 la maggior parte delle acque considerate si colloca nel campo di stabilità del K-feldspato, essendo sature e/o sovrassature rispetto a questa fase minerale.

I diagrammi di attività forniscono pertanto una visione sintetica e molto efficace delle condizioni di reattività nel sistema naturale di interesse, che nel nostro caso è rappresentativo dei CISS 32CT010+32CT030 e 32CT050 caso.

3.5. - MAPPATURA IDROGEOCHIMICA

3.5.1. - Considerazioni generali

Al fine di ottenere una formulazione corretta sul fenomeno investigato ed eliminare ogni possibile causa di errore sistematico è opportuno effettuare uno studio preliminare sui dati disponibili mediante l'applicazione dei metodi dell'analisi statistica esplorativa e descrittiva, frequentemente utilizzati come routine per investigare le proprietà dei dati, anche se l'analisi finale richiede un'analisi spaziale. Il primo passo per la costruzione delle mappe prevede lo studio della forma della distribuzione di frequenza dei valori, per individuare in modo obiettivo famiglie di dati differenti, eventuali valori anomali e l'adozione di modelli di probabilità, quali ad esempio quello Normale o Log-normale (AITCHISON 1986/2003). L'adozione di modelli di probabilità nello studio dei fenomeni ambientali è particolarmente importante perché permette di fare "inferenza", cioè permette di ipotizzare cosa accade nella popolazione, con un certo grado di incertezza, sulla base del solo campione (ALLEGRE & LEWIN 1995). La Normale o di Gauss è la distribuzione di probabilità più importante poiché approssima la distribuzione empirica di moltissimi fenomeni reali ed è un punto di riferimento per stabilire confronti, dedurre risultati asintotici e controllare allontanamenti dalla Normalità medesima. La distribuzione Normale è utile per descrivere situazioni in cui i valori di una variabile siano generati dall'azione di processi indipendenti, agenti in direzioni opposte, che sommano i loro effetti, da cui il nome di processi somma. La curva infatti presenta una tipica forma a campana e la probabilità di trovare valori minori o maggiori del suo baricentro è esattamente la stessa. Se il logaritmo di una variabile si distribuisce secondo la Normale di Gauss, allora la variabile investigata segue una distribuzione Log-normale, cioè una distribuzione di tipo asimmetrico a destra (prevalenza in frequenza dei dati con valori bassi) (BUCCIANTI *et alii*, 2003).

I fenomeni naturali, quali quelli di interesse della idrogeochimica ambientale, sono in genere rappresentati da un set di dati sperimentali puntiformi, distribuiti irregolarmente sia nello spazio che nel tempo. Al fine di ricostruire nel miglior modo possibile un fenomeno naturale, diventa fondamentale effettuare, dai valori sperimentali in possesso, stime quanto più accurate e precise della variabile di interesse nei punti in cui non sono state effettuate misure. Queste stime, che fanno capo all'analisi geostatistica dei dati, sono vincolate ad una conoscenza preliminare del fenomeno da studiare, che deve avere necessariamente una sua continuità spaziale (e.g. ISAAKS & SRIVASTAVA, 1989; CRESSIE, 1991; DAVIS, 2002). Inoltre, esse sono fortemente influenzate dalla disponibilità dei dati e dalla loro accuratezza e qualità. In questo contesto la selezione della procedura di stima più idonea deve tener conto del fatto che i dati spaziali abbiano una variabilità influenzata sia da fenomeni erratici, tipici delle variabili causali, sia della struttura di autocorrelazione dovuta al legame spaziale esistente. In quest'ultimo caso si intende che valori campionati in luoghi vicini tra di loro tendono ad avere comportamenti simili, mentre valori di una stessa variabile misurata in campioni prelevati in siti lontani fra di loro tendono a differire almeno dai valori medi dell'area. L'obiettivo finale della procedura di stima è quello di realizzare mappe relative a grandezze *regionalizzate* a partire dalle elaborazioni delle informazioni note, ottenute su un numero limitato di campioni. A questo proposito è importante ricordare che la procedura di interpolazione, il cui risultato finale rappresenta una mappa con curve ad iso-concentrazione (luogo dei punti che hanno lo stesso valore), si basa su dati disposti su di un griglia regolare, condizione questa, quasi mai ottenibile in natura.

Di seguito sono riportati alcuni concetti base ed i risultati dell'analisi spaziale dei dati, oltre alle tecniche e procedure adottate nel presente lavoro per la ricostruzione delle mappe di distribuzione di alcuni costituenti chimici di interesse (Cl, NO₃ e B) dei CISS regionali 32CT010 "Acquifero costiero tra Fiume Cecina e San Vincenzo", 32CT030 "Acquifero costiero tra Fiume Fine e Fiume Cecina", 32CT050 "Acquifero del Cecina".

Le stime per l'interpolazione dei dati sperimentali sono state effettuate mediante una delle tecniche più conosciute e di più ampia e diffusa applicazione nel campo delle scienze geologiche ed ambientali: il *kriging*.

Il *kriging* si basa sull'adozione di un modello di variazione spaziale *continuo* e *stocastico*, facendo il miglior uso possibile dell'informazione esistente.

Questa tecnica è una procedura di stima che gode di due importanti proprietà: la prima è che si tratta di uno stimatore esatto, cioè restituisce nei punti ove si ha l'informazione reale il suo valore vero; la seconda è che per ogni valore stimato fornisce la varianza di stima, un parametro che consente la valutazione dell'accuratezza della stima stessa. Applicando le procedure del kriging, ciascun nodo di una griglia regolare è stimato come combinazione lineare dei valori di tutti i punti sperimentali noti, mediante l'uso della funzione variogramma sperimentale. I pesi vengono attribuiti in modo tale che la varianza di stima sia la minima possibile e questi vengono determinati risolvendo un insieme di equazioni simultanee nelle quali entrano i valori estratti dal variogramma della variabile investigata. Il variogramma delinea la dipendenza spaziale (ossia la probabilità che osservazioni più vicine nello spazio siano più "somiglianti" di quelle poste a maggior distanza) nella forma di una funzione che mette in relazione la semivarianza (γ) con la distanza (h) che separa coppie di dati sperimentali. La semivarianza è data dalla somma delle differenze quadratiche tra i valori di punti sperimentali separati da una determinata distanza chiamata lag (h). Dalla funzione del variogramma si ottiene un diagramma binario il cui studio fornisce informazioni su come i dati varino nello spazio, in una data direzione definita a priori (N-S, E-O, o altro), e per valori di distanza h (o multipli di h). L'ordinata di tale diagramma per una data distanza è data dai valori di γ (h) mentre sull'asse delle ascisse sono riportati i valori di h. Il variogramma modello (fig. 56) è definito mediante 3 parametri fondamentali: sill, range, e nugget effect. Il sill, conosciuto come altezza del variogramma, individua il valore di γ (h) in corrispondenza del quale la semivarianza non mostra più apprezzabili variazioni. Il *range* è la distanza in corrispondenza della quale il variogramma raggiunge il sill, in altre parole definisce la distanza (h) al di sopra della quale il valore (γ) risulta pressoché stabile. Infine, il *nugget ef*fect è una componente strutturale a piccola scala del variogramma (che può talora essere legata a errori

y(h) range scale nugget effect distanza (h)

Fig. 56 – Il variogramma modello e le sue principali componenti. – Model variogram and its main components.

nel campionamento e/o di misura della variabile). Definisce pertanto una discontinuità all'origine del *variogramma* ed individua il valore positivo di intercetta del *variogramma* sull'asse delle ordinate.

I modelli più comuni che descrivono normalmente l'andamento di un *variogramma* sperimentale sono quelli esponenziale, sferico, gaussiano e lineare.

Nello studio in oggetto, l'analisi spaziale dei dati ha permesso di: 1) ricostruire la variabilità spaziale dei set di dati di interesse, 2) ottimizzare i pesi da utilizzare nell'interpolazione e 3) definire il metodo di ricerca migliore per l'interpolazione.

3.5.2. - Diagrammi di probabilità

I diagrammi di probabilità rappresentano uno strumento grafico molto potente per l'analisi statistica univariata, che consente sia di individuare le caratteristiche della popolazione in esame, in modo semplice e rigoroso, sia di effettuare la ripartizione in più sub-popolazioni, ove presenti. Questa tecnica, che è stata introdotta nella letteratura geochimica da SINCLAIR (1974), verrà applicata nei paragrafi seguenti per lo studio di cloruro, nitrato e boro, tre specie chimiche di particolare rilevanza nei CISS considerati.

3.5.2.1. - Cloruri

Per l'analisi della statistica univariata dei cloruri nelle acque sotterranee sono stati utilizzati i 367 dati chimici presenti nel *database* generale del presente progetto. I dati sono stati analizzati mediante diagrammi di probabilità, in scala logaritmica (fig. 57), i quali rappresentano uno strumento utile per individuare l'eventuale presenza di popolazioni diverse in grado di suggerire il riconoscimento di differenti origini di Cl. Nel grafico di figura 57 è possibile distinguere almeno quattro differenti famiglie: i) le popolazioni A, B e C sono caratterizzate da alti valori di Cl disciolto nelle acque indagate (ad esempio, i valori medi sono pari rispettivamente a 14158, 2092 e 700 mg/L) e da un numero esigui di campioni (rispettivamente 1.9, 3 e 3.3% del totale) mentre ii) la popolazione D è contrassegnata da concentrazioni minori (distribuite attorno ad un valore medio di 171 mg/L) ma comprendente il maggior numero dei dati (92% del totale). Anche in questo caso, il riconoscimento delle differenti popolazioni è stato effettuato graficamente mediante l'individuazione dei punti di flesso della curva cumulativa. Successivamente sono stati calcolati i parametri statistici per le differenti famiglie applicando la procedura di Sinclair (1974); i risultati ottenuti sono riportati in tabella 7.

Le popolazioni A, B e C comprendono i campioni d'acqua caratterizzati da valori di Cl disciolto anomalmente elevati a causa di miscelamento, in differenti proporzioni, fra acque marine e salmastre ed acque di falda. Queste ultime, non influenzate da contributi di acque di mare, costituiscono invece il corpo principale della distribuzione dei dati individuato nella famiglia D.

Fig. 57 – Diagramma di probabilità per la concentrazione (in mg/L) di Cl per le acque dei CISS 32CT010+32CT030 e 32CT050. I circoli neri definiscono la distribuzione cumulativa dei valori misurati. Le croci e le linee di colore rosso, fucsia, viola e blu si riferiscono alle singole popolazioni ottenute mediate la procedure di partitionine di Singole popolazioni

colore rosso, fuesia, viola e blu si riferiscono alle singole popolazioni ottenute mediante la procedura di partitioning di Sinclair (1974).
Probability plot for the Cl concentrations (mg/L) of the waters relative to the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean Water Bodies). Black circles indicate the cumulative distribution of the measured data. The separated populations are obtained by partitioning procedure of Sinclair (1974) and plotted with different colours (red, pink, purple and blue) and symbols (crosses and lines).

3.5.2.2. - Nitrati

Per l'analisi statistica univariata dei nitrati nelle acque sotterranee sono stati utilizzati i dati relativi alle due campagne di monitoraggio del Giugno 2006 (155 analisi) e dell'Ottobre 2006 (115 analisi) effettuate dal Dipartimento di Scienze della Terra di Firenze nell'ambito di un Progetto di Ricerca di Interesse Nazionale (PRIN 2005) coordinato dal Prof. Massimo Civita che ha avuto come obiettivo, tra gli altri, la valutazione del rischio d'inquinamento delle acque sotterranee da nitrati nell'acquifero costiero tra Rosignano e San Vincenzo (CAPRI *et alii*, 2009; NISI *et alii*, 2009).

Come descritto per i cloruri, anche i dati corrispondenti ai valori dei nitrati disciolti nelle acque in esame sono stati analizzati mediante il diagramma di probabilità in scala logaritmica di figura 58.

La curva cumulativa relativa ai dati del Giugno 2006 presenta una forma sigmoidale con un unico punto di flesso indicando che la collezione dei valori di NO_3 disciolto nelle acque è caratterizzata dalla presenza di due popolazioni di dati. La curva relativa ai campioni dell'Ottobre 2006 è invece caratterizzata dalla presenza di due punti di flesso suggerendo la presenza di tre popolazioni distinte.

Le famiglie individuate sono state distinte utilizzando la procedura di *partitioning* di SINCLAIR (1974) e caratterizzate per i principali parametri statistici (tab 7).

Tab. 7 – Parametri statistici delle singole popolazioni individuate per cloruro (mg/L). I termini P_{84} , P_{50} e P_{16} si riferiscono rispettivamente ai percentili 84, 50 e 16 della variabilità delle singole popolazioni.

 Statistic parameters of the single population for cloride (mg/L). P₈₄, P₅₀ and P₁₆ values corresponding to the 16th, 50th and 84th percentiles of the single population variability.

Specie chimica	Popolazione	P ₈₄	\mathbf{P}_{50}	P ₁₆	media	dev. stand.	%
Cl	Pop A	18227	13548	10070	14158	4294	1,91
Cl	Рор В	2881	1931	1295	2092	872	3,00
Cl	Pop C	795	693	604	700	97	3,27
Cl	Pop D	270	134	67	171	136	91,83

Nelle due campagne di Giugno e di Ottobre 2006 è possibile distinguere due popolazioni di NO_3 disciolto: una caratterizzata da alti valori di concentrazioni (denominata Pop. A; NO_3 fino a 360 mg/L) ed un'altra con concentrazioni intermedie (chiamata Pop. B; NO_3 compreso fra 1 e 7 mg/L), che mostrano parametri statistici sostanzialmente confron-

tabili nei due periodi. Inoltre, nell'Ottobre 2006 compare una popolazione di bassi tenori (NO₃ < 1 mg/L) che è invece assente nel Giugno 2006.

La popolazione A è quella più rappresentata, in quanto comprende il maggior numero dei campioni: 86% del totale per Giugno 2006, e 85% del totale per Ottobre 2006. La famiglia B raggruppa un minor numero di dati: 14% del totale per Giugno 2006 e 6% del totale per Ottobre 2006. Anche la popolazione C è scarsamente rappresentata in quanto comprende solo il 9% circa dei campioni.

Il riconoscimento delle medesime popolazioni A e B, sia nel campionamento di Giugno che in quello di Ottobre 2006, suggerisce che questi campioni risentono di processi che non sono significativamente influenzati da effetti stagionali. Al contrario, la popolazione C, presente solamente nell'Ottobre 2006, è evidentemente governata da effetti di natura stagionale, che potrebbero essere relazionati ai forti emungimenti del periodo estivo. Nonostante non sia possibile fornire un'interpretazione solida ed univoca dei dati disponibili, mediante un trattamento univariato, è ragionevole ipotizzare che: (i) la popolazione A sia rappresentativa della falda freatica, in comunicazione con l'atmosfera ed in condizioni redox decisamente ossidanti, che riceve NO3 derivanti probabilmente dall'uso di fertilizzanti e/o da perdite fognarie di scarichi civili (NISI et alii, 2007), mentre (ii) nelle famiglie B e in particolar modo C sono compresi i

pozzi che emungono gli acquiferi più profondi, fisicamente separati dall'atmosfera ed in condizioni più riducenti, dove NO₃ è instabile e viene ridotto a nitrito, azoto elementare e/o ammonio da processi di denitrificazione. In effetti, durante questi processi il valore del rapporto isotopico ¹⁵N/¹⁴N del nitrato residuale aumenta normalmente di circa 2 volte rispetto a quello del rapporto isotopico ¹⁸O/¹⁶O (e.g., BÖTTCHER et alii, 1999). Tale considerazione ha permesso di tracciare questi processi analizzando il nitrato disciolto in alcuni campioni selezionati, provenienti dai CISS considerati, per i rapporti isotopici ¹⁵N/¹⁴N e ¹⁸O/¹⁶O (NISI *et alii*, 2007). Non è escluso che questi processi di denitrificazione possano essere condizionati, almeno in parte, da effetti antropici; ad esempio, la presenza di casing in Fe elementare può determinare il verificarsi della reazione: $3 \text{ NO}_3 + 2 \text{ Fe}^\circ + 3 \text{ H}_2\text{O} = 3 \text{ NO}_2 + 2 \text{ Fe}(\text{OH})_{3(s)}$ con conseguente accelerazione del processo di riduzione del nitrato disciolto, come osservato nella

3.5.2.3. - Boro

Delle 367 analisi presenti nel *database* generale solamente in 160 di questi è stata determinata la concentrazione del B disciolto, che è principalmente presente come acido borico, B(OH)₃, ed

zona di Barbarasco, alta valle del Fiume Magra

(ROBERTO CIONI, dati non pubblicati).

Fig. 58 – Diagrammi di probabilità per la concentrazione (in mg/L) di NO₃ nel Giugno e nell'Ottobre 2006 per le acque dei CISS 32CT010+32CT030 e 32CT050. I circoli neri definiscono la distribuzione cumulativa dei valori misurati. Le croci e le linee di colore rosso, viola e blu si riferiscono alle singole popolazioni ottenute mediante la procedura di *partitioning* di Sinclair (1974).

Depositive of the second response of the second respons
anione borato, B(OH)₄, con la condizione di isoattività a pH 9.24 a 25 °C. Il diagramma di probabilità relativo al boro è riportato in figura 59 nella quale si può riconoscere la presenza di un'unica popolazione, caratterizzata dai parametri statistici riportati in tabella 8, con una "coda" di bassi valori per probabili problemi di natura analitica connessi ai valori di rilevabilità strumentale. Ciononostante non si può escludere la presenza di differenti sorgenti (acque marine, acque contaminate da borati) caratterizzate da valori massimi sovrapposti o parzialmente sovrapposti. In effetti, tali sorgenti sono state discriminate mediante il rapporto isotopico del B (PENNISI *et alii*, 2006).

3.5.3. - Mappe del Cloruro

Per la realizzazione delle mappe di concentrazione dei cloruri delle acque sotterranee sono stati utilizzati i dati relativi ai CISS 32CT030 e 32CT010. Dei 367 dati chimici presenti nel *database* generale del presente progetto ne sono state considerate 250, ovverosia, solamente quelle che sono risultate essere delle variabili aleatorie adatte a descrivere i fenomeni investigati mediante un modello Log-normale. Infatti, se da un punto di vista formale il set di dati utilizzato non presenta analisi coeve, dall'altro, l'applicazione del *test* di Kolmogorov-Smirnov ai dati trasformati mediante il logaritmo naturale conferma che la variabile con-

Fig. 59 – Diagramma di probabilità per la concentrazione (in mg/L) di B per le acque dei CISS 32CT010+32CT030 e 32CT050. La curva sigmoidale nera rappresenta il *trend* dei valori misurati.

rappresenta il trend dei valori misurati. – Probability plot for the B concentrations (mg/L) of the waters relative to the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean Water Bodies). Black line indicates the cumulative distribution of the data measured.

Tab. 8 – Parametri statistici delle singole popolazioni individuate per nitrato (mg/L) (Giugno e Ottobre 2006). I termini P_{84} , P_{50} e P_{16} si riferiscono rispettivamente ai percentili 84, 50 e 16 della variabilità delle singole popolazioni. – Statistic parameters of the single population for nitrate (mg/L) (October and June 2006). P_{84} , P_{50} and P_{16} values corresponding to the 16th, 50th and 84th percentiles of the single population variability.

Specie chimica	Popolazione	P ₈₄	P ₅₀	P ₁₆	media	dev. stand.	%
NO3 giugno	Pop A	93,20	39,40	16,70	57,10	59,80	85,80
NO3 giugno	Рор В	5,67	2,72	1,31	3,56	3,00	14,20
NO3 ottobre	Pop A	64,70	22,60	7,88	39,30	56,00	84,90
NO3 ottobre	Рор В	1,45	1,00	0,69	1,07	0,41	6,35
NO3 ottobre	Рор С	0,07	0,04	0,02	0,05	0,03	8,73

siderata segue il modello Log-normale nelle loro unità originarie, con una significatività di 0.05, nonostante la presenza delle due differenti popolazioni individuate mediante il diagramma di probabilità (vedi paragrafo 3.5.2). Di conseguenza le informazioni raccolte appaiono descrivere in modo omogeneo l'area investigata pur derivando da periodi di campionamento differenti.

La mappa dei valori logaritmici della concentrazione di Cl è stata ottenuta processando i dati con il *software* ISATIS della *Geovariance* sviluppato dai ricercatori dell'*Ecole Des Mines De Paris*, 2004. Come già accennato, l'estrapolazione richiede la costruzione del variogramma sperimentale e prevede la definizione del miglior modello e del migliore intorno da considerare per il processo di interpolazione. In questo caso il modello in grado di riprodurre la forma del variogramma sperimentale omnidirezione, riportato in figura 60, è risultato essere quello sferico con effetto *nugget* ed è caratterizzato dai seguenti parametri:

Sill: 0.225; *Range*: 6257 m; *Nugget effect*: 0.13. Il modello matematico scelto è stato verificato mediante la tecnica della *validazione incrociata* che ha evidenziato la presenza di 7 punti "critici", nei quali la modellizzazione non fornisce una risposta affidabile (deviazione *standard* superiore a 2.5 s; fig. 61). La combinazione dei valori logaritmi della concentrazione di Cl con l'applicazione di algoritmi del *kriging* (scegliendo il modello sferico) ha permesso la ricostruzione della mappa del logaritmo naturale della isoconcentrazione e della deviazione *standard* sulla stima (fig. 62).

La figura 62 evidenzia le zone costiere chiara-

mente interessate da anomale concentrazioni di cloruri (Marina di Cecina, Marina di Bibbona e Marina di Castagneto Carducci). Altrettanto evidente è l'importante anomalia positiva di cloruri che caratterizza le acque sotterranee in prossimità dell'abitato di Cecina. Tutte queste zone sono da tempo oggetto di intensi prelievi di acque sotterranee sia per usi civili che industriali, e pertanto presentano delle depressioni piezometriche importanti, con quote piezometriche che in alcuni casi risultano al di sotto del livello medio marino (figg. 6, 7). In questo caso le acque a cloruro sono rappresentate da originarie acque di mare che interagiscono con sedimenti a granulometria fine, tipo argille, subendo il processo di scambio ionico Na-Ca. La forma dell'anomalia e le caratteristiche della piezometria inducono a pensare ad un fenomeno di *up-coning* indotto dall'intenso sfruttamento della locale della falda idrica.

3.5.4. - Mappe dei Nitrati

Le due campagne di monitoraggio del Giugno 2006 (155 analisi) e dell'Ottobre 2006 (115 analisi) risultano essere particolarmente interessanti per finalità di mappatura idrogeochimica, sia per l'alta densità spaziale dei dati sia perchè si riferiscono ad una finestra temporale molto ristretta, e vanno ad aggiungersi al *database* delle 367 analisi di cui si è

Fig. 60 – Variogramma omnidirezionale per il logaritmo naturale della concentrazione (in mg/L) di Cl per le acque dei CISS 32CT010+32CT030. La linea spezzata rappresenta il trend del variogramma sperimentale, i numeri associati ai punti verdi si riferiscono al numero di coppie trovato ad ogni lag (866m), mentre la linea rossa continua rappresenta il modello matematico scelto.

– Omnidirectional variogram for ln(Cl) (mg/L) for the waters relative to the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean Water Bodies). Numbers in green refer to the number of pairs for each lag (866 m). The red line is the selected numerical model. detto nel capitolo 3.1.

Per modellizzare il comportamento dei valori dei NO3 relativi ai periodi di Giugno e Ottobre 2006 con modelli Normale e/o Log-normale, quali variabili aleatorie adatte a descrivere i fenomeni investigati, è stata valutata l'ipotesi nulla di accordo tra la distribuzione teorica (Normale e/o Log-normale) e dati analitici (sia tali e quali che trasformati mediante la funzione logaritmica), mediante il test di Kolmogorov-Smirnov. I risultati del test per i dati dei NO₃ di Giugno e Ottobre 2006 indicano che le variabili trasformate con il logaritmo naturale possono seguire il modello Log-normale nelle loro unità originarie, con una significatività di 0.05, nonostante siano individuabili due popolazioni distinte mediante l'uso dei diagrammi di probabilità (vedi paragrafo 3.5.2).

Le mappe del logaritmo naturale della concentrazione di NO_3 per il Giugno e l'Ottobre 2006 sono state ottenute processando i dati con il programma ISATIS. Anche in questo caso il modello che meglio riproduce la forma del *variogramma* sperimentale omnidirezione, riportato in figura 63, è risultato essere quello sferico con effetto *nugget* ed è caratterizzato dai seguenti parametri:

Sill: rispettivamente 0.964 e 1.265 per Giugno e Ottobre 2006;

Range: rispettivamente 3722 e 4364 m per Giugno e Ottobre 2006;

Nugget effect: rispettivamente 0.57 e 0.58 per Giugno e Ottobre 2006.

La verifica del modello matematico scelto è stata effettuata mediante la tecnica della *validazione incrociata* mediante la quale ogni singolo punto di misura viene temporaneamente eliminato e, conseguentemente, viene stimato il valore della variabile investigata in quello stesso punto attraverso il modello matematico. I valori stimati e quelli misurati sono poi confrontati mediante i grafici delle figure 64 e 65. Osservando tali grafici si vede come il modello scelto dia buone stime ad eccezione di 5 punti per il Giugno e 3 punti per l'Ottobre 2006 (circoli pieni verdi). Questo significa che per i punti anomali, il modello scelto, pur rappresentando il migliore fra quelli possibili, stima tali valori con un errore piuttosto elevato (deviazione superiore a 2.5 σ).

Elaborando i logaritmi della concentrazione del NO₃ e combinando l'applicazione di algoritmi del *kriging* con il modello sferico, scelto come rappresentativo del *variogramma* sperimentale, sono state costruite le carte dei logaritmi naturali delle iso-concentrazioni (figg. 66, 67). Inoltre, come già detto, nell'elaborazione di una mappa è importante conoscere quale confidenza accordare; pertanto sono state costruite anche le rispettive mappe del ln (NO₃) e della deviazione *standard* sulla stima,

Fig. 61 – Validazione incrociata del modello matematico scelto come rappresentativo del variogramma sperimentale per il logaritmo naturale della concentrazione (in mg/L) di Cl per le acque dei CISS 32CT010+32CT030 e 32CT050. I circoli pieni verdi rappresentano le misure considerate anomale.
 – Cross validation of the numerical model selected for ln(Cl) (mg/L) for the waters relative to the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean Water Bodies). Solid green circles are referred to anomalous values.

cioè le carte dell'errore insito nella stima del logaritmo della concentrazione di NO₃ in siti dove non è stata eseguita questa misura. Va detto che la isolinea di 1.2 (σ del ln NO₃), che delimita in prima approssimazione l'area oggetto di campionamento, corrisponde a 3.3 mg NO₃ /L, in termini di concentrazione. Si tratta quindi di una incertezza decisamente accettabile.

Nelle mappe delle figure 66 e 67, sia nel Giugno 2006 che nel successivo mese di Ottobre, sono ben riconoscibili due zone di massimo principali, una nei pressi di Donoratico (nella parte meridionale dell'area investigata), l'altra a N-E del comune di Cecina (nel settore settentrionale dell'area di studio). I due massimi assoluti sono collegati da una fascia di massimi relativi. Sia i massimi assoluti che i massimi relativi sono più evidenti nel Giugno 2006 che nell'Ottobre 2006. Per interpretare questa evoluzione temporale, è necessario ricordare che la principale sorgente di nitrato è rappresen-

Fig. 62 – Mappa del logaritmo naturale della concentrazione (in mg/L) di Cl e della deviazione standard (St. Dev.) sulla stima per le acque dei CISS 32CT010+32CT030. e 32CT050.
 Maps ln(Cl) (mg/L) and Standard Deviation (St.Dev.) for the waters relative to the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean Water Bodies).

Fig. 63 – Variogramma omnidirezionale per i logaritmi naturali delle concentrazioni di NO_3 nel Giugno e nell'Ottobre 2006 per le acque dei CISS 32CT010+32CT030. La linea spezzata rappresenta il *trend* del variogramma sperimentale, i numeri associati ai punti verdi si riferiscono al numero di coppie trovato ad ogni lag (870 m nel Giugno 2006) e (1000 m nell'Ottobre 2006), mentre la linea rossa continua rappresenta il modello matematico scelto. – Omnidirectional variogram for the June and October In(NO_3) (mg/L), respectively, for the waters relative to the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean Water Bodies). Green numbers are referred to the numberof pairs for each lag (June and October: 870 and 1000 m, respectively). The red line represents the selected numerical model.

Fig. 64 – Validazione incrociata del modello matematico scelto come rappresentativo del variogramma sperimentale per i logaritmi naturali delle concentrazioni (in mg/L) di NO₃ nel Giugno 2006 per le acque dei CISS 32CT010+32CT030 e 32CT050. I circoli pieni verdi rappresentano le misure considerate anomale. – Cross validation of the numerical model selected for June ln(NO₃) (mg/L) for the waters relative to the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean Water Bodies). Solid green circles are referred to anomalous values.

tata dall'uso di fertilizzanti, che tendono a prevalere sul contributo relazionato agli scarichi civili, nonostante non sia facile distinguere queste due sorgenti a causa del mascheramento determinato dai processi di denitrificazione (NISI *et alii*, 2007, CAPRI *et alii*, 2009). Va inoltre ricordato che i concimi vengono applicati ai terreni nel periodo primaverile. Di conseguenza, il declino generalizzato delle concentrazione di nitrato disciolto nelle acque della falda freatica, da Giugno a Ottobre 2006, è totalmente in linea con quanto atteso.

3.5.5. - Mappe del Boro

La mappa geochimica di isoconcentrazione del boro è stata costruita utilizzando 126 analisi di

Fig. 65 - Validazione incrociata del modello matematico scelto come rappresentativo del variogramma sperimentale per i logaritmi naturali delle concentrazioni (in mg/L) di NO₃ nell'Ottobre 2006 per le acque dei CISS 32CT010+32CT030 e 32CT050. I circoli pieni verdi rappresentano le misure considerate anomale. – Cross validation of the numerical model selected for October ln(NO₃) (mg/L) for the waters relative to the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean Water Bodies). Solid green circles are referred to anomalous values.

acque sotterranee presenti nel *database* generale. Anche in questo caso il modello che meglio riproduce la forma del *variogramma* sperimentale omnidirezionale è ancora una volta quello sferico con effetto *nugget*. I parametri descrittivi di tale modello sono: *Sill* = 0.41; *Range* = 4228 m; *Nugget* = 0.385 (fig. 68).

La tecnica della validazione incrociata ha evi-

denziato la presenza di soli 2 punti in cui il modello non riproduce con buona affidabilità i valori sperimentali determinati in laboratorio (fig. 69).

Processando come di consueto i dati attraverso il *software* ISATIS si ottiene la mappa di isoconcentrazione del boro di figura 70, dalla quale risulta evidente che la porzione sud-est non è attendibile visto lo scarso numero di punti di misura ed è stata

Fig. 66 – Mappa dei logaritmi naturali delle concentrazioni di NO₃ (in mg/L) nel Giugno 2006 e della deviazione standard sulla stima per le acque dei CISS 32CT010+32CT030 e 32CT050.
 – Maps of ln(NO₃) (mg/L) and Standard Deviation (St.Dev.) for June 2006 for the waters relative to the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean)

Water Bodies).

qui riportata soltanto per completezza. Il settore nord invece mostra come il corso del Fiume Cecina sia caratterizzato da anomale concentrazioni di boro. È infatti noto da tempo che tale corso d'acqua presenta questo tipo di problematica.

3.6. - Geochimica isotopica

3.6.1. - Ossigeno-18

Nel *database* per i CISS 32CT010+32CT030 e 32CT050, sono disponibili solamente 41 dati relativi al rapporto isotopico ¹⁸O/¹⁶O (12% del totale dei campioni), che si riferiscono a due campagne di prelievi effettuate nel Maggio e nell'Ottobre 1998 da PRANZINI G. (2004a) (Tabella H in appendice). Essi sono confrontati con le corrispondenti concentrazioni di cloruro (in scala logaritmica) nel diagramma di correlazione di figura 71, in cui è riportato anche il punto dell'acqua di mare media, che rappresenta lo *standard* di riferimento per i valori di δ^{18} O.

Nell'insieme è riconoscibile il *trend* di miscela fra acque meteoriche povere di Cl e acqua di mare

ricca in questo costituente disciolto. Le acque di falda con concentrazioni di Cl comprese fra 50 e 300 mg/L mostrano una considerevole dispersione dei valori di δ^{18} O, di almeno 1.2 unità ‰, che è potenzialmente imputabile:

(i) ad una variazione della quota delle aree di ricarica di circa 600 m, assumendo per l'area in esame un gradiente isotopico ragionevole di -0.2 ‰/100 m (MUSSI *et alii*, 1998; MUSSI & DOVERI, 2006). In effetti, i pozzi che mostrano rapporti isotopici relativamente inferiori sono ubicati nella fascia più interna, a testimonianza di una chiara alimentazione dai rilievi collinari;

(ii) e/o a variazioni stagionali dei valori di δ^{18} O delle precipitazioni; va ricordato che l'escursione annua delle medie pesate dei valori di δ^{18} O delle precipitazioni è dell'ordine di 2-3 unità ‰ per le stazioni IAEA-WMO-GNIP di Genova-Sestri Ponente e di Pisa, con valori più elevati nel periodo estivo e valori minimi nel periodo invernale (dati accessibili mediante il sistema WISER - *Water Isotope System for data analysis, visualization and Electronic Retrieval*, attraverso il sito web:

http://nds121.iaea.org/wiser/).

suppos of the waters relative to the 32C1010+32C1030 and 32C1030 SSW B (Significant Subterranean Water Bodies).

3.6.2. - Trizio

Anche i dati di trizio per i CISS 32CT010+ 32CT030 e 32CT050 sono relativamente scarsi (31 campioni, pari all'8%) e provengono tutti dalle due campagne effettuate nel Maggio e nell'Ottobre 1998 da PRANZINI G. (2004a) (Tabella H in appendice). Anche nel caso del trizio è utile confrontare i dati disponibili con le concentrazioni di cloruro, mediante il diagramma di correlazione di figura 72. Nel complesso è evidenziabile all'aumentare della concentrazione di cloruro, una concomitante diminuzione dell'unità trizio (una unità tritio - U.T. corrisponde a 1 atomo di tritio per 10¹⁸ atomi di idrogeno ed equivale a 0.118 Bq/L) imputabile all'aumento della componente marina povera dell'isotopo radioattivo dell'idrogeno. Altrettanto evidente è una considerevole dispersione dei dati, di almeno 4-6 unità trizio verosimilmente attribuibile a variazioni stagionali.

In effetti, le medie pesate mensili dell'attività trizio nelle acque di pioggia campionate presso le stazioni IAEA-WMO-GNIP di Genova-Sestri Ponente e Pisa mostrano variazioni stagionali dello stesso ordine, con massimi primaverili e minimi autunnali.

4. - CONSIDERAZIONI CONCLUSIVE E MODELLO CONCETTUALE DEI CISS

Sulla base dell'elaborazione dei dati geologici, idrogeologici e geochimici, vengono di seguito sintetizzati i principali aspetti relativi al CISS della valle del Cecina (32CT050) ed ai CISS costieri tra il Fiume Fine e San Vincenzo (32CT010+32CT030).

A - Il CISS della valle del Cecina ha caratteristiche freatiche su tutta la sua estensione, sviluppandosi nei depositi alluvionali dell'omonimo fiume rappresentati prevalentemente da termini ad alta permeabilità, quali ghiaie (52%) e ghiaie sabbiose (16%). In accordo con queste informazioni derivanti dai dati stratigrafici, prove di emungimento eseguite nella zona a valle di Saline mostrano valori medi di conducibilità idraulica e di trasmissività di 10⁻³ m/s e 10⁻² m²/s rispettivamente, nonché una porosità efficace del 16%

Fig. 68 – Variogramma omnidirezionale per il logaritmo naturale della concentrazione (in mg/L) di B per le acque dei CISS 32CT010+32CT030 e 32CT050. La linea spezzata rappresenta il trend del variogramma sperimentale, i numeri associati ai punti verdi si riferiscono al numero di coppie trovato ad ogni lag (655m), mentre la linea rossa continua rappresenta il modello matematico scelto.

– Omnidirectional variogram for ln(B) (mg/L) for the waters relative to the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean Water Bodies). Green numbers are referred to the number of pairs found for each lag (655m). Red line represents the selected numerical model.

(PRANZINI, 2004b e riferimenti citati). I depositi argillosi e limosi costituiscono orizzonti perlopiù discontinui e di limitato spessore; solamente nel settore occidentale, nei pressi di S. Martino di Riparbella, è presente uno strato argilloso di spessore considerevole (dell'ordine dei 5 metri), che tuttavia costituisce un corpo lenticolare. Sulla maggior parte dell'estensione del CISS, la sequenza alluvionale poggia su di un substrato praticamente impermeabile costituito da depositi prevalentemente argillosi di età mio-pliocenica; solamente nel tratto a valle della confluenza del Fiume Cecina con il Torrente Lopia, il substrato dell'acquifero alluvionale è costituito da termini permeabili pleistocenici a granulometria prevalentemente sabbiosa, con i quali si possono avere scambi idrici sotterranei, anche significativi. Gli spessori dei depositi alluvionali non superano i 15 metri nella parte più a monte, mentre raggiungono valori di 35-40 metri nel settore più a valle; il volume complessivo dei terreni permeabili costituenti il CISS ammonta a circa 280 milioni di m³.

B - I due CISS costieri costituiscono un unico sistema acquifero multistrato, caratterizzato dall'alternanza di livelli olocenico-pleistocenici permeabili (essenzialmente ghiaie e sabbie, talvolta cementate, che nell'insieme rappresentano il 55% dei depositi) ed impermeabili presenti in maniera discontinua (limi e argille, che congiuntamente contribuiscono per poco più del 40% all'intera successione). L'eterogeneità e la variabilità spaziale della successione è confermata dai dati di conducibilità idraulica media, che variano da 10⁻² - 10⁻³ m/s, in prossimità dell'entrata del Fiume Cecina nella piana costiera, a 10⁻⁴ m/s, nella zona tra Cecina e Vada ed a $10^{-4} - 10^{-5}$ m/s nella zona Donoratico-Castagneto. La natura del substrato dei CISS non è sempre ricostruibile a causa della carenza di dati stratigrafici idonei allo scopo. Indicazioni più certe si hanno nel settore meridionale, dove è stato raggiunto un bedrock costituito da Unità Liguri a permeabilità limitata; nel settore settentrionale, a nord del Fiume Cecina, il substrato coincide presumibilmente con la formazione delle Sabbie e Argille ad Arctica islandica del Pleistocene inferiore, mentre, nel settore compreso tra il Fiume Cecina e Bolgheri, le argille individuate alla base dell'acquifero sono attribuibili o alla formazione anzidetta o a formazioni argillose di età pliocenica. I 5 principali orizzonti acquiferi individuati nella successione multistrato presentano uno spessore medio di 15 metri, mentre lo spessore medio totale dei termini permeabili è valutabile in poco più di 80 metri. Va comunque precisato che questo spessore medio non può attribuirsi ad un qualsiasi punto dell'area esaminata; in effetti solamente i due livelli acquiferi più superficiali si estendono sia in destra, sia in sinistra Fiume Cecina, andando ad interessare la quasi totalità dell'area di pertinenza dei CISS costieri. Il volume totale relativo agli orizzonti permeabili è stimabile in 4630 milioni di m³.

C - La superficie piezometrica dell'acquifero freatico intravallivo è principalmente regolata dal corso d'acqua e dalle pendenze del suo sub-alveo. L'escursione media dei livelli tra il periodo di magra e quello di morbida (Luglio e Dicembre 2003) è pari a 0.6 metri. Il calcolo dei volumi idrici immagazzinati in acquifero in questi due periodi ha fornito valori di circa 28,9 e 31,3 milioni di m³. Dalle ricostruzioni delle condizioni piezometriche (Maggio e Settembre 2002) per i CISS costieri, deriva una distribuzione dei carichi idraulici che suggerisce la "natura monofalda" dell'acquifero multistrato; ciò può esser attribuito in parte alla discontinuità degli interstrati impermeabili ed in parte alla presenza di numerosi pozzi che, intercettando differenti livelli acquiferi e mettendoli in comunicazione idraulica tra di loro, favoriscono la creazione di un unico carico piezometrico d'equilibrio. Mediando le differenze Settembre-Maggio sull'intero CISS, la superficie piezometrica mostra un abbassamento di circa 10 centimetri; in ragione di un particolare regime pluviometrico nel 2002, nonché dei differenti usi della risorsa idrica sotterranea sul territorio, sono stati tuttavia riscontrate ampie zone in cui i livelli piezometrici di Settembre

Fig. 69 – Validazione incrociata del modello matematico scelto come rappresentativo del variogramma sperimentale per il logaritmo naturale della concentrazione (in mg/L) di B per le acque dei CISS 32CT010+32CT030 e 32CT050. I circoli pieni verdi rappresentano le misure considerate anomale. – Cross validation of the numerical model selected for ln(B) (mg/L) for the waters relative to the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean Water Bodies). Solid green circles are referred to anomalous values.

risultavano maggiori di quelli di Maggio. In questi due periodi i volumi idrici immagazzinati nel sistema multistrato sono stati valutati in circa 398 milioni e 394 milioni di m³, rispettivamente. La morfologia delle superfici piezometriche di magra e di morbida elaborate, suggerisce un'alimentazione dai rilievi collinari. Ben evidenti sono inoltre le ampie depressioni piezometriche (con valori minimi fino a circa -2,5 m s.l.m.) presenti nella zona di Cecina e tra questa e l'abitato di Vada; importanti depressioni piezometriche, limitate alla fascia costiera, si riscontrano anche tra Marina di Bibbona e Castagneto Carducci, nonché più a sud verso S. Vincenzo.

D - Da un punto di vista geochimico, nella zona costiera si rilevano acque sotterranee chiaramente interessate da un mescolamento con acqua di mare. I fenomeni di ingressione marina sono ben

Fig. 70 – Mappa del logaritmo naturale della concentrazione (in mg/L) di B e della deviazione standard sulla stima per le acque dei CISS 32CT010+32CT030 e 32CT050. Le aree bianche a tratteggio si riferiscono a zone nelle quali non erano disponibili le concentrazioni di Boro.
 – Maps of ln(B) (mg/L) and Standard Deviation (St. Dev.) for the waters relative to the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean Water Bodies). The white dotted areas refer to those zones for which the concentrations of Boron were not available.

evidenziati dalle composizioni Na-Cl, indicative di un semplice mescolamento fra acque di falda e acqua di mare, e da quelle Ca-Cl e Ca(Mg)-Cl, legate sia ad una miscela con acque marine e/o salmastre, sia a successive reazioni di scambio ionico per interazione con i terreni che ospitano il sistema acquifero. Queste acque, caratterizzate da elevate concentrazioni di cloruro disciolto, in genere superiori a 10 meq/L (pari a 350 mg/L), presentano valori di δ^{18} O tendenti a quelli tipici dell'acqua marina. Pure presenti sono acque appartenenti alla facies Na-HCO₃, che hanno origine per fenomeni di freshening, ossia di riflusso delle acque di falda Ca-HCO3 o Ca(Mg)-HCO3 entro sedimenti alluvionali saturati (durante precedenti fasi di ingressione marina) da ioni Na⁺, che vengono rilasciati alle acque di falda stesse, in cambio di ioni $Ca^{2+} e/o$ Mg²⁺. Le acque Ca-HCO₃ e Ca(Mg)-HCO₃ rappresentano la facies idrochimica più frequente e vengono generate principalmente per dissoluzione di calcite e dolomite, fasi minerali caratterizzate da cinetiche di dissoluzione molto più rapide di quelle dei minerali silicatici ed Al-silicatici. E probabile che i processi di dissoluzione di queste fasi carbonatiche abbiano essenzialmente luogo nelle prime fasi dei processi di interazione acqua-roccia, in quanto la maggior parte delle acque Ca-HCO₃ e Ca(Mg)-HCO₃ risulta essere sovrassatura rispetto a queste fasi minerali. Va sottolineato che la condizione di equilibrio o quasi-equilibrio rispetto a calcite e dolomite, alle fugacità di CO2 presenti negli acquiferi in esame (fra 10⁻³ e 10⁻¹ bar, nella maggior parte dei casi), rappresenta una efficace barriera geochimica che impedisce il raggiungimento delle condizioni di saturazione rispetto a fasi calciche (es. plagioclasi ricchi della componente anortitica), magnesiache (es. serpentino e cloriti) e calcico-magnesiache (es. diopside), come mostrato dai diagrammi di attività. Inoltre, va sottolineato che, mentre la precipitazione di dolomite è poco probabile per ragioni cinetiche, la velocità di precipitazione della calcite diventa molto rapida quando l'indice di saturazione è maggiore di circa 0.3, fatto molto frequente nell'area in esame; questo processo tende a ridurre la

Fig. 71 – Diagramma di correlazione fra valori di δ^{18} O (in scala lineare) e concentrazioni di cloruro (in scala logaritmica) per le acque dei CISS 32CT010+32CT030 e 32CT050. – Correlation plot between δ^{18} O (linear scale) and Cl concentrations (logarithmic scale) for the waters relative to the 32CT010+32CT030 and 32CT050 SSWB

(Significant Subterranean Water Bodies).

porosità dell'acquifero, ma la precipitazione della calcite può favorire inglobamento di diversi metalli in traccia, anche nocivi (es. Cd), mantenendo basse le loro concentrazioni nelle acque sotterranee. Tornando a considerare i differenti tipi chimici presenti nell'area in esame, vanno ricordate le acque Ca- SO_4 , che si originano per dissoluzione di gesso e/anidrite, presenti sia nelle sequenze evaporitiche affioranti, sia come costituenti clastici nelle sequenze alluvionali, anche se in proporzioni generalmente modeste. Va altresí ricordato che oltre alla ingressione di acqua di mare, i CISS considerati sono localmente caratterizzati anche da altre criticità, dettate dalla presenza di elevate concentrazioni di: (i) nitrato disciolto, fino ad un massimo di circa 300 mg/L, derivante principalmente all'intensa attività floro-vivaistica e secondariamente agli scarichi di natura domestica e civile; (ii) boro disciolto, che viene veicolato nell'acquifero vallivo dal Torrente Possera lungo il quale, nella zona di Larderello sono in atto fenomeni di rilascio di boro, di origine non definita (GRASSI & SQUARCI, 2004); (iii) cromo esavalente disciolto, che localmente supera il limite di legge di 5 µg/L; accettando che si tratti di Cr(VI) di origine naturale, va detto che i fenomeni che controllano il rilascio alle acque del Cr dalle rocce ultramafiche variamente serpentinizzate (nei cui minerali è presente allo stato trivalente) sono oggetto di un rinnovato interesse da parte della comunità scientifica internazionale; in particolare, OZE et alii (2007), hanno segnalato che la dissoluzione ossidativa (ossia governata da ossidi di Mn tri-tetravalenti, quali la birnessite) della cromite (un

minerale tradizionalmente considerato assolutamente inerte) procede in realtà con una cinetica apprezzabile.

E - Infine, sempre relativamente agli aspetti idrogeochimici, i dati isotopici disponibili, sia pur in numero limitato, oltre a contribuire ad individuare le situazioni di ingressione marina, mettono in evidenza una considerevole dispersione dei valori di δ^{18} O; ciò è in parte attribuibile alla variabilità isotopica stagionale delle precipitazioni ed in parte alle differenti quote medie d'infiltrazione relative alle componenti che alimentano il sistema acquifero. Risulta in particolare piuttosto chiara la presenza di un'alimentazione dai rilievi collinari verso gli acquiferi costieri, dal momento che i più bassi valori di δ^{18} O sono prevalentemente riscontrati in pozzi ubicati nella fascia più interna della pianura.

L'insieme delle informazioni geologiche, idrogeologiche e geochimiche, sopra sintetizzate, consente di giungere ad un modello concettuale della circolazione idrica che si sviluppa nei CISS esaminati, nonché di evidenziare le maggiori criticità che riguardano i sistemi acquiferi stessi.

In particolare, il CISS intravallivo del Cecina ha le caratteristiche di un acquifero freatico e si sviluppa nelle alluvioni prevalentemente ghiaiose e sabbiose depositate dal fiume omonimo. Il sistema costiero compreso tra il Fiume Fine e San Vincenzo è viceversa un corpo multistrato caratterizzato da un'alternanza tra livelli permeabili, costituiti in prevalenza da sabbie ed in misura minore da ghiaie, e livelli impermeabili o di scarsa permeabilità a composizione argillosa e limo-argillosa; la non

Fig. 72 – Diagramma di correlazione fra attività trizio e concentrazioni di cloruro per le acque dei CISS 32CT010+32CT030 e 32CT050.
– Correlation plot between Tritium (T.U.) and Cl concentrations for the waters relative the 32CT010+32CT030 and 32CT050 SSWB (Significant Subterranean Water Bodies).

continuità di quest'ultimi orizzonti e il consistente numero di pozzi che verosimilmente mettono in collegamento i vari orizzonti permeabili, rendono il sistema un multistrato monofalda. Tra il sistema della valle del Cecina e quello costiero non vi sono evidenti limiti idrogeologici che ne impediscono la continuità idraulica; pertanto questi corpi idrici sono da considerarsi tra di loro comunicanti.

A causa della prevalenza di litotipi di scarsa permeabilità nel bacino del Fiume Cecina, il CISS intravallivo trae alimentazione in maniera preponderante dalle acque di scorrimento superficiale che si infiltrano nel corpo alluvionale di fondo valle. La parte terminale di tale CISS ed i CISS costieri sono invece ricaricati sia da precipitazioni locali, soprattutto per quanto riguarda le zone di pianura, sia da acque meteoriche che si infiltrano sui rilievi collinari, ove affiorano litotipi permeabili (es. sabbie pleistoceniche) e relativamente permeabili (es. ofioliti). Per i CISS costieri vi sono di fatto chiare indicazioni sia piezometriche, sia idrogeochimiche (in particolare isotopiche), di una significativa alimentazione dai rilievi collinari. Relativamente ai rapporti tra i corpi idrici sotterranei ed il Fiume

Cecina, quest'ultimo, escludendo i momenti di piena, nel tratto a monte dell'entrata nella piana costiera, risulta prevalentemente drenare la falda; viceversa nel tratto finale percorso dal fiume prima della foce, l'acquifero è interessato da un'ampia depressione piezometrica centrata sull'abitato di Cecina, la quale favorisce un'alimentazione da parte del corso d'acqua verso i corpi idrici sotterranei.

La depressione piezometrica sopra citata così come quelle che si individuano lungo la costa tra Marina di Bibbona e Castagneto Carducci e più a sud verso S. Vincenzo sono da imputare a situazioni di sovra-sfruttamento del corpo idrico. In queste condizioni, come viene confermato dai dati chimici ed isotopici delle acque, è favorito un apporto in acquifero di acqua di mare, sia per avanzamento del cuneo salino dalla linea di costa, sia per richiamo di acqua salmastra dai corsi d'acqua. In questo senso la maggior criticità è presente nella zona dell'abitato di Cecina, dove si rilevano livelli piezometrici inferiori a zero fino a 5 km di distanza dalla costa. La diretta implicazione dell'eccessivo sfruttamento della risorsa idrica sul fenomeno dell'intrusione di acqua di mare è ben evidente dalla figura 73; in ef-

Fig. 73 – Mappa della piezometria e dei tipi chimici dei CISS studiati. – Chemical composition and piezometric map of the study area (SSWB 32CT010+32CT030 and 32CT050). fetti, è proprio in corrispondenza delle marcate depressioni piezometriche che si riscontrano acque con caratteristiche chimiche indubbiamente riconducibili ad un *mixing*, conservativo e non, tra acque di falda e acque marine.

Anche se da un confronto tra le piezometrie di anni diversi non sembra che abbia luogo un significativo ampliamento delle zone a piezometria depressa, bisogna comunque sottolineare che, in particolar modo per la zona tra Cecina e Vada, le condizioni esistenti inducono un continuo richiamo di acqua salata in acquifero. Per scongiurare l'ulteriore degrado della qualità delle risorse idriche sotterranee, sarebbe dunque auspicabile sia la riduzione progressiva degli emungimenti nella zona costiera sia la adozione di altre strategie per sopperire alle idroesigenze, quali ad esempio il riutilizzo delle acque di scarico per i settori industriale ed agricolo, piuttosto che, o contestualmente, la "migrazione" dei pozzi idropotabili verso l'acquifero intravallivo del Cecina.

Ringraziamenti

Gli autori della monografia ringraziano il Dott. DOMENICO MORINI, Responsabile del Servizio Geologico Regionale, l'Ing. GILDA RUBERTI, Reponsabile del Settore TUTELA DELLE ACQUE INTERNE E DEL MARE - SERVIZI IDRICI della Regione Toscana e la Dott.ssa ALESSANDRA PEI del Settore TU-TELA DELLE ACQUE INTERNE E DEL MARE - SERVIZI IDRICI della Regione Toscana, per aver creduto nella necessità di questo tipo di studi come passo propedeutico-preliminare per la modellizzazione numerica degli acquiferi e come strumento tecnico-conoscitivo per la gestione e la salvaguardia delle risorse idriche sotterranee.

Si ringraziano inoltre tutti coloro che hanno gentilmente fornito i dati geologici, idrogeologici e idrogeochimici in base ai quali è stato possibile portare a compimento questo studio, ossia (in ordine alfabetico): il Dott. MICHELE AMBROSIO dell'AF Geoscience and Tecnology Consulting, il Dott. Geol. CLAUDIO BENUCCI ed il Dott. Ing. CARLO CALASTRI dell'ASA (Gestore Unico del Servizio Idrico Integrato ATO 5), la Dott.ssa MARIA TERESA FAGIOLI dell'AF Geoscience and Tecnology Consulting, il Dott RICCARDO FRULLINI del Dipartimento di Scienze della Terra (DST) dell'Università degli Ŝtudi di Firenze, il Dott. SERGIO GRASSI dell'Istituto di Geoscienze e Georisorse del C.N.R., il Dott. Geol. FEDERICO LAZZARONI dell'Autorità di Bacino Toscana Costa, il Dott. Geol. STEFANO LORENZINI consulente tecnico ASA, il Dott. Geol. STEFANO MENICHETTI di ARPAT-Firenze e la Dott.ssa MADDALENA PENNISI dell'Istituto di Geoscienze e Georisorse del C.N.R.

Al Prof. ORLANDO VASELLI (DST Università degli Studi di Firenze) e al Prof. GIOVANNI PRANZINI (DST Università degli Studi di Firenze) va il nostro più sentito ringraziamento per aver messo a disposizione numerosi dati pregressi ed inediti ma soprattutto per la cura con cui hanno revisionato la prima versione del presente manoscritto.

[•]Ultimo, ma non per importanza, va un sentito ringraziamento al Consorzio Regionale LAMMA che ha finanziato questo lavoro.